OPEN ACCESS

Nursing Care Of Patients With Sepsis: Early Recognition, Intervention, And Prevention

Maram Falah Almutairi ⁽¹⁾, Hanan Abdo Otif ⁽²⁾, Maha Saleh Alonazi ⁽³⁾, Badreiah Mohammed Alshahrani ⁽⁴⁾, Majed Rashid Hady Alresheedi ⁽⁵⁾, Nourah ibrahim Hazazi ⁽⁶⁾, Madhawi Fuhead Alsubaie ⁽⁷⁾, Badryah Feriah Alrasheedi ⁽⁸⁾, Muna Mohammed Albugami ⁽⁹⁾, Mastoura Fahad Alotaibi ⁽¹⁰⁾, Guadah Abdullah Algothaimy ⁽¹¹⁾, Areej Saeed Saleh ⁽¹²⁾, Abdullah Melfi Al-Hosseni ⁽¹³⁾, Ohood Ali Abdullah Abbas ⁽¹⁴⁾, Anood Ali Abdullah Abbas ⁽¹⁵⁾

- 1. Specialist Nursing, Zulfi General Hospital, Riyadh second Health Cluster, Kingdom of Saudi Arabia.
 - ² Nursing Technician, Al-Eman Hospital, First Health Cluster, Kingdom of Saudi Arabia.
 - 3. Nursing Technician, Al-Eman Hospital, First Health Cluster, Kingdom of Saudi Arabia.
 - 4. Nursing Specialist, Al-Eman Hospital, First Health Cluster, Kingdom of Saudi Arabia.
 - Technician Nursing, Kabshan Health Center, Ministry of Health, Kingdom of Saudi Arabia. malresheedi@moh.gov.sa
 - 6. Nursing Technician, Al-Eman Hospital, First Health Cluster, Kingdom of Saudi Arabia.
 - 7. Nursing Specialist, Al-Eman Hospital, First Health Cluster, Kingdom of Saudi Arabia.
- B. Director of nursing, Al-Iman General Hospital, Kingdom of Saudi Arabia. Badryahfa@moh.gov.sa
 - Nurse Specialist, Ministry of Health, Seha Virtual Hospital, Kingdom of Saudi Arabia.
 Nurse, Ministry of Health headquarters, Kingdom of Saudi Arabia.
- Registered Nurse, Abha Maternity And Children Hospital, Aseer Cluster Health, Kingdom of Saudi Arabia.
- ^{12.} Nursing, king Abdelaziz Medical City National Guard outpatient department, Employee health clinic, Kingdom of Saudi Arabia.
 - 13. Nurse, Alharam Hospital, Almadinah Health Complex Kingdom of Saudi Arabia. amalhusini@moh.gov.sa
 - 14. Healthcare Assistant, Farasan General Hospital, Jazan Health Cluster, Kingdom of Saudi Arabia.
 - ^{15.} Nursing Technician, Farasan General Hospital, Jazan Health Cluster, Kingdom of Saudi Arabia.

Abstract:

Background: Sepsis is a life-threatening condition characterized by organ dysfunction due to a dysregulated host response to infection. Nurses play an essential role in early recognition, intervention, and prevention of sepsis to reduce morbidity and mortality in acute care settings.

Methods: This review synthesized current literature and clinical guidelines focusing on nursing roles and interventions in sepsis care. A systematic approach analyzed peer-reviewed articles, clinical protocols, and quality improvement reports addressing early detection tools, nursing interventions, monitoring, infection control, education, and barriers to effective care.

Results: Nurses' continuous patient contact facilitates early detection using screening tools such as qSOFA and MEWS. Implementation of nurse-driven protocols and care bundles enhances timely antibiotic administration and fluid resuscitation. Infection prevention strategies hand hygiene, aseptic techniques, and transmission-based precautions, effectively reduce sepsis incidence. Educational programs improve nursing competence, although resource and knowledge variability remain challenges.

Emerging technologies like electronic alerts and AI promise further improvements in early diagnosis and personalized management.

Conclusions: Nurses are pivotal in optimizing sepsis outcomes through early recognition, evidence-based interventions, and prevention strategies. Addressing challenges via continuous education, standardized protocols, and integration of technological advancements is vital. Strengthening nursing roles and resources is critical to reducing sepsis-related morbidity and mortality globally.

Keywords: Sepsis, Nursing Care, Early Recognition, Intervention, Prevention, Sepsis Bundle, Screening Tools, Infection Control, Nursing Education, Patient Outcomes.

Introduction

Sepsis is a life-threatening clinical syndrome characterized by organ dysfunction resulting from a dysregulated host response to infection. It represents a complex interplay between the infectious agent and the body's immune and inflammatory responses, which, when unregulated, lead to widespread tissue damage, organ failure, and potentially death. The modern definition, refined by the Third International Consensus, emphasizes that even a modest degree of organ dysfunction in the setting of infection is associated with significant mortality, underscoring the urgent need for rapid diagnosis and management. Sepsis constitutes a medical emergency requiring prompt recognition to facilitate early intervention and improve patient survival rates. Septic shock, the most severe manifestation, is marked by profound circulatory and cellular abnormalities that dramatically increase mortality risk (Srzić et al., 2022).

Sepsis continues to be a major public health challenge globally, with high incidence and substantial mortality. It affects millions worldwide annually, representing a leading cause of death in hospitalized patients and intensive care units (ICUs). Epidemiological studies reveal that older adults and patients with comorbidities are disproportionately affected, with mortality rates ranging widely depending on severity, from 10% in sepsis to over 40-50% in septic shock cases. Hospitalizations due to sepsis have increased consistently over the past decades due to aging populations, greater prevalence of immunocompromising conditions, and rising recognition in clinical practice. Sepsis also drives a significant burden on healthcare resources, including prolonged ICU stays, complex interventions, and high costs. Despite advances in treatment guidelines and protocols, mortality remains substantial, affirming the critical need for improved sepsis recognition and management strategies to alter outcomes positively (Modugula et al., 2025).

