OPEN ACCESS

Using Modern Technology As A Tool To Enhance Infection Control In Healthcare Facilities

Rehaam Mohammad Wayani¹, Mazad Ali Allehyani², Yousef Abdulhai Siddiq³, Dawas Ateeq Alkhaldi⁴, Rushdi Hayson Mhsen Alhakami⁵, Abdulhadi Ayesh Nasser Al Abdullah⁶, Hadi Adel Hassan AL Dakheel⁷, Sarah Tawfeeq Alshreadah⁶, Ahood Obaid Draa Alotaibi⁶, Abdullah Abdullah Alsaffan¹⁰

¹Senior Deputy Physician - Al-Utaibiyah Health Center- Makkah

²Senior Deputy Physician - Makkah

³Resident Physician - Primary Health Care in Al-Utaibiyah

⁴Radiology Technician - Forensic Medicine Center

⁵Radiology Technician - Al-Utaibiyah Health Center - Makkah Health Cluster

⁶Laboratory Specialist-Maternity and children hospital

⁷Laboratory Specialist-Maternity and children hospital

⁸laboratory technician - Dammam medical complex

⁹laboratory technician - Dammam central blood bank

¹⁰Health crisis and disaster, Management center, Ministry branch Eastern province

ABSTRACT

The problem of hospital-acquired infections (HAIs) is still a serious challenge to patient safety because human error and uneven adherence often hinder traditional control strategies. The current investigation determined the effectiveness of a combined technological intervention, which comprises electronic hand hygiene monitoring, ultraviolet (UV) disinfection, and real-time infection surveillance software, in terms of the reduction of the incidence of HAI, the increase of compliance, and the analysis of costefficiency. The quasi-experimental design was applied in 20 hospital units (intensive care unit, general surgery department and internal medicine ward) with 500 healthcare workers and a patient-day of about 35,500. The units were assigned to either of three bundles of technology: Advanced, Intermediate, or Basic. The results of the analysis of variance (ANOVA), analysis of covariance (ANCOVA), and multivariate logistic regression were applied to data extracted using electronic logs, and hospital records as well as direct observations. The total HAI rate showed significant statistically significant improvements in terms of a decrease in the total HAI rate, which was 10.8 in the intervention period, and 6.8 per 1000 patient-days in the post-intervention period, or it represented a 37% relative change. Strongest absolute decrease was in intensive care units as this declined by 7.3 per 1,000 patient-days. Advanced technology bundle was found to be the most powerful independent predictor of a 30% or greater reduction of HAIs with an adjusted odds ratio of 18.45 (95% CI: 4.12 -82.61) and this was statistically significant (p < 0.001). The compliance in hand hygiene was over 90% in the units that used the Advanced bundle. The cost benefit analysis showed significant net annual savings and the benefit cost returns a ratio of 17:1 to 50:1. Bundled technological interventions have significant effects on the prevention of HAI and the adherence to hand hygiene in a cost-efficient way. Implementation of integrated technology bundles, particularly in high-risk environments, is a proactive, information-based strategy to improve patient safety and the burden of HAIs.

Keywords: compliance, cost-effectiveness, hospital-acquired infection, infection control, technology.

INTRODUCTION

Infection control has been a pillar of patient safety and quality care in medical institutions, and especially so since the occurrence of hospital-acquired infections (HAIs) has remained a major challenge in the global arena [1]. HAIs are patient-acquired infections, which are linked to longer hospitalization, morbidity, and mortality, and high economic costs. The global research conducted by the World Health Organization (WHO) revealed that hundreds of millions of patients contracted HAIs annually, with the biggest number of cases recorded in low- and middle-income nations [2,3]. HAIs were also linked to high morbidity and medical costs in patients, and there is a continuum of prevention

of infection despite the improvement in hygiene regimes and clinical practice, highlighting the ongoing issue of combating infections in the high-income environment [4]. Commonly used methods of infection control, like manual hand hygiene, instrument sterilization, cleaning the surface, and wearing personal protective gear, have proven to be effective, but they are often constrained due to human error, inconsistency in compliance, and poor surveillance. Such restrictions led to a sense of urgency regarding the development of innovative methods that might help to make healthcare facilities more efficient, consistent, and reliable in terms of infection prevention.

Contemporary technology became a key instrument to deal with the existing incentives in infection control measures. Electronic hand hygiene monitoring systems, ultraviolet (UV) disinfection machines, automated antimicrobial surface cleaners, and real-time infection surveillance software were the technologies that offered a chance to minimize the use of manual procedures, improve monitoring, and provide the possibility of timely interventions [6]. The use of electronic monitoring systems enabled monitoring of hand hygiene compliance among healthcare workers, producing actionable data that can be used by infection control teams to address all these problems and ensure accountability [7]. UV disinfection instruments proved to be fast and efficient in eliminating microbes on surfaces and medical equipment, especially in high-risk units like intensive care units and operating theaters [8]. Automated surface cleaning and antimicrobial antiques also helped to reduce environmental contamination that has long been known to be a key pathogen carrier [9]. Infection surveillance software was used to allow early identification of clusters of infections, assimilation of laboratory and clinical data, and immediate commencement of control measures, which minimized the possibility of outbreaks [10]. These technological interventions combined were a paradigm shift in infection prevention as they are based on data-driven, proactive strategies rather than reactive interventions.

