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Abstract

The pharmaceutical research is highly affected by the lack of data sources that are fragmented,
inconsistent metadata, and inefficient search systems based on keywords. To overcome these
shortcomings, this research presents PharmaSeek+, an Ontology-Driven Semantic Search Framework
aimed at transforming the way researchers’ access, interpret and use real-world pharmaceutical
evidence. PharmaSeek+ is designed using a systematic four step process: (1) metadata harmonization
to harmonize the data of various clinical trials, drug databases, and pharmacovigilance systems by
schema mapping and metadata alignment. (2) ontology development is applied by a pharmaceutical
ontology that combines existing vocabularies (MeSH, SNOMED CT) with custom classes representing
drug efficacy, interactions, molecular profiles, and adverse effects. (3) in semantic annotation via deep
learning (DL) models, the biomedical documents are enhanced with the context-aware deep learning
models such as BioBERT and contextual Natural Language Processing (NLP) in accordance with the
ontology. (4) transformer-based sequence-to-query model handles the user queries which are converted
into semantic queries and are SPARQL-based to support reasoning over the implicit knowledge and
produce very relevant and contextual results. The PharmaSeek+ achieved 89% in search precision and
87% in recall compared to traditional search engines, and these results are confirmed using real-world
pharmaceutical corpora. The findings validate the fact that PharmaSeek+ is a powerful tool that
enhances the process of discovering and integrating important drug-related information. This smart
structure allows quicker, more knowledgeable decision-making in pharmaceutical research and
development, eventually closing the gap between fragmented biomedical information and researcher
Intention.

Keywords: - Ontology-Based Modeling, Pharmaceutical Data Integration, Real-World Evidence,
SPARQL Querying, Natural Language Processing, Biomedical Ontologies.

1. Introduction

The pharmaceutical research is being confronted with a growing amount and complexity of data which
are occasioned by a multiplicity of areas including clinical trials, genomics, drug interactions, and real-
world clinical practice [1]. Nonetheless, such data sources are frequently very disparate, located in
independent silos, and controlled by heterogencous metadata requirements [2]. Such heterogeneity
poses serious difficulties to data discovery, integration, and reuse, thus making the drug development
lifecycle slow and scientific innovation difficult [3],[4]. The most problematic aspect of the modern
pharmaceutical data systems is the use of the traditional, keyword-based search systems [5]. Such
techniques do not usually capture contextual meaning, synonymy or hierarchical relationships between
terms [6],[7]. Consequently, researchers fail to get pertinent information or access huge amounts of data
that are not relevant, leading to inefficiencies in evidence collection, hypothesis formulation, and
decision making [8].
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In addition, the growing significance of real-world evidence (RWE) data obtained in real-life clinical
practice, including electronic health records (EHRs), claims data, and patient registries, requires more
advanced integration and interpretation approaches [9],[10]. Unless smart tools are available to
semantically interconnect clinical and experimental data, useful patterns and relations are hidden in the
noise [11]. Such increasing complexity explains why there should be a paradigm shift to intelligent,
ontology-based search systems that are capable of identifying semantic relationships and adapting to
different biomedical vocabularies [13],[14]. Ontologies structured representation of knowledge offers
a means of integrating heterogeneous data sources by coordinating them on a common
conceptualization, thus improving interoperability, data discoverability, and inferencing [15].

To overcome these difficulties, PharmaSeek+ is presented as a new semantic search system that are
used in the pharmaceutical research field and which has an ontology-based structure. It uses domain-
specific ontologies, natural language processing and knowledge graph technologies to offer context-
aware searching, allowing the user to query biomedical datasets in a more natural and understandable
fashion. PharmaSeek+ is able to combine structured ontological reasoning with real-world evidence
sources and enable researchers to discover previously unknown relationships, simplify drug discovery
processes, and enable precision medicine efforts. This paper discusses the design, functionality and the
influence of PharmaSeek+ in promoting pharmaceutical research based on semantic technologies and
integration of real-world data.