Nurses play a pivotal role in the early recognition, timely intervention, and prevention of sepsis progression. Due to their continuous patient contact, nurses are often the first healthcare providers to observe subtle physiological changes indicative of infection or organ dysfunction. Their knowledge of sepsis pathophysiology, use of clinical screening tools including early warning scores and sepsis-specific checklists, and adherence to evidence-based protocols such as the "Sepsis Six" bundle are vital to delivering prompt treatment. Nurses' active engagement in monitoring, administering antimicrobial therapy, supporting hemodynamic stabilization, and educating patients and families forms the cornerstone of effective sepsis management. Furthermore, nursing care extends beyond acute treatment, addressing prevention of healthcare-associated infections, supporting long-term recovery, and improving quality of life post-sepsis. Therefore, nursing care is integral to reducing sepsis morbidity and mortality, reinforcing the indispensable role of nurses in multidisciplinary sepsis care teams (Bleakley & Cole, 2020).

Methods

This review was conducted through a comprehensive literature search using electronic databases, including PubMed, CINAHL, and Cochrane Library, focusing on peer-reviewed articles, clinical guidelines, and systematic reviews published between 2015 and 2025. Keywords used in the search included "sepsis," "nursing care," "early recognition," "intervention," "prevention," "sepsis bundle," "infection control," and

"quality improvement." Articles were selected based on relevance to nursing practice, methodological rigor, and contribution to the understanding of sepsis management and prevention strategies.

The inclusion criteria were studies and reviews that addressed nursing interventions, early recognition tools, prevention strategies, and outcomes in adult and pediatric patients with sepsis. Exclusion criteria included non-English publications, case reports, and studies not focused on nursing roles. Data extraction was performed using a standardized form to capture study design, population, interventions, outcomes, and key findings. Thematic synthesis was used to organize and analyze the data, focusing on early recognition, intervention, and prevention strategies in nursing care. Quality assessment of included studies was conducted using established tools such as the Critical Appraisal Skills Programme (CASP) checklist for systematic reviews and randomized controlled trials.

Pathophysiology of Sepsis

Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection, which culminates in organ dysfunction. It begins when the host's immune system recognizes the presence of invading pathogens through pathogen-associated molecular patterns (PAMPs) such as bacterial endotoxins or viral components, or damage-associated molecular patterns (DAMPs) released from injured host cells. These molecular patterns bind to pattern recognition receptors like toll-like receptors (TLRs) on immune cells, including macrophages and antigen-presenting cells, initiating a broad and complex immune response. This early recognition triggers intracellular signaling involving transcription factors such as nuclear factor-kappa B (NF- κ B), leading to the rapid expression and release of multiple pro-inflammatory cytokines (e.g., tumor necrosis factor-alpha [TNF- α], interleukins IL-1, IL-6, IL-8) and interferons. The immune activation simultaneously stimulates anti-inflammatory pathways, creating a dynamic balance between pro- and anti-inflammatory forces that aim to control infection but can become maladaptive if unchecked, leading to systemic inflammation and immune dysregulation (Jarczak et al., 2021a).

The inflammatory cascade initiated during sepsis involves the activation of various cellular and humoral components that contribute to widespread tissue injury and microvascular dysfunction. Proinflammatory cytokines induce endothelial activation and dysfunction, characterized by increased vascular permeability, leukocyte adhesion, and release of tissue factor, which triggers the coagulation cascade. This hypercoagulable state promotes the formation of microthrombi and impairs fibrinolysis, resulting in microvascular thrombosis that disrupts tissue perfusion and leads to ischemic injury. Concurrently, activation of immune cells such as neutrophils releases reactive oxygen species and proteolytic enzymes, exacerbating tissue damage. The coagulation and inflammatory pathways are intertwined, with mediators from each amplifying the other's effects. As a result, these overlapping processes contribute to organ injury and dysfunction. Notably, sepsis also involves an anti-inflammatory compensatory response that may cause immunosuppression, rendering patients vulnerable to secondary infections and complicating outcomes (Baddam & Burns, 2025).

Organ dysfunction in sepsis is multifactorial and results from the combined effects of endothelial injury, impaired microcirculation, mitochondrial and metabolic derangements, and dysregulated immune responses. Endothelial damage leads to capillary leak, edema, and impaired oxygen delivery to tissues. Mitochondrial dysfunction reduces cellular energy production, contributing to bioenergetic failure in affected organs. Immune cell apoptosis and exhaustion further impair host defenses. The resulting tissue hypoxia, inflammation, and metabolic disturbances precipitate failure in critical organs such as the lungs (acute respiratory distress syndrome), kidneys (acute kidney injury), liver, heart, and brain. The severity of organ dysfunction and the degree of inflammation vary among patients, influenced by factors such as pathogen virulence, host genetics, comorbid conditions, and the timing and quality of interventions. This complexity underscores why sepsis is both heterogeneous and challenging to treat clinically (Jarczak et al., 2021b).

Early Recognition of Sepsis in Nursing Practice

Early recognition of sepsis is a critical component in nursing practice to improve patient outcomes and reduce sepsis-associated mortality. Nurses play a vital role in the early detection through careful assessment of clinical signs and symptoms. Key indicators nurses monitor include temperature changes such as fever or hypothermia, tachypnea (rapid breathing), altered mental status ranging from confusion to lethargy, and hypotension. Observation of these signs ideally occurs alongside vital signs monitoring and physical examination, as they reflect the progression of systemic infection and potential organ dysfunction. Sepsis can manifest with fever or hypothermia, chills, flushed or cool skin, rapid breathing, and altered consciousness, underscoring the need for vigilant clinical assessment by nurses (Alhamyani et al., 2024).

Patient populations at increased risk for sepsis necessitate heightened nursing vigilance. Elderly patients and infants are particularly susceptible due to immature or declining immune function. Comorbidities such as diabetes, chronic kidney disease, chronic obstructive pulmonary disease (COPD), malignancies, or immunosuppressive states notably elevate risk. Additionally, patients with compromised immunity from conditions like cancer or HIV, those with indwelling devices (central venous catheters, urinary catheters), recent surgery, prolonged hospital stays, or corticosteroid use require focused clinical assessments. The physiological changes associated with aging immunosenescence, decreased skin integrity, and nutritional deficits further increase vulnerability to sepsis and often blunt typical clinical signs, necessitating a high index of suspicion and nuanced assessment by nursing staff (Alhamyani et al., 2024).