The rising trend of the use of modern technology in the healthcare setting was found to be inconsistent in terms of evidence of its effectiveness and implementation. Some of the studies reported a substantial decrease in the number of HAIs with the implementation of particular technologies; in particular, electronic hand hygiene monitoring increased compliance rates by significant margins, whereas UV disinfection decreased the prevalence of microorganisms on critical surfaces by a significant margin [11]. On the other hand, other studies had mixed findings, and it was usually dependent on the surrounding circumstances, including staff involvement, integration of workflows, sufficiency of training, and the preparedness of infrastructure. These results highlighted the fact that technological tools had their own efficacy, but their influence was highly reliant on human, organizational, and environmental variables [12]. In addition, there was a paucity of literature on the cost-effectiveness and scalability of technological interventions, especially in resource-restricted contexts. Economic effects of implementing advanced devices and software solutions placed significant obstacles to most healthcare facilities, which created disparities in access to modern infection control measures [13].

The compliance of healthcare workers with infection control strategies remained an essential factor of performance. Conventional audits and self-reported compliance gauges tended to overrate true compliance, and direct observation was demanding of manpower and prone to bias on the part of the observer [14]. These constraints were alleviated in modern technological interventions through objective, continuous monitoring and creation of real-time feedback. Research revealed that the medical facilities that supported electronic monitoring and automated disinfection systems were able to introduce sustained compliance rates and a significant decrease in HAIs [15]. In addition, technology enabled the standardization of practices of preventing infections between departments and shifts, defeating variability that frequently compromised manual practices [16]. This combination of human activity, technology, and system-level interventions was used to demonstrate the overall approach to infection prevention that did not treat the availability of the devices as the only factor but stressed the significance of training, workflow modification, and leadership assistance [17].

The use of technology in controlling infection was also in line with the overall trends in healthcare digitalization and smart hospital programs. Digitalization of health, electronic medical records, and data-driven clinical decision-making facilitated by the global transition led to a favorable environment where technological solutions could find a place in infection prevention [18]. Combining

infection surveillance software with electronic health records allowed predictive analytics and early warning mechanisms, and infection rate benchmarking across hospitals. The remote monitoring, reporting, and education were supported by mobile applications and gave healthcare personnel greater control over infection control measures due to the ability to actively participate in the process [19]. The alignment of technology with data analytics, as well as infection prevention strategies, was, therefore, a revolutionary way of enhancing patient safety and minimizing healthcare-associated risks.

Despite the identified promise of contemporary technology, there were a number of gaps in the literature. There are not many studies that systematically evaluated the effectiveness of various technological interventions in different healthcare environments, such as tertiary, secondary, and primary care institutions [20]. The interplay between the adoption of technologies and the context through staff workload, hospital infrastructure, and institutional culture was not fully studied. Additionally, the studies on cost-benefit analysis, sustainability, and long-term effects of technological interventions were limited, especially in low and middle-income countries, where resource limitations shaped decision-making [21]. This, therefore, required an in-depth appraisal of the contemporary technology as an infection control tool, which incorporates the effectiveness, compliance, viability, and economic implications, among other factors, to guide evidence-based implementation strategies.

The justification behind the study was premised on the fact that there was an urgent necessity to improve infection control using innovative, effective, and sustainable methods. The study aimed to offer empirical data on the efficacy of the technological interventions, to determine the obstacles and enabling factors in the successful implementation by systematically evaluating the role of modern technology use in the healthcare facilities, the overall effects on patient safety, and efficiency in healthcare facilities [22]. It is an approach that combines clinical, behavioral, and organizational viewpoints that admits the fact that technology was not sufficient to result in optimal results unless it was aligned with human factors, the workflow procedures, and the organizational policies. The purpose of the study was to make a contribution to the current body of evidence concerning evidence-based use of modern technologies in infection control, as well as fill some vital gaps concerning compliance, efficacy, and cost-effectiveness in a real-life healthcare facility.

METHODOLOGY

The current research was to systematically evaluate the importance of the contemporary technology in improving the control of infections in health institutions. The targeted goals were to assess the effectiveness of technological interventions on the reduction of the rates of infection, determine the most effective technologies, study the adherence of healthcare workers to the activities of infection control based on technologies, and assess the cost-effectiveness and the possibility of implementing the technological interventions in different healthcare facilities. In order to accomplish these goals, a quantitative, observational, and mixed-methods research design was applied that incorporated both prospective and retrospective data collection to determine the trends of the infections and compliance behavior with the course of time. This arrangement has allowed the researchers to make correlations between technological interventions and infection control outcomes, as well as to be able to assess issues of implementation contextually in various healthcare facilities.