2. Literature Review

Stanescu & Oprea [16] discussed the use of ontologies and Semantic Web Technologies (SWT) in
contemporary data management based on 10,037 scholarly articles published in 20192024. It employs
bibliometric analysis, NLP, LDA, and BERT clustering to determine such main themes as ontology-
driven systems, biomedical data integration, and ethical implications. The research identifies the lack
of scalability, dynamic update, and semantic interoperability. It has a topic coherence score of 0.75 and
perplexity of 48, and it has three significant research clusters. These results provide practical
implications on how to enhance semantic search, data accessibility and automated knowledge discovery.
Yao et al [17] introduced OntoPath, an ontology-aware hierarchical attention model to personalize
prescription recommendation to chronic disease care in 2023. It uses the history of longitudinal
diagnosis, hierarchical medical ontologies and side information to forecast the best course of treatment.
OntoPath improves the profiling of patients and drug relevance modeling with domain knowledge and
pre-training. It performs better than state-of-the-art baselines on a large depression cohort of more than
37,000 patients. The findings validate the accuracy, interpretability and clinical applicability of
OntoPath.

Bakshi et al [18] in 2021 suggested semantic conflicts in data integration as a result of schema,
terminology and domain interpretation differences, which lowers data interoperability and quality. In
this paper we suggest ontology-based frameworks as a solution to such conflicts by formalizing domain
knowledge into structured, machine-readable forms. The methodology is proved by case studies in the
healthcare and e-commerce fields. The paper assesses the advantages and the drawbacks of these
methods.

In 2022, Thirumahal et al [19] discussed the problem of semantically diverse biomedical data
integration with an automatic ontology-based framework. The model works in three stages: local
ontology generation, generation of unified global schema and querying heterogeneous sources to
retrieve semantically aligned data. It is implemented on the patient records, chest X-rays, and COVID-
19 questionnaires in SQL, MongoDB, and Excel databases. The system determines patients with
moderate/high risk of severe COVID-19. This improves data unification, information retrieval and
clinical decision making in healthcare.

Li et al [20] proposed an Ontology-Driven Medication Query (ODMQ) optimization scheme to enhance
the accuracy of medication information retrieval in EHRs in 2025. Through the OMOP Common Data
Model, ODMQ broadens queries semantically on drug names, codes, and generics, which increases the
accuracy and completeness. When applied to the real-world COVID-19 EHR data, it demonstrates
better performance and less manual work. It has a friendly interface that facilitates query execution and
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viewing of patient history. The relevance of expanded search terms to clinical needs is confirmed with
the help of manual review.

Fareedi et al [21] suggested a hybrid Ontology-Based Design Science Research Engineering (ODSRE)
approach to improve data integration and semantic interoperability in healthcare in 2025. It uses the
Ontop virtual paradigm to propose a Federated Virtual Knowledge Graph (FVKG) system to effectively
and in real-time access various data sources. FVKG reduces data migration, has a low latency, and
semantic coherence across systems. The model employs ontology-based data access (OBDA) and
schema mapping in order to match semantic artifacts. This provides a scalable federated information
systems (FIS) solution in patient-centric healthcare settings.

In 2029, Kamdar et al [22] proposed the problem of combining fragmented biomedical data and
highlighted the opportunities of Semantic Web technologies and Linked Data principles. It deals with
the Life Sciences Linked Open Data (LSLOD) cloud as a means of harmonizing data in pharmacology,
cancer research, and infectious diseases. Although promising, LSLOD has adoption obstacles that are
related to technical and usability challenges. The paper suggests the possible ways to improve LSLOD
usability and accessibility. Finally, LSLOD was able to facilitate Al-powered biomedical research and
enhance clinical outcomes.

In 2025, Abraham et al [23] introduced a digital-twin framework of precision oncology that combines
machine learning and semantic models to personalize treatment. It identifies subtypes of brain cancer
based on clinical and molecular data, in the form of ontologies with diagnostic rules. The potential
therapies are prioritized in preclinical models that are semantically aligned with patient subtypes. The
method allows cross-domain reasoning to assist in personalized treatment decisions.