Screening tools and early warning scores are essential in supporting nurses' ability to identify sepsis promptly. The Modified Early Warning Score (MEWS) and the quick Sequential Organ Failure Assessment (qSOFA) are commonly employed to stratify risk based on vital signs and clinical parameters. MEWS incorporates factors such as respiratory rate, heart rate, blood pressure, temperature, and level of consciousness, offering a quantifiable means to trigger clinical escalation. The qSOFA score uses respiratory rate, altered mentation, and systolic blood pressure to identify patients at risk of poor outcomes from sepsis and is recommended in sepsis guidelines despite ongoing debate regarding sensitivity. The National Early Warning Score (NEWS) is also effective in detecting early deterioration. These scores assist nurses in continuous monitoring and facilitate timely clinical decision-making, though they must complement, not replace, clinical judgment and patient-specific considerations (Lemoh et al., 2025).

Nurses' role extends beyond initial recognition to continuous monitoring and timely identification of patient deterioration. Given that nurses spend the most time with patients, they are poised to detect subtle changes in condition through ongoing vital sign monitoring, bedside assessments, and use of automated alerts when available. Their responsibilities include initiating sepsis protocols, promptly escalating concerns to medical teams, and ensuring rapid response interventions. Effective communication methods such as ISBAR (Identification, Situation, Background, Assessment, Recommendation) are critical for standardized information exchange and escalation. Simulation training and nurse-driven screening protocols improve early detection and response efficiency, directly impacting patient survival in sepsis (Lemoh et al., 2025).

Laboratory and diagnostic data interpretation constitute another cornerstone of sepsis management in nursing care. Nurses collect specimens for cultures (blood, urine, wound) and understand the indications for key laboratory tests such as lactate measurement, complete blood count, and inflammatory markers. Elevated serum lactate is a critical biomarker reflecting tissue hypoperfusion and correlates strongly with sepsis severity and mortality risk. Serial lactate measurements guide therapeutic decisions and risk stratification. Despite its importance, studies show lactate testing is not universally performed at the time of sepsis suspicion, highlighting an area for nursing-driven quality improvement. Nurses also assist in interpreting culture results, which help identify the source of infection and direct appropriate antimicrobial therapy. Their role in integrating clinical signs with laboratory data expedites diagnosis and treatment initiation, essential steps in preventing progression to septic shock (Rhee et al., 2015).

Nursing Interventions for Sepsis Management

Immediate hospital admission and close monitoring are critical steps in managing patients with sepsis, as the condition can deteriorate rapidly, requiring intensive care. Nurses play a pivotal role in ensuring rapid transfer to appropriate care settings, such as intensive care units, where continuous monitoring of vital signs including heart rate, respiratory rate, blood pressure, oxygen saturation, and urine output can be maintained. This close surveillance enables early detection of worsening organ dysfunction and timely interventions, significantly improving patient outcomes. Early and thorough assessment of airway, breathing, and circulation, as well as vigilance for altered mental status, are essential to guide ongoing treatment (Mahapatra et al., 2023).

The initiation of antibiotic therapy is a cornerstone of sepsis management, with robust evidence supporting prompt administration. Current guidelines emphasize starting broad-spectrum antibiotics as soon as sepsis is suspected to cover a wide range of potential pathogens, followed by de-escalation to narrower agents based on culture results to reduce resistance risk. Timely antibiotic administration, ideally within the first hour for septic shock and as soon as possible for sepsis, is associated with decreased hospital mortality. Studies indicate the use of common broad-spectrum antibiotics such as ceftriaxone initially, with additions including vancomycin or piperacillin-tazobactam depending on the clinical scenario. Tailoring antibiotics based on culture sensitivities after initial therapy is critical for effective eradication of the infection (Liu et al., 2017).

Fluid resuscitation protocols involve the rapid administration of intravenous fluids to restore circulating volume and improve tissue perfusion. The Surviving Sepsis Campaign recommends an initial fixed volume of 30 mL/kg of crystalloid fluid within the first three hours of sepsis-induced hypoperfusion or septic shock. Optimal fluid management balances sufficient resuscitation to improve hemodynamics with the avoidance of fluid overload, which can lead to edema and organ dysfunction. Recent evidence suggests tailoring fluid dosing based on dynamic assessments of fluid responsiveness using bedside tools like passive leg raise tests or echocardiographic parameters to guide ongoing fluid administration. Some studies advocate fluid volumes exceeding 30 mL/kg, reaching up to 40-45 mL/kg, have been associated with improved outcomes in certain patients. Customizing fluid therapy based on individual hemodynamics and clinical response is increasingly preferred over rigid protocols (Hyun et al., 2025).

Hemodynamic support in sepsis includes the use of vasopressors when fluid resuscitation alone is insufficient to maintain adequate blood pressure and tissue perfusion. Norepinephrine is commonly the first-line vasopressor agent, initiated early to maintain mean arterial pressure (MAP) targets generally between 65-70 mmHg, adjusted individually based on the patient's comorbidities such as chronic hypertension. Monitoring includes vital signs, urine output, and dynamic assessment of perfusion including lactate clearance and capillary refill time. Secondary vasopressors like vasopressin or angiotensin II are reserved for refractory septic shock cases. Careful balancing of vasopressor dosage is crucial to avoid excessive vasoconstriction and complications (Antonucci et al., 2024).

Oxygen therapy is a vital nursing intervention to prevent tissue hypoxia, which is a major risk in sepsis due to impaired oxygen delivery and utilization. Supplemental oxygen, delivered via nasal cannula, mask, or mechanical ventilation if required, helps maintain oxygen saturation above 93%. In severe cases, preparation for mechanical ventilation is necessary, especially in patients with sepsis-induced acute respiratory distress syndrome (ARDS). Oxygen therapy reduces mortality by reducing inflammation, protecting organs from hypoxic damage, and stabilizing hemodynamic parameters such as cardiac output and blood pressure (Minasyan, 2022).

Glycemic control in sepsis is nuanced; hyperglycemia is common due to the inflammatory response and metabolic changes. Insulin administration to maintain blood glucose levels between 140-180 mg/dL is generally recommended to avoid the risks associated with both hyperglycemia and hypoglycemia. Tight glycemic control (80-110 mg/dL) has not demonstrated mortality benefits and increases hypoglycemia risks, which can worsen outcomes. Therefore, moderate glucose control with careful monitoring and

adjustment of insulin dosing is the best practice to reduce metabolic complications during sepsis (Abdelhamid et al., 2024).