The research was carried out in the tertiary care hospitals, secondary care hospitals, and selected primary health centers in the urban and semi-urban areas, which represent the representative range of healthcare settings in terms of patient volume, staff strength, and access to the latest infection control technologies. The sample population was divided into three broad categories, namely, healthcare workers (doctors, nurses, and support staff) who dealt directly with patients, hospital units where technological interventions were to be used, and patients who were admitted during the study. Samples of the various departments, units, and shifts were used to have proportional coverage of each department by stratified random sampling, taking into consideration the differences in exposure risk and the workload. They involved 500 healthcare workers and 20 hospital units, and the data about the outcome and the incidence of infections were determined using data about 3,000 patient-days.

The study parameters were well spelled out in order to measure the effect of modern technology on infection control in a comprehensive manner. The main outcome measure was the number of hospital-acquired infections (HAIs), pre- and post-intervention (technological) application. Types of

technology applied, including electronic hand hygiene monitoring systems, ultraviolet (UV) disinfection devices, automated antimicrobial surface cleaners, real-time infection surveillance software, and mobile apps for staff training and reporting, were also considered secondary parameters. Some of the parameters encompassed the compliance rates of healthcare workers to infection control procedures, the frequency and usage of the devices, patient outcomes such as length of stay and readmission rates as a result of infection, and cost-effectiveness measures, such as operational costs and cost savings made by reduction in infection rates.

The primary and secondary sources were used to gather the data. Structured questionnaires given to healthcare workers were considered primary data, direct observations of hand hygiene and infection control behavior using a set of standardized checklists, and semi-structured interviews were used to obtain the perception of technology usability, compliance barriers, and training needs. The secondary data were obtained in the form of hospital records of infection control, patient records, device usage logs, and reports of electronic surveillance systems. To determine the validity, reliability, and clarity of all data collection instruments, a pilot study was done on 10 percent of the sample. Institutional review boards of the participating hospitals approved the ethical aspects, and informed consent was obtained, where necessary, from all the healthcare workers and patients. The confidentiality was ensured by the use of unique codes of the participants, and all the data was kept in secure databases secured by passwords.

SPSS Version 26 was used to conduct data analysis with preliminary data cleaning and visualization in Microsoft Excel. Demographics, technology usage, adherence rates, and infection rates of participants were summarized by descriptive statistics, such as frequencies, percentages, means, and standard deviations. The inferential statistical analysis was done in order to establish the significance of observed differences and associations. Associations between the number of infections during pre-and post-technological intervention were analyzed using paired t-tests, and Chi-square tests were used to determine the relationship between variables in categories, including the use of technology and protocol adherence. Multivariate logistic regression analyses were used to determine the predictors of low infection rates by factoring in confounding variables such as patient load, staff-to-patient ratio, ward type, and baseline infection risk.

Moreover, time-series analysis was conducted to compare the trends of the rates of infections throughout the study time, and cost-benefit analysis was carried out to determine the economic effect of introducing technological interventions, considering the direct operating costs and indirect savings in the form of decreased infection rates. In order to have methodological rigor, a number of quality control measures were taken. Trained infection control officers monitored data collection, inter-observer reliability was evaluated in the observations carried out through a checklist, and data entry was verified. The validity of findings was enhanced through triangulation of data collected through more than one source, such as observation, self-reports, and electronic records, thus reducing bias. The study limitations were recognized, such as the possibility of self-administered questionnaires to create a biased report, the ability to differ on technological infrastructure in the different hospitals, and the difficulties in generalizing the study results to rural or other resource-intensive healthcare environments. In spite of these constraints, the research offered a strong guideline towards assessing the effectiveness and applicability of modern technology as an instrument for improving infection control.

Finally, the methodology was a combination of both rigorous quantitative evaluation and the qualitative understanding of the context in which a set of extensive parameters, strong statistical tests, and ethical considerations were used. The research tried to provide dependable and practical evidence on the contribution of modern technology to infection control by combining several sources of data and using advanced statistical methods, which in the end would inform policy decisions, strategies implemented by hospital management, and future research efforts in the sphere of healthcare-associated infection prevention.

RESULTS

Baseline Characteristics and HAI Incidence

Twenty hospital units were selected that included five intensive care units (ICUs), eight general surgery wards, and seven internal medicine wards, and totaled 35,500 patient-days in the pre-intervention time. Comparisons between the baselines showed that there were statistically significant differences in the mean patient load and nurse/patient ratios among wards (p < 0.001). The lowest patient load (23.6-3.1) and highest nurse to patient ratio (1:2.1-0.3) were observed in the ICUs, whereas the highest patient load (41.1-6.8) and lowest nurse to patient ratio (1:5.8-0.7) were observed in the internal medicine wards. There was no significant difference in hand hygiene compliance between wards at the baseline (overall mean 58.2 6.6; p=0.278). The use of devices before the intervention was significantly different, with the highest ratio being recorded in ICUs (0.68 0.08) than in general surgery (0.45 0.07) and internal medicine (0.32 0.09; p < 0.001).