In 2023, Lazarova et al [24] proposed AD-DPC, an ontology to facilitate interdisciplinary cooperation
in the study of Alzheimer disease. It organizes knowledge in six major conceptual categories, such as
pathology, diagnosis, and clinical findings. AD-DPC is marked with definitions, synonyms, and
resources to assist users of different levels. Usability testing indicates that non-medical users were able
to use AD-DPC to learn and share concepts related to Alzheimer with good results. The ontology
promotes better knowledge sharing and interdisciplinary participation in the complex medical research.

Kawas et al [25] (2023) proposed a sophisticated mechanism of ontology integration that was applied
to medical text, which is based on the shortcomings of the current methods, including semantic precision
and adaptability. It integrates ontological, lexical, logical and machine learning methods to align
disparate sources of data through a shared upper ontology and transformation rules. A supervised model
foresees concept mappings between various ontologies. The method improves the semantic integration,
which promotes data-driven decision-making in clinical and research environments.

2.1. Problem Statement

Although there is increasing use of Electronic Health Records (EHRs) and biomedical data systems, the
healthcare sector continues to experience serious problems in integrating, querying, and interpreting
semantically heterogeneous and fragmented data. The conventional solutions have problems with
schema inconsistencies, terminology inconsistencies, and domain interpretation inconsistencies, which
result in decreased data interoperability, ineffective information retrieval, and inferior clinical decision-
making. Such constraints impede the scalability, accuracy and applicability in real-time of data-driven
solutions in healthcare. Ontology-based frameworks and semantic web technologies have become
indispensable to integrate heterogeneous data, improve semantic search, and to provide personalized
care as well as intelligent decision support systems in various medical fields. The summary of some of
the existing works is depicted in Table 1.

Table 1: Summary on Several Existing Works

Author, Application in

Year Technique Used PP Advantages Limitations
. Healthcare

[Citation]
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3. Methodology

The suggested approach is aimed at ensuring a smooth harmonization of metadata and semantic
integration of diverse pharmaceutical data by means of a multi-layered approach. First, schema mapping
methods are used to harmonize heterogeneous data structures, so that metadata is aligned across clinical
trials, drug databases, and pharmacovigilance systems, in particular with regard to terminology
standardization. It is then succeeded by creation of a rich pharmaceutical ontology that combines
standard vocabularies such as MeSH and SNOMED CT, with bespoke domain-specific classes to model
drug efficacy, molecular properties, interactions and adverse effects. Contextual NLP and concept
tagging are used to carry out semantic annotation of biomedical texts so as to guarantee ontology
alignment. Lastly, intelligent semantic query processing uses SPARQL and description logic to map
user queries into semantically augmented forms, and applies reasoning on implicit relations, and assists
context-sensitive search of pertinent biomedical data. Figure 1 illustrates the overall architecture of the
proposed PharmaSeek+ model.
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Figure 1: Overall Architecture of Proposed PharmaSeek+ Model.

3.1. Metadata Harmonization and Data Integration

Within pharmaceutical informatics, the process of schema mapping, terminology normalization and
metadata alignment are a formal process of integrating various datasets like clinical trials, drug
databases, pharmacovigilance systems. The sources of pharmaceutical data are heterogeneous and
include such data as clinical trials, EHRs, drug registries, and pharmacovigilance reports, each having
different formats and semantics. This diversity hinders easy integration, comparison and reuse of data.
The consolidation of such datasets guarantees the uniformity of interpretation and facilitate the thorough
analytics. This also facilitates interoperability for research, regulatory, along with clinical applications.
Let there be a set of data sources is as shown in Eq. (1), where each D; represents a dataset from a
different source like D;: clinical trials and D,: EHR.

D ={D,,D,,...,D,} (1)

Each dataset D; has its own schema S;, and it was expressed in Eq. (2), where a} represents attributes
in that schema.

Si = {ail a;l a;.ni} (2)

The goal of harmonization is to transform all S; into a unified global schema S™ is represented by Eq.