Removal of potential infectious sources, including intravascular devices, necrotic tissue, and other infected foci, is essential to halt ongoing contamination and systemic inflammation. Source control can involve surgical interventions, drainage procedures, or removal of catheters and devices that serve as infection reservoirs. Studies have shown that delayed or inadequate source control is associated with increased mortality and poorer outcomes in septic patients. Nurses play a key role in identifying and facilitating timely source control measures by communicating changes in patient status and ensuring timely interventions (De Waele, 2024).

Positioning and mobility interventions are necessary to prevent complications such as pneumonia, pressure ulcers, and muscle atrophy that are common in immobilized sepsis patients. Semi-Fowler's or high-Fowler's positioning reduces pneumonia risk, and early mobilization protocols led by nurses improve functional outcomes and reduce ICU-acquired weakness. Nurses continuously assess patient stability and tolerance for mobilization activities and coordinate care to safely advance mobility as clinically indicated (Rn) et al., 2021b).

Implementation of strict hygiene and infection control measures is paramount to preventing hospital-acquired infections and limiting the spread of pathogens. This includes adherence to hand hygiene protocols, use of personal protective equipment (PPE), sterile techniques during invasive procedures, and environmental cleaning. Effective infection control not only prevents superinfections but also reduces the incidence of sepsis recurrence, contributing to overall patient safety (Rn) et al., 2021a).

Finally, patient and family education about sepsis signs, treatment processes, and prevention strategies is vital for early recognition and improved adherence to care plans. Nurses educate patients and families on symptoms to watch for, importance of completing antibiotic courses, fluid intake, and follow-up care. Empowering patients and families supports earlier presentation for care and reduces delays in treatment, ultimately improving survival and quality of life (Fiest et al., 2022).

Prevention Strategies in Nursing Care

Prevention strategies in nursing care of patients with sepsis constitute essential interventions aimed at minimizing infection risks, enhancing early recognition, and improving patient outcomes. One critical preventative measure is adherence to standard hand hygiene and aseptic techniques. Healthcare facilities emphasize proper hand hygiene practices, such as using antimicrobial soap or alcohol-based hand sanitizers for hand cleansing, carefully following the specified steps for surgical hand antisepsis before invasive procedures. This reduces the transmission of pathogenic microorganisms, which are a leading cause of sepsis and hospital-acquired infections. Moreover, the implementation of aseptic techniques when handling intravenous lines and during invasive procedures minimizes the risk of introducing infectious agents into sterile body sites. This is evidenced by quality improvement initiatives where compliance with rigorous hand hygiene and aseptic protocols significantly reduced healthcare-associated infections and neonatal sepsis incidence by up to 50% in some units, thereby highlighting the profound impact of these practices in sepsis prevention (Kallimath et al., 2024).

Protective isolation and transmission-based precautions are crucial in preventing the spread of infectious agents exhibiting high transmissibility or resistance, such as multidrug-resistant organisms and airborne pathogens. Transmission-based precautions supplement standard precautions and involve barrier techniques tailored to the mode of transmission, including contact, droplet, and airborne precautions. These measures encompass the appropriate use of personal protective equipment (PPE) by healthcare workers, patient placement in single rooms when possible, dedicated patient-care equipment, and minimization of patient transport outside isolation rooms. The strict adherence to these protocols is essential for protecting both patients and healthcare personnel from cross-infection and reducing the burden of sepsis, particularly

www.diabeticstudies.org 76

in critically ill and immunocompromised patients. Nurses play a pivotal role in implementing and maintaining these precautions, ensuring environmental cleanliness, and educating staff and patients about infection control to mitigate pathogen transmission (Link, 2019).

The use of care bundles, structured sets of evidence-based practices performed collectively and consistently, is a powerful strategy in sepsis prevention and management. Care bundles related to sepsis typically include timely recognition, early antimicrobial administration, fluid resuscitation, and supportive therapies within specified time frames. Their implementation is associated with a considerable reduction in sepsis mortality rates, with studies demonstrating over 25% relative risk reduction when sepsis bundles are rigorously applied. These bundles serve to standardize care, reduce practice variability, and improve adherence to guidelines, creating a systematic approach to prevent progression from infection to sepsis and septic shock. Adherence to these bundles requires continuous staff education, monitoring, and quality improvement efforts, thereby underscoring how organizational commitment and nurse-led protocol implementation are integral to successful sepsis prevention (Mahapatra et al., 2023).

Immunization advocacy represents a vital preventative measure integrated into nursing care to reduce the incidence of infections that can precipitate sepsis, especially in vulnerable populations. Nurses are key agents in promoting vaccination programs, providing patient and community education about vaccine benefits, and facilitating immunization delivery. Studies illustrate that immunization education programs effectively enhance healthcare workers' and the public's knowledge and attitudes toward vaccines, leading to higher vaccination rates and improved protection against pathogens such as influenza and pneumococcus that contribute to sepsis risk. The role of nurses extends to addressing vaccine hesitancy, ensuring vaccine safety, and incorporating vaccination status assessment as part of routine patient care to interrupt infection progression and decrease sepsis incidence (Wagner et al., 2014).

Education programs for healthcare workers and patients constitute a cornerstone of sepsis prevention. Continuous training enhances nurses' knowledge, attitudes, and clinical practice related to early sepsis recognition, management protocols, and infection control measures. Educational interventions, such as workshops, seminars, and simulation exercises, have demonstrated significant improvements in nurses' competency, leading to earlier identification of deteriorating patients and prompt initiation of sepsis care bundles. Furthermore, patient education about hygiene, signs of infection, and adherence to treatment regimens helps in community-level prevention and timely healthcare seeking. The sustained impact of these programs depends on regular updates, institutional support, and integration into clinical practice, making education an imperative component of comprehensive sepsis prevention strategies (Khallaf et al., 2025).