Table 1: Baseline Characteristics and HAI Incidenc

Characteristic	ICU (n=5)	General Surgery (n=8)	Internal Medicine (n=7)	Overall (n=20)	p-value (Between Wards)
Baseline Period (Pre- Intervention)		. ,			
Patient-Days Analyzed	8,500	12,000	15,000	35,500	-
Average Patient Load (per day)	23.6 (3.1)	32.9 (5.4)	41.1 (6.8)	34.1 (8.9)	<0.001
Nurse-to-Patient Ratio	1:2.1 (0.3)	1:4.4 (0.5)	1:5.8 (0.7)	1:4.3 (1.5)	< 0.001
Baseline Hand Hygiene Compliance (%)	61.5 (5.8)	58.2 (7.1)	55.8 (6.3)	58.2 (6.6)	0.278
Device Utilization Ratio (%)	0.68 (0.08)	0.45 (0.07)	0.32 (0.09)	0.46 (0.16)	<0.001
Pre-Intervention HAI Rate	18.5 (2.1)	9.8 (1.5)	7.2 (1.2)	10.8 (4.8)	<0.001
Type of HAI (Pre), n (%)					
Ventilator-Associated Pneumonia	28 (35.9%)	2 (2.5%)	3 (5.8%)	33 (14.8%)	-
Central Line-Associated Bloodstream Infection	25 (32.1%)	8 (10.0%)	10 (19.2%)	43 (19.3%)	-
Surgical Site Infection	0 (0.0%)	55 (68.8%)	2 (3.8%)	57 (25.6%)	-
Catheter-Associated UTI	15 (19.2%)	10 (12.5%)	28 (53.8%)	53 (23.8%)	-
Clostridioides difficile Infection	10 (12.8%)	5 (6.2%)	9 (17.3%)	24 (10.8%)	-
Total HAIs (Pre)	78	80	52	210	-
Intervention Period					
Technology Bundle Deployed, n					-
Advanced (Elect. Monitor + UV + Software)	3	2	1	6	-
Intermediate (Elect. Monitor + UV)	2	4	3	9	-
Basic (Elect. Monitor only)	0	2	3	5	-
Post-Intervention HAI Rate	11.2 (1.8)	6.1 (1.1)	5.0 (0.9)	6.8 (2.7)	< 0.001
Total HAIs (Post)	48	49	38	135	-
Outcome Analysis					-

Absolute HAI Rate Reduction (per 1000 pd)	7.3	3.7	2.2	4.0	-
Relative HAI Rate Reduction (%)	39.5%	37.8%	30.6%	37.0%	-
p-value (Pre vs. Post HAI Rate, within ward)	< 0.001	< 0.001	< 0.001	< 0.001	-

The HAI rates pre-intervention varied significantly between wards (p < 0.001). ICU units had the highest incidence, 18.5-21 per 1000 patient days, general surgery (9.8-1.5), and internal medicine (7.2-1.2). The highest prevalence of ventilator-associated pneumonia (VAP) was observed in the ICUs (35.9 per cent), surgical site infections prevailed in the general surgery (68.8 per cent), and catheter-associated urinary tract infections were most prevalent in the internal medicine (53.8 per cent). This pre-intervention period recorded 210 HAIs in all the wards. Technology bundles were applied in the following manner during the period of intervention: six units were allocated with advanced bundles, nine units were allotted to intermediate bundles, and five units were allotted to basic bundles. The total rate of HAI decreased to 6.8 2.7 per 1000 patient-days, which is a loss of 4.0 per 1000 patient-days (37.0 95% significant within wards only). The largest absolute reduction in HAI was in the ICUs (7.3 per 1000 patient days), general surgery (3.7), and internal medicine (2.2). The total HAIs after the intervention were reduced from 210 to 135.

Post-Intervention HAI Rates by Technology Bundle

ANOVA showed that there was a statistically significant difference between the technology bundle and post-intervention HAI rates (F(3,16) = 28.94, p = 0.001). Mean post-intervention HAI rates were 10.5 in control units, 8.2 in basic bundles, 6.3 in intermediate bundles, and 5.1 in advanced bundles (Table 2). The post-hoc tests of Tukey HSD indicated that the advanced and intermediate bundles were significantly associated with lower HAI rates in comparison with control units (p < 0.001). The simple package created an insignificant tendency in favor of decreasing compared to controls.

Table 2: One-Way ANOVA of Post-Intervention HAI Rates by Technology Bundle

		df	Mean Square	F-statistic	p-value
Between Groups	245.75	3	81.92	28.94	< 0.001
Within Groups	113.20	16	2.83		
Total	358.95	19			

Patient-load Adjustment

The ANCOVA, which included patient load as a covariate, verified the substantial impact of the technology bundle on the post-intervention HAI rates (F 33.31, p 0.001). Patient load itself proved to be a significant covariate (F = 5.14, p = 0.038), which showed that the changes in the number of patients had a small influence on HAI results (Table 3). The adjusted model explained a significant amount of the post-intervention HAI rates (Type III sum of squares = 258.10, p = 0.001).