(3),
Vi, 3f;:S; > S* 3)

Schema mapping is the process of matching heterogeneous sources based on fields that have similar
semantics. Methods involve rule-based methods, ontology-based mappings and machine learning
algorithms to identify correspondences with drug name < medication. This allows querying and
accessing heterogeneous structural data. The schema mapping function f; is defined by similarity
measures. For attributes a € S;, b € S*, this has been computed by Eq. (4), where, lexsim represents
the lexical similarity typesim indicates as datatype similarity,contextsim represents as co-
occurrence/context similarity, in which lexsim(a,b),typesim(a,b),contextsim(a,b) € [0,1]
also;a,B,y € [0,1]land a + B + y = 1. A match is confirmed if: sim(a, b) = 8, where 6 € [0,1] is
a predefined threshold.

sim(a,b) = a - lexsim(a, b) + B - typesim(a, b) + y - contextsim(a, b) 4)

Metadata alignment provides consistency of the representation of data attributes such as units, formats,
and definitions across datasets like clinical trials, drug registries, and pharmacovigilance systems. It
entails harmonizing data differences in types, labels and standards of measurement. This consistency
enhances data integration, interoperability and proper cross-dataset analysis. Let metadata is termed as
a tuple is shown in Eq. (5), where; T represents as Data type, U indicates as Unit, D indicates as
Definition or description.

M = (T,U,D) )

Let two datasets D;, D; have metadata for the same concept is as shown in Eq. (6), where, U; and U;
are unit-convert which evaluates whether units U; and U; are equivalent and convertiblefusing a

deterministic transformation rule, such as 1 g=1000 mg, 1 hr=60 min, Temperature, concentration, and
currency transformations

M; = (T;, U;, D)), M; = (T;, U}, D)) (6)
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Metadata alignment ensures which are displayed by Eq. (7), where § is a semantic similarity threshold.
T; = Tj, unit — convert(Ui, Uj) = true, sim(Di, Dj) >4 (7

Terminology standardization and normalization is the process of mapping diverse medical or
pharmaceutical terminologies to standard and controlled vocabularies such as RxNorm, MeSH, or
SNOMED CT. This makes it so that synonyms such as acetaminophen and paracetamol are considered
to be the same concept. It minimizes ambiguity and enhances the retrieval, integration, and semantic
reasoning of data. Finally, it allows a meaningful comparison and aggregation of various healthcare
data sets. Each term t € T from the dataset is mapped to a standard vocabulary V is as given by Eq. (8),
with an example: u("Advil") = RxNorm — ID: 5640.

pu=T->V 8)
This allows semantic equivalence is shown by Eq. (9), even if t; = "Advil" and t, = "Ibuprofen”

ut) = u(t) =2t =t ©

The terminology normalization process, computed semantic similarity between two terms t; and t,
using BERT embeddings. The cosine similarity is calculated by Eq. (10), where; v, and v;, € R? are
the vector embeddings of terms t; and t, generated by a contextual model such as BioBERT, . denotes
the dot product, ||vti || is the Euclidean norm of the vector.

. Ve, Vt
simpgrr (t1, t5) = cos(Ve,, vp,) = ool ﬁ||v2t I (10)
11 2

3.2.Ontology Development and Semantic Annotation

Ontology Development and Semantic Annotation is the development of structured representations of
knowledge in pharmaceuticals by combining existing ontologies such as MeSH and SNOMED CT with
domain-specific concepts. It allows formal encoding of drug related entities such as efficacy,
interactions in formal logic of OWL. NLP is used in semantic annotation to create connections between
terms in unstructured text and these ontology concepts to analyze them in more detail.