Monitoring and Evaluation

Monitoring and evaluation are crucial components of nursing care in managing patients with sepsis to improve outcomes through early recognition, intervention, and prevention. Hemodynamic and respiratory monitoring play a pivotal role in this context. Hemodynamic monitoring involves continuous assessment of cardiovascular status including cardiac output, systemic vascular resistance, and tissue perfusion parameters. This advanced monitoring allows nurses to detect early signs of circulatory failure and hemodynamic instability common in sepsis and septic shock, such as hypotension and inadequate microcirculatory perfusion. Respiratory monitoring includes tracking oxygenation, ventilation status, respiratory rate, and work of breathing to promptly identify respiratory compromise, another common complication in sepsis. The use of real-time data from invasive and non-invasive devices helps guide fluid resuscitation and vasopressor therapy tailored to optimize cardiovascular function and tissue oxygen delivery. This continuous, precise monitoring ensures that subtle physiological changes are detected early, allowing rapid adjustment to treatment strategies and preventing progression to multi-organ failure (Valeanu et al., 2021).

Nursing documentation and effective communication within the multidisciplinary team are indispensable for sepsis care coordination. Accurate, timely, and comprehensive nursing documentation

ensures that all clinical findings, interventions, patient responses, and changes in condition are clearly recorded. This allows for continuity of care and supports clinical decision-making. Structured communication tools like SBAR (Situation, Background, Assessment, Recommendation) standardize the exchange of critical information, particularly during acute episodes, promoting early recognition and prompt intervention in sepsis. The implementation of such frameworks enhances collaboration between nurses, physicians, and other healthcare providers by ensuring that relevant clinical data is communicated reliably and succinctly. Moreover, consistent documentation linked to sepsis protocols helps in audit and quality improvement processes by identifying gaps in care delivery and compliance (Elsayed Mansour, 2021).

The integration of electronic surveillance and alert systems in nursing care has revolutionized early detection and management of sepsis. Electronic sepsis screening tools embedded within electronic health records (EHRs) continuously analyze patient data including vital signs, lab results, medication orders, and clinical notes to identify patients at risk or already developing sepsis. Nurses receive real-time alerts on mobile and desktop devices prompting immediate evaluation and intervention. These systems generate different alerts, from informational prompts about isolated abnormalities to diagnostic alerts indicating confirmed sepsis. They also provide evidence-based care recommendations and reminders for adherence to prescribed treatment bundles. The use of such technology has been shown to reduce delays in diagnosis and time to antibiotic administration, improve protocol adherence, and ultimately lower mortality and hospital length of stay. However, balancing sensitivity and specificity to minimize false alarms remains a challenge (Westphal et al., 2018).

Quality indicators and outcome measures are essential for evaluating the effectiveness of sepsis care delivered by nursing and the broader clinical team. Commonly used indicators include in-hospital mortality rate, length of stay, incidence of organ failure, need for intensive care support, and readmission rates. Tracking the rate of sepsis diagnosis over time helps assess early recognition efforts, while mortality and organ dysfunction rates gauge the success of interventions. Median length of stay provides insights into hospital resource utilization and recovery trajectories. These measures are analyzed by various patient demographics and clinical factors to identify trends and disparities, which guide targeted quality improvement efforts. Complementing quantitative data, local audits, and clinical reviews further elucidate barriers to optimal care and areas for enhancement (Majid et al., 2019).

Nurses play a critical role in ensuring protocol compliance and driving continuous quality improvement in sepsis management. Adherence to standardized sepsis bundles, sets of evidence-based interventions implemented systematically, has been linked to improved patient outcomes. Nurses are often frontline implementers, responsible for timely assessment, initiation of sepsis protocols, administration of fluids and medications, and ongoing monitoring. They also contribute valuable feedback on protocol feasibility and barriers to compliance, which inform iterative protocol refinements. Educational programs, frequent training, and debriefing sessions enhance nursing knowledge and awareness, reinforcing adherence. Quality improvement projects led by nursing teams leverage tools like Plan-Do-Study-Act (PDSA) cycles to test changes, measure results, and sustain gains. Engaged nursing leadership and multidisciplinary collaboration are vital to embedding a culture of safety and excellence in sepsis care (Gustad et al., 2024).

Challenges and Barriers in Nursing Care of Sepsis

One of the most significant challenges in nursing care of patients with sepsis is the early recognition of the syndrome, primarily because sepsis often presents with nonspecific symptoms that overlap with many other medical conditions. Early warning signs such as fever, tachycardia, tachypnea, and altered mental status can easily be attributed to less severe or unrelated issues, which sometimes leads to delayed diagnosis and intervention. The lack of a definitive early clinical marker means nurses must rely on continuous and holistic assessments, integrating subtle changes in a patient's condition, an approach that requires vigilance, experience, and a high degree of clinical judgment. This complexity is compounded in high-acuity settings

such as emergency departments and intensive care units, where patients often present with multiple and competing priorities. As a result, missed or late recognition of sepsis remains a substantial barrier to optimal outcomes, increasing the risk of rapid deterioration, multi-organ dysfunction, and mortality in at-risk populations (King et al., 2023).

Resource limitations and staffing constraints pose additional barriers to effective sepsis care. High patient-nurse ratios, frequent turnover, and inadequate ancillary support may impede the ability of nurses to conduct frequent assessments, promptly escalate care, and implement time-sensitive interventions for sepsis. Limited resources can also hinder the timely performance of necessary laboratory tests and the administration of life-saving therapies such as empiric antibiotics and intravenous fluids within recommended timeframes. These gaps are particularly pronounced in low- and middle-income countries, but they are also reported in resource-strained hospitals in high-income settings, especially during times of increased healthcare demand such as pandemics or seasonal surges. Nurses working under such pressures may find it difficult to adhere to sepsis protocols and bundles, highlighting the importance of context-specific strategies, including workflow optimization and supportive leadership to bolster frontline staffing (Lasater et al., 2021).

Another challenge is the variability in knowledge, training, and competency of nursing staff with respect to sepsis. Although clinical guidelines and educational programs exist, their implementation is not always uniform across institutions. Disparities in initial nursing education, lack of ongoing sepsis-specific training, and inconsistent exposure to sepsis cases all contribute to variable proficiency in early sepsis recognition and timely intervention. Studies have shown that targeted education, simulation-based training, and real-time decision support can improve nurses' confidence and accuracy in identifying sepsis; however, the sustainability and reach of these interventions are often limited by institutional resources and competing clinical priorities. Bridging the knowledge gap requires a culture of continuing education, audit, and feedback, alongside strong interdisciplinary collaboration (Khallaf et al., 2025).