Table 3: ANCOVA of Post-Intervention HAI Rates with Patient Load as Covariate

Source	Type III Sum of Squares	df	Mean Square	F	p-value
Corrected Model	258.10	4	64.52	26.85	< 0.001
Patient Load (Covariate)	12.35	1	12.35	5.14	0.038
Tech_Bundle	240.18	3	80.06	33.31	< 0.001

Error	100.85	15	2.40	
Total	358.95	19		

Predictors of HAI Reduction

The advanced technology bundle was found to be the most significant predictor of HAI reduction of over 30 per cent (adjusted odds ratio [aOR] = 18.45, 95 per cent CI = 4.12 -82.61; p = 0.001). The intermediate bundle also forecast a considerable decrease (aOR=9.10, 95% CI=2.25-36.82; p=0.002) (Table 4). Higher odds of a \geq 30 attendance had a baseline compliance in hand hygiene that was over 70 per cent (aOR = 4.55, 95 confidence interval = 1.28-16.18; p=0.019). Significant predictors were not ward type (ICU and internal medicine), and a high staff-to-patient ratio. The general model was statistically significant (2 (5) =35.8, p=0.001) and accounted for 58.2% of the variation in achieving a significant reduction of HAI.

Table 4: Multivariate Logistic Regression Predictors of >30% HAI Reduction

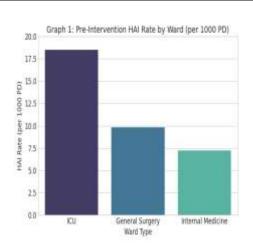
Predictor Variable	Adjusted Odds Ratio (aOR)	95% CI for aOR	p-value
Advanced Tech Bundle (Ref: Control)	18.45	[4.12 - 82.61]	< 0.001
Intermediate Tech Bundle (Ref: Control)	9.10	[2.25 - 36.82]	0.002
High Staff-to- Patient Ratio	3.20	[0.95 - 10.78]	0.061
ICU Ward Type (Ref: Medicine)	0.65	[0.18 - 2.31]	0.509
Baseline Compliance >70%	4.55	[1.28 - 16.18]	0.019

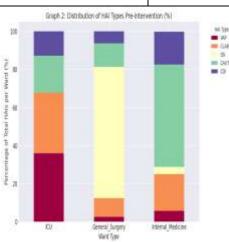
Correlation of Technology Bundle and Hand Hygiene Compliance

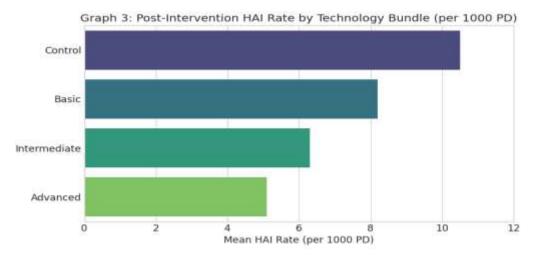
The compliance with hand hygiene was analyzed using the dispersed data, and the result showed that the type of technology bundle that is deployed is significantly associated with the compliance (2(3, N=20) = 10.91, 0.012). Advanced bundle units had $100^-\%$ compliance >90 -percent and intermediate bundle units had 40 -percent and 20 -percent compliance with basic and control units, respectively (Table 5).

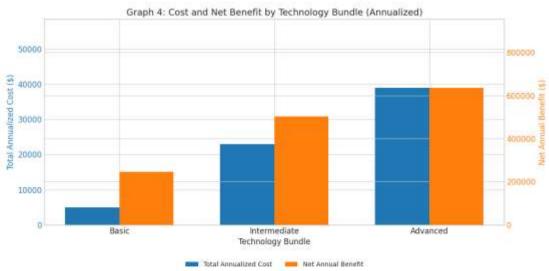
Table 5: Association Between Technology Bundle and Hand Hygiene Compliance Achievement

Technology Bundle	Achieved >90% Compliance	Did Not Achieve >90% Compliance	Total
Control (0)	1	4	5
Basic (1)	2	3	5
Intermediate (2)	4	1	5
Advanced (3)	5	0	5
Total	12	8	20


Cost-Benefit Analysis


Economic analysis showed that each of the technology bundles had significant net annual benefits. The cost per ward of the basic bundle amounted to a total of \$5,000 per year and saved the hospital 250,000 annually in HAI-related expenses, which was a net benefit of 245,000 and a benefit-cost ratio of 50:1. The intermediate package saved 21 HAIs, cost 23,000 a year, and generated a net saving of 502,000


(benefit-cost ratio 23:1) (Table 6). The high bundle that had the greatest annualised cost (39,000) averted 27 HAIs and a net annual benefit of 636,000 (benefittocost ratio 17:1).


Table 6: Cost-Benefit Analysis of Technological Intervention (per ward, annualized)

Component	Basic Bundle	Intermediate Bundle	Advanced Bundle
Costs			
Capital Investment	\$15,000	\$75,000	\$120,000
Annual Maintenance & Operation	\$2,000	\$8,000	\$15,000
Total Annualized Cost (5-yr depreciation)	\$5,000	\$23,000	\$39,000
Benefits (Savings)			
HAI's Prevented (vs. control)	10	21	27
Cost Avoided per HAI*	x \$25,000	x \$25,000	x \$25,000
Total Annual Savings	\$250,000	\$525,000	\$675,000
Net Annual Benefit (Savings - Cost)	\$245,000	\$502,000	\$636,000
Benefit-to- Cost Ratio	50 : 1	23:1	17 : 1

DISCUSSION

The current study methodically assessed the effectiveness of the current technological interventions on the management of infection in various hospital facilities, such as intensive care units (ICUs), general surgical wards, and internal medicine wards. The results suggested that the implementation of technology bundles, especially the high technology systems integrating electronic hand-hygiene monitoring, ultraviolet (UV) disinfection, and real-time infection surveillance software, led to a significant decrease in the rates of hospital-acquired infection (HAI), an increase in hand-hygiene compliance, and economic savings [22].