A) Construction of a pharmaceutical ontology

MeSH, SNOMED CT and custom classes integration unites standardized biomedical vocabularies with
concepts in the domain of drugs. This forms a coherent ontology of high-quality and complete semantic
representation. Let Owesy, Osnomep and Ocystom be the ontologies for MeSH, SNOMED CT, and
custom domain-specific concepts accordingly. The integrated pharmaceutical ontologyOpparma 18
defined as in Eq. (11),

Opharma = Omesu Y Osnomep Y Ocustom (1)

The ontological triples in the form (subject, predicate, object) like (DrugA, inhibits, EnzymeX) are used
to model drug efficacy, molecular profiles, interactions and side effects. OWL or RDF is used to encode
these relationships in order to support machine-readable reasoning. This makes it possible to query and
infer the drug behaviors and risks automatically. They are represented formally as a description logic
(DL) in OWL or RDF triples. Let drug D which reduces blood pressure and targets receptor R is shown
in Eq. (12),

Drug(D) A has Ef fect(D, Lower Blood Pressure) A targets(D, R) (12)
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3.3.Semantic Annotation of Biomedical Texts

By use of semantic annotation one can convert the unstructured biomedical text into structured and
ontology aligned knowledge. This is done by accurately identifying drug related entities and
relationships and associating them with standardized biomedical ontologies so they can be used
downstream to reason and to make semantic queries.

A) Contextual NLP with Deep Learning (BioBERT)

In contrast to universal models, such as BERT, BioBERT is a task-specific neural network -deep
learning model which is pre-trained over massive biomedical data like PubMed abstracts and PMC full-
text articles. It has been optimized on Named Entity Recognition (NER) and Relation Extraction (RE)
on clinical and pharmaceutical text. Let T be an unstructured biomedical text. A contextual NLP model
such as BioBERT processes this text to extract a set of named biomedical entities through token-level
classification and contextual embedding. This process is represented in Eq. (13), where; T denoted as
unstructured biomedical text, fp;,prrr b€ the deep learning function based on the BioBERT model that
does NER over T, e; are named, entities extracted from T each entity e; typically includes token span
in the input text, entity type label ,confidence score from the model output

feioserr(T) — {e1, €2, ..., en} (13)
B) Ontology-Aligned Concept Tagging

Once entity vectors U,, are generated, semantic annotation maps each e; to a concept ¢; in a
pharmaceutical ontology Opparmq using similarity matching is as expressed by Eq. (14), Where: 7,
BioBERT embedding of entity e;, U, Pre-computed or fine-tuned embedding of ontology concept ¢;,
sim(.) represents as Similarity function

Align(e;) = arggjlg’f,l,harmasim (ﬁei, ﬁcj) (14)

The similarity function is typically expressed by Eq. (15),

sim (ﬁei’ﬁcj) = || 17ei'ﬁCj (15)

ve |7

The use of a BioBERT, a fine-tuned deep learning model that achieved state-of-the-art performance on
multiple biomedical tasks because it was trained on a large set of biomedical corpora, makes it accurate
when detecting drug-related entities. In contrast to the use of the traditional keyword matching, it resorts
to ontology-aware embedding alignment, thus allowing a close disambiguation of the biomedical terms
used in context. It uses the semantics more deeply in that it computes similarity between the entity and
ontology embeddings through this method. Moreover, it is scalable and interoperable since it allows
mapping of extracted concepts to vocabularies, such as MeSH, SNOMED CT, and RxNorm. This acts
as an easy synchronization of systems, enabling the applications semantic search, clinical decision
support, and pharmacovigilance.

3.4.Smart Semantic Query Processing and Reasoning

Smart Semantic Query Processing and Reasoning allows systems to understand natural language
queries and output into semantic query languages such as SPARQL that go be understood by machines.
It extends keyword-based retrieval, allowing reasoning both on ontologies using Description Logic
(DL) and Transformer-based models, and extracting both explicit and implicit and indirect biomedical
knowledge. The combination of context-awareness will deliver quite contextual and personal reaction
in clinical and pharmaceuticals applications.
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A) Transformation of user input into semantic queries

In healthcare, user queries are usually formulated using natural languages that are incompatible with
the machine. These queries are formally encoded in formal semantic formats such as SPARQL before
they are used to access related data in well-structured knowledge bases such as RDF graphs. This
consists in determining some important things such as drugs, hypertension and matching them with
concepts in the ontology. The resulting SPARQL query is able to search the ontology to derive
meaningful results. It is a way in which human language and machine-readable knowledge become
bridged so that information could be retrieved accurately. A natural language query is expressed in Eq.