The complexity of patient populations in modern healthcare also complicates sepsis care. Patients who are elderly, immunocompromised, or have multiple comorbidities such as diabetes, chronic renal insufficiency, or heart failure tend to present atypically and are at higher risk for rapid progression and adverse outcomes. These patients often have baseline abnormalities in vital signs or laboratory values, obscuring the classic signs of sepsis and making clinical trajectories difficult to interpret. Additionally, managing concurrent conditions and the effects of numerous medications further complicates assessment and prompt escalation. Nurses must synthesize a vast array of information while tailoring interventions to each patient's unique risks, all of which add to cognitive workload and decision-making complexity in sepsis care (Alhamyani et al., 2024).

Addressing antibiotic resistance and infection control is a further persistent challenge for nurses caring for septic patients. The rise of multidrug-resistant organisms necessitates careful stewardship when initiating and de-escalating antibiotic therapies, which can delay administration and complicate protocol adherence. At the same time, rigorous infection control measures must be upheld to prevent hospital-acquired infections and cross-transmission tasks that are demanding under time pressure and heavy workloads. Nurses play a critical role in upholding hand hygiene, implementing isolation precautions, and ensuring environmental cleaning, but effectiveness can be undermined by equipment shortages, workflow obstacles, or lapses in awareness. Ongoing surveillance, robust stewardship programs, and regular infection control training are essential to support nursing staff in meeting these challenges while ensuring the safety of both septic patients and the wider hospital population (Kumar et al., 2024).

Future Directions and Innovations

Recent advances in sepsis prediction tools through artificial intelligence (AI) have ushered in a transformative era in early sepsis detection and management. Sophisticated machine learning (ML) and deep learning models trained on large electronic health records (EHR) datasets have demonstrated superior

www.diabeticstudies.org 79

diagnostic accuracy compared to traditional clinical scoring systems such as qSOFA and SIRS. These AIdriven tools can predict sepsis onset hours before clinical symptoms appear by integrating diverse and complex clinical data, including vital signs, laboratory parameters, and biomarker profiles. They hold promise not only in improving early recognition but also in stratifying patients according to sepsis severity and predicting outcomes like acute kidney injury and respiratory distress. Moreover, AI facilitates the identification of novel biomarkers and digital signatures essential for more timely and precise sepsis diagnosis. Importantly, these technological advancements extend beyond the hospital setting to emergency departments and prehospital care, potentially enabling earlier interventions in fast-paced environments where every minute counts. The integration of AI as a clinical decision support tool in nursing workflows can thus enhance patient monitoring and prompt timely therapeutic actions, ultimately reducing sepsis mortality and improving outcomes (Papareddy et al., 2025).

Nurse-driven protocols and the establishment of rapid response teams (RRTs) or specialized sepsis emergency response teams (SERTs) represent a critical innovation in bridging the gap between early sepsis recognition and timely intervention. These nurse-led initiatives empower nursing staff and rapid response teams to initiate essential sepsis management bundles promptly, including administering broad-spectrum antibiotics, obtaining cultures, and providing appropriate fluid resuscitation. Studies have shown that implementation of nurse-driven protocols leads to significantly reduced time to first-dose antibiotic administration and improved adherence to fluid resuscitation guidelines, which are directly linked to decreased morbidity and mortality. Additionally, incorporating advanced tools such as point-of-care ultrasound (POCUS) into SERTs enables nurses to individualize fluid and hemodynamic management based on real-time patient assessment rather than rigid protocols, aligning treatment with the patient's physiological needs. Financial incentives tied to performance and hospital reimbursement further motivate healthcare systems to adopt these nurse-driven and rapid response interventions, highlighting the expanding scope and responsibility of nursing roles in acute sepsis care (Semanco et al., 2022).

The integration of personalized medicine approaches into sepsis care marks a paradigm shift from a one-size-fits-all model to tailoring treatment based on individual patient characteristics encompassing genomics, proteomics, immune profiling, and clinical phenotypes. Sepsis is a heterogeneous syndrome, with patient immune responses varying significantly due to genetic predispositions, comorbidities, type of infecting pathogen, and infection site. Utilizing multiple data sets and bioinformatics tools, including multiomics analyses and advanced biomarker panels, allows clinicians to stratify patients into subgroups with distinct pathophysiological profiles. This stratification supports precision interventions targeting specific biological pathways, potentially improving the efficacy and safety of therapies. Personalized approaches also enable dynamic monitoring of treatment responses, facilitating timely adjustments. While still in early stages clinically, personalized medicine holds substantial promise for optimizing sepsis therapies and improving patient outcomes by addressing the complexity of host-pathogen interactions uniquely in each patient (Lazăr et al., 2019).

Enhanced education and training programs tailored for nursing professionals remain foundational to improving sepsis care. Educational interventions employing multimodal methods such as online interactive modules, high-fidelity simulation scenarios, and video vignettes have demonstrated improvements in nurses' knowledge, self-reported competence, and confidence to identify and manage sepsis early. Nevertheless, studies suggest ongoing gaps in translating competence into consistent clinical practice, underscoring the need for continuous reinforcement and structured support systems within clinical environments. Targeted training of critical care and emergency nurses on sepsis bundle components, early warning signs, and the utilization of decision support tools has been shown to facilitate earlier intervention and improve adherence to best practices. Additionally, addressing organizational and environmental barriers such as staffing levels, workload, and resource availability can enhance the effectiveness of educational initiatives. Future training programs must incorporate emerging technologies and interprofessional collaboration to sustain improvements in sepsis recognition and management (Kissel et al., 2025).

Despite advancements, significant research gaps and areas for further study persist in sepsis nursing care. There is a need for large-scale, theory-informed implementation studies to identify barriers and facilitators affecting timely sepsis recognition and intervention across diverse clinical settings. The complex interplay of individual nurse knowledge, team dynamics, environmental resources, and technological integration requires comprehensive investigation to develop optimized care models. Furthermore, more robust clinical trials are necessary to validate AI-driven prediction models in real-world nursing workflows and assess their impact on patient outcomes. The development and evaluation of nurse-driven rapid response teams with advanced competencies in diagnostics like POCUS require further exploration. Additionally, expanding personalized medicine beyond biomarker identification toward practical bedside applications in sepsis care remains an important frontier. Continued exploration into educational methodologies that effectively bridge the gap between increased knowledge and clinical application is critical. Addressing these gaps through multidisciplinary research will enhance evidence-based approaches, support nursing roles in sepsis care, and ultimately improve patient survival and quality of care (Marshall & Leligdowicz, 2022).