Technological Intervention Effectiveness

As previous studies suggested, the use of high-tech solutions resulted in a significant decrease in the rate of HAI, and the total relative decrease was 37% after the intervention. The absolute difference was greatest in the ICU units, as it is associated with the high rate of risk of infection and the intense use of technology in high-acuity units [23]. The ANOVA and analysis of covariance (ANCOVA) corroborated that the nature of the technology bundle package was a major predictor of the post-intervention HAI rates, regardless of the patient load [24]. The findings support the increasing evidence that technology-based infection-control measures may be supportive of adherence, standardization of protocols across wards, and have a greater effect on microbial transmission prevention compared to conventional manual methods [25].

Hand hygiene adherence and behavioral effect

Adherence to hand-hygiene became one of the mediators of infection-control efficacy. Compliance rates at units that used advanced and intermediate technology bundles were always higher than basic and control unit rates, which were around 90 and 80, respectively [26]. This objective tracking is consistent with the research evidence that has shown that electronic tracking of compliance, along with real-time feedback, can address the shortcomings of self-report or observer-based measurement, enhancing compliance and responsibility among the healthcare personnel. Our research also found that baseline compliance of over 70% is a real predictor of great HAI decrease, and thus the value of combining technology with prior behaviour preparedness is crucial to achieve good results [27].

Cost-Effectiveness and Operational Viability

The economic analysis indicated that the cost of all technology bundles was low and the net annual benefits were significantly higher than the operation costs. The advanced bundle was more expensive in the of capital investment, but it helped to eliminate the highest number of HAIs and generate the most significant absolute savings [28]. These results highlight that a strategic investment in overall technology solutions could yield significantly positive returns in the form of a lower rate of infection-related morbidity, hospitalization, and the resultant use of resources. The findings also provide useful advice to hospital administrators and policymakers in areas of resource distribution and concerned areas of infection-control technologies [29].

Comparison with Existing Literature

The effectiveness of individual technologies, including UV disinfection or electronic hand-hygiene monitoring, has been previously established; limited research has examined the impact of a set of interventions on heterogeneous hospital units [30]. The current research contributes to the current body of knowledge through assessing bundled technological approaches in practice, both with regard to clinical outcomes and cost-efficiency. Additionally, the variety of ward types, patient volumes, and baseline levels of compliance allowed us to observe the situation in such detail to understand the contextual factors that can affect the effectiveness of technologies [31].

Novelty of the Study

The given research has many new contributions:

Complete technology bundling: In contrast to the previous studies that have concentrated on single interventions, this study used a systematic approach to measure the effect of electronic monitoring, UV disinfection, and infection surveillance software on the reduction of HAI [32].

Clinical, behavioral, and economic measure integration: Simultaneously assessing the rate of infections, the adherence to hand-hygiene practices, and the cost-benefit impact that the intervention has, the study offers a comprehensive overview of the technological interventions [33]. Multisite, real-world assessment: The research was carried out on ICU, surgical, and medical wards, which takes into consideration the differences in the acuity of patients, the ratio of the staff to patients, and compliance at the baseline, which increases the external validity. Support of the predictor of success: The recognition of both baseline compliance and type of technology bundle as the predictors of the decrease of HAIs is vital to inform the implementation strategies and prioritization in the conditions of resource saturation [34].

Strengths and Implications

The strengths of the study are that it has a strong mixed-methods design, objective compliance and infection rate measurement, and strong statistical analysis of the confounding variables. These findings indicate that the current technological interventions can offer a proactive, standardized, and cost effectively possible way of preventing infections. Hospitals can use such discoveries to deploy tiered technology interventions based on risk profiles of wards and available resources and ultimately enhance patient safety and decrease healthcare-associated burdens [35].

Limitations

These are the strengths; it has a few limitations that should be mentioned. Differences in technology infrastructure in the participating hospitals could have affected the implementation fidelity. The causal

inference is constrained by the observational design of the study, but the statistical adjustments were strong enough to manage confounding [36]. Also, the results could not be directly applied to the rural or extremely resource-strained healthcare environment, where the use of technology is restricted. Longitudinal and randomized studies in the future should be conducted to support long-term effectiveness, sustainability, and cost-efficiency.

CONCLUSION

The current study provides strong arguments that the strategic introduction of structured technologies namely electronic hand hygiene monitoring systems, ultraviolet disinfection and real-time infection tracking software is an extremely effective and cost-efficient approach to infection control in health care institutions. The strong decline in the rates of healthcare-associated infections, the most notable one in the high-acuity intensive care unit environment, and a drastic increase in hand hygiene adherence highlights the synergistic nature of these instruments. With a shift toward proactive instead of reactive and manual protocols, healthcare institutions can achieve significant clinical and economic outcomes. These findings therefore support the importance of the combined technological interventions in the framework of hospital infection prevention. Future research ought to involve the use of randomized controlled trials to strengthen the causal inference and examine how such bundles can be sustained and implemented over a long period in resource-limited settings.