(15),
"Show drugs that treats hypertension" (15)
B) Intelligent Query Processing with Transformer-Based Models

These are embedded and semantically further interpreted with the help of Transformer-based sequence-
to-query models, like TS5, BART, or GPT, which are fine-tuned on biomedical QA-related data like
BioASQ. These models learn to translate a user query Q; into a formal SPARQL query Qgpqrqi- Let
Qn: be the natural language query, Mryansformer represents as Transformer-based model trained to
generate queries, Qgpqrqr be the Output SPARQL query. The transformation is given by Eq. (16),

Qsparql = MTransformer (in) (16)
C) Use of SPARQL and Description Logic for Query Execution

SPARQL is a query language of data in the RDF triple format of subject predicate object. The formal
semantics of ontologies are offered by the DL, which allows one to make logical inferences.
Collectively, they used to query and reason over biomedical knowledge graphs in a very specific way.
Let Treats be an object property, Condition X € Cardiovascular Disease,
Treats(DrugA, Condition X) be an asserted fact. Then the reasoner infer is shown by Eq. (17),

Condition X € Cardiovascular Disease, Treats(DrugA, Condition X) =
Treats(DrugA, Cardiovascular Disease)  (17)

D) Reasoning Over Implicit and Indirect Relationships

Having to reason over things that are implicit and indirect relationships means that logical inference is
made to infer new knowledge based on existing ontology structures. Such methods as subsumption with
in case of "Hypertension" being a subclass of "cardiovascular disease" and transitivity with in case A
treats B, and B causes C, A have an effect on C are used. The deduction is done by ontology reasoners
such as Pellet or HermiT. This allows systems to find more deep and intuitive knowledge in the fields
of biomedicine. Let HasCondition (Patient , A) be an object property assertion, A £ B where A and
B are disease concepts in an ontology. Then the system infers is given by Eq. (18),

HasCondition (Patient ,A),A € B = HasCondition (Patient ,B) (18)
E) Context-Aware Information Retrieval

Context-sensitive information search is the one that modifies the outcome of a query or search by a
consideration of several parameters about the user such as age/sex, medical history, presence of
comorbidities. A drug that is fit in adults are not be fit in the case of the pediatric patient, i.e., in terms
of dosage or in the profile of side effects. Formalization of context models’ Semantic rules or filters
applied in executing the query are common forms of formalizing context models. This method results
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in more pertinent and secure and individualistic biomedical ideas. Let Q (u, ¢) be the query function for
user u under context ¢ , r € R be the result from the candidate set R, Score (r,u, ¢) be the context-
relevance score. Then the system returns are expressed in Eq. (19), Figure 2 illustrates the framework
for transformer-based query translation.

Q(u,c) = argm&rScore (r,u,c) (19)
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Figure 2: Transformer Based Query Translation Framework

4. Evaluation, Results, and Impact

The evaluation of performance metrics like precision, Recall, Fl-score, MAP (Mean Average
Precision), USS (User Satisfaction Score) and SQRT (SPARQL Query Response Time) with the
proposed model has been compared with the existing models of CASBERT [26], Transformer-based
language models [27], Transformer-based RoBERTa [28], and Transformer-based embedding model
(TEM) [29]. Table 2 determines the formulas for performance metrics.

Table 2: Formula and Description of Performance Metrics
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Metrics | Equation Description
Precision | precision = —= Measures how many of the predicted positive
TP+EP cases are actually positive
Recall Recall = —F Measures the proportion of relevant documents
TP+FN that were retrieved.
Fl-Score | = o x PrecisionxSensitivity Harmonic mean of precision and sensitivity
Precision+Sensitivity
MAP MAP = Evaluates precision across multiple queries by
1 |Q:| ( 1 Z:|Rq| Precision @k) averaging precision at each relevant document.
|Q| <a=1 |Rq| “k=1
USS Uss = L YN S Provides a direct measure of real-world system
N effectiveness from the user's perspective,
enabling user-centric evaluation.
SQRT SQRT = Tepng — Tstart Measures how long it takes for the system to
process and return a result for a SPARQL
query.