Conclusion

Nursing care plays a pivotal role in the early recognition, timely intervention, and prevention of sepsis, significantly impacting patient outcomes and survival rates. Nurses are often the first to detect subtle changes in patient condition, enabling prompt escalation and initiation of evidence-based protocols such as the Sepsis Six bundle. Early recognition tools, including early warning scores and sepsis-specific checklists, enhance the ability of nurses to identify at-risk patients and facilitate rapid response. Timely administration of antibiotics, fluid resuscitation, hemodynamic support, and source control are critical interventions that nurses coordinate and implement, directly influencing morbidity and mortality.

Prevention strategies, such as strict adherence to hand hygiene, aseptic techniques, transmission-based precautions, and the use of care bundles, are essential for reducing the incidence of sepsis and hospital-acquired infections. Continuous education, simulation training, and the integration of electronic surveillance systems further empower nurses to deliver high-quality, protocol-driven care. Despite advances, challenges remain, including early recognition in atypical presentations, resource limitations, and variability in nursing knowledge and training. Ongoing research, innovation in prediction tools, and personalized medicine approaches hold promise for further improving sepsis outcomes. In summary, nurses are indispensable in the multidisciplinary management of sepsis, and their expertise, vigilance, and commitment are fundamental to reducing the burden of this life-threatening condition.

References

- 1. Abdelhamid, H. S., Rabie, A. H., Mamdouh, M., & Daniel, S. H. (2024). Effect of Glycemic Control on Sepsis in Critically Ill Diabetic Patients: A Prospective Cohort Study. Ain Shams Medical Journal, 75(1), 15–26. https://doi.org/10.21608/asmj.2024.247956.1181
- 2. Alhamyani, A. H., Alamri, M. S., Aljuaid, N. W., Aloubthani, A. H., Alzahrani, S., Alghamdi, A. A., Lajdam, A. S., Alamoudi, H., Alamoudi, A. A., Albulushi, A. M., & AlQarni, S. N. (2024). Sepsis in Aging Populations: A Review of Risk Factors, Diagnosis, and Management. Cureus. https://doi.org/10.7759/cureus.74973
- 3. Antonucci, E., Garcia, B., & Legrand, M. (2024). Hemodynamic Support in Sepsis. Anesthesiology, 140(6), 1205–1220. https://doi.org/10.1097/ALN.0000000000004958
- 4. Baddam, S., & Burns, B. (2025). Systemic Inflammatory Response Syndrome. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK547669/
- 5. Bleakley, G., & Cole, M. (2020). Recognition and management of sepsis: The nurse's role. British Journal of Nursing (Mark Allen Publishing), 29(21), 1248–1251. https://doi.org/10.12968/bjon.2020.29.21.1248

www.diabeticstudies.org 81

- 6. De Waele, J. J. (2024). Importance of timely and adequate source control in sepsis and septic shock. Journal of Intensive Medicine, 4(3), 281–286. https://doi.org/10.1016/j.jointm.2024.01.002
- 7. Elsayed Mansour, H. (2021). Nurses' Practice of Documentation in Critical Care Units: An observation from Egypt. Egyptian Journal of Health Care, 12(2), 1502–1513. https://doi.org/10.21608/ejhc.2021.191873
- 8. Fiest, K. M., Krewulak, K. D., Brundin-Mather, R., Leia, M. P., Fox-Robichaud, A., Lamontagne, F., & Leigh, J. P. (2022). Patient, Public, and Healthcare Professionals' Sepsis Awareness, Knowledge, and Information Seeking Behaviors: A Scoping Review*. Critical Care Medicine, 50(8), 1187–1197. https://doi.org/10.1097/CCM.0000000000005564
- 9. Gustad, L. T., Bangstad, I.-L., Torsvik, M., & Rise, M. B. (2024). Nurses' and Physicians' Experiences After Implementation of a Quality Improvement Project to Improve Sepsis Awareness in Hospitals. Journal of Multidisciplinary Healthcare, 17, 29–41. https://doi.org/10.2147/JMDH.S439017
- Hyun, D., Ahn, J. H., Huh, J. W., Hong, S.-B., Koh, Y., Oh, D. K., Lee, S. Y., Park, M. H., & Lim, C.-M. (2025). Optimal time and volume of fluid resuscitation in patients with sepsis: A nationwide multicenter cohort study. Scientific Reports, 15(1), 30465. https://doi.org/10.1038/s41598-025-14854-8
- 11. Jarczak, D., Kluge, S., & Nierhaus, A. (2021a). Sepsis—Pathophysiology and Therapeutic Concepts. Frontiers in Medicine, 8, 628302. https://doi.org/10.3389/fmed.2021.628302
- 12. Jarczak, D., Kluge, S., & Nierhaus, A. (2021b). Sepsis-Pathophysiology and Therapeutic Concepts. Frontiers in Medicine, 8, 628302. https://doi.org/10.3389/fmed.2021.628302
- 13. Kallimath, A., Patnaik, S. K., Malshe, N., Suryawanshi, P., Singh, P., Gareghat, R., Nimbre, V., Ranbishe, K., Kamble, A. G., & Ambekar, V. (2024). Quality improvement initiative "S-A-F-H" to reduce healthcare-associated neonatal sepsis in a tertiary neonatal care unit. BMJ Open Quality, 13(Suppl 1), e002336. https://doi.org/10.1136/bmjoq-2023-002336
- 14. Khallaf, H., Ejheisheh, M. A., Malak, Malakeh. Z., Shehadeh, A., Ayed, A., Batran, A., & Farajallah, M. (2025). Nurses' knowledge, attitudes, and decision-making related to sepsis assessment and management in Palestinian intensive care units. BMC Nursing, 24, 779. https://doi.org/10.1186/s12912-025-03341-0
- King, J., Chenoweth, C. E., England, P. C., Heiler, A., Kenes, M. T., Raghavendran, K., Wood, W., Zhou, S., Mack, M., Wesorick, D., Proudlock, A., King, J., Chenoweth, C. E., England, P. C., Heiler, A., Kenes, M. T., Raghavendran, K., Wood, W., Zhou, S., ... Proudlock, A. (2023). Early Recognition and Initial Management of Sepsis in Adult Patients. Michigan Medicine University of Michigan.
- Kissel, K. A., Krewulak, K. D., Poulin, T. G., Parhar, K. K. S., Niven, D. J., Doiron, V. M., & Fiest, K. M. (2025). Understanding ICU Nursing Knowledge, Perceived Barriers, and Facilitators of Sepsis Recognition and Management: A Cross-Sectional Study. Critical Care Explorations, 7(1), e1200. https://doi.org/10.1097/CCE.0000000000001200
- 17. Kumar, N. R., Balraj, T. A., Kempegowda, S. N., & Prashant, A. (2024). Multidrug-Resistant Sepsis: A Critical Healthcare Challenge. Antibiotics, 13(1), 46. https://doi.org/10.3390/antibiotics13010046
- Lasater, K. B., Sloane, D. M., McHugh, M. D., Cimiotti, J. P., Riman, K. A., Martin, B., Alexander, M., & Aiken, L. H. (2021). Evaluation of Hospital Nurse-to-Patient Staffing Ratios and Sepsis Bundles on Patient Outcomes. American Journal of Infection Control, 49(7), 868–873. https://doi.org/10.1016/j.ajic.2020.12.002
- 19. Lazăr, A., Georgescu, A. M., Vitin, A., & Azamfirei, L. (2019). Precision Medicine and its Role in the Treatment of Sepsis: A Personalised View. Journal of Critical Care Medicine (Universitatea De Medicina Si Farmacie Din Targu-Mures), 5(3), 90–96. https://doi.org/10.2478/jccm-2019-0017
- 20. Lemoh, A. Y., Rashidzada, Z., Krishnasamy, M., Wilkinson, A., Blackwood, R., Rivalland, A., Ierano, C., Thursky, K. A., & Guccione, L. (2025). Roles and responsibilities of registered nurses in the early recognition and management of sepsis in acute hospital settings: A scoping review. BMJ Open Quality, 14(4), e003485. https://doi.org/10.1136/bmjoq-2025-003485
- 21. Link, T. (2019). Guideline Implementation: Transmission-Based Precautions. AORN Journal, 110(6), 637–649. https://doi.org/10.1002/aorn.12867