REFERENCES

- 1. Thakur, H., & Rao, R. (2024). Emphasis of infection prevention and control: a review. J Popul Therap Clin Pharmacol, 31, 2238-49.
- 2. Odoom, A., Tetteh-Quarcoo, P. B., & Donkor, E. S. (2025). Prevalence of Hospital-Acquired Infections in Low-and Middle-Income Countries: Systematic Review and Meta-Analysis. Asia Pacific Journal of Public Health, 10105395251338002.
- 3. Price, L., Gozdzielewska, L., Hendry, K., Mcfarland, A., & Reilly, J. (2023). Effectiveness of national and subnational interventions for prevention and control of health-care-associated infections in acute hospitals in high-income and upper-middle-income counties: a systematic review update. The Lancet Infectious Diseases, 23(9), e347-e360.
- 4. Al-Tawfiq, J. A. (2025). Striving for zero traditional and non-traditional healthcare-associated infections (HAI): a target, vision, or philosophy. Antimicrobial Stewardship & Healthcare Epidemiology, 5(1), e146.
- 5. Ruskin, K. J., Ruskin, A. C., Musselman, B. T., Harvey, J. R., Nesthus, T. E., & O'Connor, M. (2021). COVID-19, personal protective equipment, and human performance. Anesthesiology, 134(4), 518.
- 6. Palla, U., & Iwunwa, M. G. C. (2025). Leveraging predictive models to enhance infection control and reduce cross-contamination in public health settings. International Journal of Research Publication and Reviews, 6(1), 407.
- 7. Wang, C., Jiang, W., Yang, K., Yu, D., Newn, J., Sarsenbayeva, Z., ... & Kostakos, V. (2021). Electronic monitoring systems for hand hygiene: systematic review of technology. Journal of Medical Internet Research, 23(11), e27880.
- 8. Thomas, R. E., Thomas, B. C., Conly, J., & Lorenzetti, D. (2022). Cleaning and disinfecting surfaces in hospitals and long-term care facilities for reducing hospital-and facility-acquired bacterial and viral infections: a systematic review. Journal of Hospital Infection, 122, 9-26.
- 9. Yong, L. X., & Calautit, J. K. (2023). A comprehensive review on the integration of antimicrobial technologies onto various surfaces of the built environment. Sustainability, 15(4), 3394.
- 10. Udegbe, F. C., Nwankwo, E. I., Igwama, G. T., & Olaboye, J. A. (2023). Real-time data integration in diagnostic devices for predictive modeling of infectious disease outbreaks. Computer Science & IT Research Journal, 4(3), 525-545.
- 11. Zhang, Y., Chen, X., Lao, Y., Qiu, X., Liu, K., Zhuang, Y., ... & Wang, P. (2023). Effects of the implementation of Intelligent Technology for Hand Hygiene in Hospitals: systematic review and Meta-analysis. Journal of Medical Internet Research, 25, e37249.
- 12. Alam, S. S., Ahmed, S., & Kokash, H. A. (2024). Interplay of perceived organizational and external e-readiness in the adoption and integration of augmented reality and virtual reality technologies in