Table 3 shows the comparison of PharmaSeek+ with the available models considering six major
performance metrics determined as Precision, Recall, F1-Score, Mean Average Precision (MAP), User
Satisfaction Score (USS), and SPARQL Query Response Time (SQRT). Among any of the baseline
models, the proposed PharmaSeek+ framework has the best values of Precision (0.89), Recall (0.87),
and F1-Score (0.88) showing that it is the most accurate and balanced to find relevant results. It is also
the leader in MAP (0.85), which proves its high-ranking efficiency, and is the highest USS (0.91), that
proves it corresponds to user recommendations. Besides, PharmaSeek+ offers the most responsive time,
i.e., 320 ms, proving its effectiveness in terms of semantics query answering, unlike CASBERT and
other transformer-based approaches, which though competitive produce lower scores and increased
execution times. It gives emphasis on how well PharmaSeek+ performs as well as is user-friendly in
delivery.

Table 3: Comparison of Proposed Model with Performance Metrics

Models Precision | Recall F1- MAP | USS SQRT
Score (ms)

Proposed 0.89 0.87 |0.88 |0.85 |0.91 320

PharmaSeek+ ’ ’ ’ ) )

CASBERT 0.77 0.74 0.75 0.71 |0.76 410

Transformer-based

language models 0.8 0.78 0.79 0.76 | 0.8 450

(TBLM)

Transformer-based

RoBERTa (T- 0.83 0.79 0.81 0.78 | 0.84 430

RoBERTa)

Transformer-based

embedding model 0.85 0.82 0.83 0.8 0.86 390

(TEM)

Figure 3 shows a comparative study of the proposed PharmaSeek+ model with some of the baseline
models based on some important performance measures like Precision, Recall, F1-Score, Mean Average
Precision (MAP), User Satisfaction Score (USS), and SPARQL Query Response Time (SQRT). The
figure shows vividly that PharmaSeek+ is much better than any standard transformer-based model such
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as RoBERTa, CASBERT, and embedding-based architecture in most of the evaluation metrics. It should
be noted that PharmaSeek+ performs best (0.89 precision and 0.87 recall) than other systems and thus
poses the least possibility of retrieving irrelevant information about drugs but with fewer false positive
and negative results. Then, it also shows the best USS (0.91) and this underlines that it is effective in
addressing intent and expectations of the users. Moreover, it is efficient and precise since its lower
SQRT (320 ms) shows that its query processing speed is optimized. These findings confirm that
PharmaSeek+ is a powerful, intelligent semantic search environment to be applied to pharmaceutical
research.
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Figure 3: Model Comparison with Proposed PharmaSeek+ model with (a) Precision, (b) Recall, (c) F1-
Score, (d) MAP, (e) USS and (f) SQRT

5. Conclusion
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In this study, an ontology-based semantic search framework, PharmaSeek+ is introduced, which
substantially improves the process of pharmaceutical research through the integration of heterogeneous
data resources and intelligent information retrieval. The framework provides strong metadata
integration by means of schema mapping and alignment of clinical trials, drug databases, and
pharmacovigilance systems. A pharmaceutical ontology is built on the basis of integrating MeSH,
SNOMED CT, and custom classes to represent drug efficacy, molecular interactions, and adverse
effects. Deep learning models such as BioBERT used to perform semantic annotation to make sure that
the entity recognition and ontology-based tagging of biomedical texts is accurate. Moreover, the
reasoning over implicit relationships is also possible due to the intelligent query processing with a
transformer-based sequence-to-SPARQL model, which guarantees highly contextual and relevant
results. According to the evaluation results, PharmaSeek+ has significantly outperformed the existing
models, including CASBERT and RoBERTa4, in all the key metrics, including precision (0.89), recall
(0.87), and user satisfaction score (0.91) with the fastest query response time (320 ms). Such results
confirm the efficacy of the framework and point to its potential future scalability, interoperability, and
clinical awareness in pharmaceutical knowledge discovery, opening the door to applying it in the real
world to drug development, decision support, and biomedical research.
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