- 22. Liu, V. X., Fielding-Singh, V., Greene, J. D., Baker, J. M., Iwashyna, T. J., Bhattacharya, J., & Escobar, G. J. (2017). The Timing of Early Antibiotics and Hospital Mortality in Sepsis. American Journal of Respiratory and Critical Care Medicine, 196(7), 856–863. https://doi.org/10.1164/rccm.201609-1848OC
- 23. Mahapatra, S., Heffner, A. C., & Atarthi-Dugan, J. M. (2023). Septic Shock (Nursing). In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK568698/
- 24. Majid, A., Arain, E., Ye, C., Gilbert, E., Xie, M., Lee, J., Churpek, M., Durazo-Arvizu, R., Markossian, T., & Joyce, C. (2019). Patient outcomes and cost-effectiveness of a sepsis care quality improvement program in a health system. Critical Care Medicine, 47(10), 1371–1379. https://doi.org/10.1097/CCM.00000000000003919
- 25. Marshall, J. C., & Leligdowicz, A. (2022). Gaps and opportunities in sepsis translational research. eBioMedicine, 86, 104387. https://doi.org/10.1016/j.ebiom.2022.104387
- 26. Minasyan, H. (2022). Oxygen therapy for sepsis and prevention of complications. Acute and Critical Care, 37(2), 137–150. https://doi.org/10.4266/acc.2021.01200
- 28. Papareddy, P., Lobo, T. J., Holub, M., Bouma, H., Maca, J., Strodthoff, N., & Herwald, H. (2025). Transforming sepsis management: AI-driven innovations in early detection and tailored therapies. Critical Care, 29, 366. https://doi.org/10.1186/s13054-025-05588-0
- 29. Rhee, C., Murphy, M. V., Li, L., Platt, R., & Klompas, M. (2015). Lactate Testing in Suspected Sepsis: Trends and Predictors of Failure to Measure Levels. Critical Care Medicine, 43(8), 1669–1676. https://doi.org/10.1097/CCM.0000000000001087
- 30. Rn), O. R. for N. (Open, Ernstmeyer, K., & Christman, E. (2021a). Chapter 4 Aseptic Technique. In Nursing Skills [Internet]. Chippewa Valley Technical College. https://www.ncbi.nlm.nih.gov/books/NBK593203/
- 31. Rn), O. R. for N. (Open, Ernstmeyer, K., & Christman, E. (2021b). Chapter 13 Mobility. In Nursing Fundamentals [Internet]. Chippewa Valley Technical College. https://www.ncbi.nlm.nih.gov/books/NBK591828/
- 32. Semanco, M., Wright, S., & Rich, R. L. (2022). Improving Initial Sepsis Management Through a Nurse-Driven Rapid Response Team Protocol. Critical Care Nurse, 42(5), 51–57. https://doi.org/10.4037/ccn2022608
- 33. Srzić, I., Nesek Adam, V., & Tunjić Pejak, D. (2022). SEPSIS DEFINITION: WHAT'S NEW THE TREATMENT GUIDELINES. Acta Clinica Croatica, 61(Suppl 1), 67–72. https://doi.org/10.20471/acc.2022.61.s1.11
- 34. Valeanu, L., Bubenek-Turconi, S.-I., Ginghina, C., & Balan, C. (2021). Hemodynamic Monitoring in Sepsis—A Conceptual Framework of Macro- and Microcirculatory Alterations. Diagnostics, 11(9), 1559. https://doi.org/10.3390/diagnostics11091559
- 35. Wagner, L. M., Roup, B. J., & Castle, N. G. (2014). Impact of infection preventionists on Centers for Medicare and Medicaid quality measures in Maryland nursing homes. American Journal of Infection Control, 42(1), 2–6. https://doi.org/10.1016/j.ajic.2013.07.012
- 36. Westphal, G. A., Pereira, A. B., Fachin, S. M., Sperotto, G., Gonçalves, M., Albino, L., Bittencourt, R., Franzini, V. de R., & Koenig, Á. (2018). An electronic warning system helps reduce the time to diagnosis of sepsis. Revista Brasileira de Terapia Intensiva, 30(4), 414–422. https://doi.org/10.5935/0103-507X.20180059