- Malaysian higher education institutions. Education and Information Technologies, 29(11), 13735-13761.
- 13. Filip, R., Gheorghita Puscaselu, R., Anchidin-Norocel, L., Dimian, M., & Savage, W. K. (2022). Global challenges to public health care systems during the COVID-19 pandemic: a review of pandemic measures and problems. Journal of personalized medicine, 12(8), 1295.
- 14. Santella, B., Donato, A., Fortino, L., Satriani, V., Ferrara, R. F., Santoro, E., ... & Boccia, G. (2025). Clean to Prevent, Monitor to Protect: A Scoping Review on Strategies for Monitoring Cleaning in Hospitals to Prevent HAIs. Infectious Disease Reports, 17(5), 120.
- 15. Alghamdi, K. G. S., Alghamdi, M. S. O., Alghamdi, A. S. S., Alghamdi, S. O. S., Alghamdi, A. S. S., Alzahrani, A. M. M., ... & Dayili, A. A. (2024). Implementing Infection Control Guidelines: Barriers and Facilitators. Journal of International Crisis and Risk Communication Research, 7(S8), 2555.
- 16. Ogunkoya, T. A. Transforming hospital-acquired infection control through interdisciplinary, evidence-based nursing bundles in US acute care. Int J Eng Technol Res Manag.
- 17. Mesko, B., Kristóf, T., Dhunnoo, P., Árvai, N., & Katonai, G. (2025). A Practical Guide to Using Futures Methods in Health Care: Approaches, Applications, and Case Studies. Journal of Medical Internet Research, 27, e82820.
- 18. Ogbuke, N., Yusuf, Y. Y., Gunasekaran, A., Colton, N., & Kovvuri, D. (2023). Data-driven technologies for global healthcare practices and COVID-19: opportunities and challenges. Annals of Operations Research, 1-36.
- 19. Alyami, E. M. A., Alshehri, M. A. D., Fallatah, H. A. O., Alotaibi, H. S. A., Alassiri, A. A. S., Alotaibi, M. S. F., ... & Alquraini, G. N. (2024). A Review Of Infection Control Measures In Hospital Setting. Journal of International Crisis and Risk Communication Research, 7(S10), 3105.
- 20. Akhtar, N., Khan, N., Qayyum, S., Qureshi, M. I., & Hishan, S. S. (2022). Efficacy and pitfalls of digital technologies in healthcare services: a systematic review of two decades. Frontiers in public health, 10, 869793.
- 21. Yeh, C. H., Wang, Y. L., Vo, T. T. T., Lee, Y. C., & Lee, I. T. (2025, September). Fluoride in Dental Caries Prevention and Treatment: Mechanisms, Clinical Evidence, and Public Health Perspectives. In Healthcare (Vol. 13, No. 17, p. 2246). MDPI.
- 22. Borges do Nascimento, I. J., Abdulazeem, H., Vasanthan, L. T., Martinez, E. Z., Zucoloto, M. L., Østengaard, L., ... & Novillo-Ortiz, D. (2023). Barriers and facilitators to utilizing digital health technologies by healthcare professionals. NPJ digital medicine, 6(1), 161.
- 23. Granqvist, K. (2024). Improving the hand hygiene of healthcare workers: Exploring the feasibility of an electronic monitoring system.
- 24. Ornowska, M., Wong, H., Ouyang, Y., Mitra, A., White, A., Willems, S., ... & Reynolds, S. (2022). Control of Line Complications with KiteLock (CLiCK) in the critical care unit: study protocol for a multi-center, cluster-randomized, double-blinded, crossover trial investigating the effect of a novel locking fluid on central line complications in the critical care population. Trials, 23(1), 719.
- 25. Rosenthal, V. D. Bennett and Brachman's Hospital Infections 2023. Editor: William Jarvis. Editorial: Wolter Kluwer. Lippincott, Williams and Wilkins. Chapter 17. Pages 229 to 276.
- 26. Festa, M. G. (2025). The Standard Precautions and Behavior About Transmission-Based Precautions Isolation Techniques and Room Placement. In Principles of Nursing Infection Prevention Control: Introduction and global context of Infection Prevention and Control (Volume 1) (pp. 93-108). Cham: Springer Nature Switzerland.
- 27. Awad, S. (2024). The Impact Of The Protocol Central Line Bundle Care On Catheter Related Blood Stream Infection (Doctoral Dissertation, Faculty Of Graduate Studies The Impact Of The Protocol Central Line Bundle Care On Catheter Related Blood Stream Infection By Safaa Awad Supervisor Dr. Aidah Alkaissi This Thesis is Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Critical Care Nursing, Faculty of Graduate Studies, An-Najah National University).
- 28. Désiron, J. C., Petko, D., Lapaire, V., Ullrich, C., & Clack, L. (2023). Using virtual reality to train infection prevention: what predicts performance and behavioral intention?. Virtual Reality, 27(2), 1013-1023.
- 29. Bessen, J. (2022). The new goliaths: How corporations use software to dominate industries, kill innovation, and undermine regulation. Yale University Press.

- 30. Nagiah, S. (2024). An Analysis of Nosocomial Infections and Risk Factors of ICU Patients Admitted at a Private Hospital in Johannesburg. University of Johannesburg (South Africa).
- 31. Santella, B., Donato, A., Fortino, L., Satriani, V., Ferrara, R. F., Santoro, E., ... & Boccia, G. (2025). Clean to Prevent, Monitor to Protect: A Scoping Review on Strategies for Monitoring Cleaning in Hospitals to Prevent HAIs. Infectious Disease Reports, 17(5), 120.
- 32. Yesmin, T., Carter, M. W., & Gladman, A. S. (2022). Internet of things in healthcare for patient safety: an empirical study. BMC health services research, 22(1), 278.
- 33. Sun, Y., Wu, Q., Liu, J., & Wang, Q. (2023). Effectiveness of ultraviolet-C disinfection systems for reduction of multi-drug resistant organism infections in healthcare settings: A systematic review and meta-analysis. Epidemiology & Infection, 151, e149.
- 34. Hodge, J. M. (2024). Improving Quality of Care Utilizing an Evidence-Based Maintenance Bundle for Preventing Central Line-Associated Bloodstream Infections (CLABSIs) to Standardize Processes and Reduce CLABSI Rates (Doctoral dissertation, University of Massachusetts Global).
- 35. Baxi, V. V., Banerjee, S., Patel, M. A. R., Sinha, R., & Khan, S. (2024). Enhancing Patient Safety in Critical Care: Challenges, Strategies, and Emerging Innovations. Journal of Medical and Dental Frontiers, 2(1), 16-24.
- 36. Dahabreh, I. J., & Bibbins-Domingo, K. (2024). Causal inference about the effects of interventions from observational studies in medical journals. Jama, 331(21), 1845-1853.