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Abstract 

The pharmaceutical research is highly affected by the lack of data sources that are fragmented, 

inconsistent metadata, and inefficient search systems based on keywords. To overcome these 

shortcomings, this research presents PharmaSeek+, an Ontology-Driven Semantic Search Framework 

aimed at transforming the way researchers’ access, interpret and use real-world pharmaceutical 

evidence. PharmaSeek+ is designed using a systematic four step process: (1) metadata harmonization 

to harmonize the data of various clinical trials, drug databases, and pharmacovigilance systems by 

schema mapping and metadata alignment. (2) ontology development is applied by a pharmaceutical 

ontology that combines existing vocabularies (MeSH, SNOMED CT) with custom classes representing 

drug efficacy, interactions, molecular profiles, and adverse effects. (3) in semantic annotation via deep 

learning (DL) models, the biomedical documents are enhanced with the context-aware deep learning 

models such as BioBERT and contextual Natural Language Processing (NLP) in accordance with the 

ontology. (4) transformer-based sequence-to-query model handles the user queries which are converted 

into semantic queries and are SPARQL-based to support reasoning over the implicit knowledge and 

produce very relevant and contextual results. The PharmaSeek+ achieved 89% in search precision and 

87% in recall compared to traditional search engines, and these results are confirmed using real-world 

pharmaceutical corpora. The findings validate the fact that PharmaSeek+ is a powerful tool that 

enhances the process of discovering and integrating important drug-related information. This smart 

structure allows quicker, more knowledgeable decision-making in pharmaceutical research and 

development, eventually closing the gap between fragmented biomedical information and researcher 

intention. 

Keywords: - Ontology-Based Modeling, Pharmaceutical Data Integration, Real-World Evidence, 

SPARQL Querying, Natural Language Processing, Biomedical Ontologies. 

1. Introduction 

The pharmaceutical research is being confronted with a growing amount and complexity of data which 

are occasioned by a multiplicity of areas including clinical trials, genomics, drug interactions, and real-

world clinical practice [1]. Nonetheless, such data sources are frequently very disparate, located in 

independent silos, and controlled by heterogeneous metadata requirements [2]. Such heterogeneity 

poses serious difficulties to data discovery, integration, and reuse, thus making the drug development 

lifecycle slow and scientific innovation difficult [3],[4]. The most problematic aspect of the modern 

pharmaceutical data systems is the use of the traditional, keyword-based search systems [5]. Such 

techniques do not usually capture contextual meaning, synonymy or hierarchical relationships between 

terms [6],[7]. Consequently, researchers fail to get pertinent information or access huge amounts of data 

that are not relevant, leading to inefficiencies in evidence collection, hypothesis formulation, and 

decision making [8]. 
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In addition, the growing significance of real-world evidence (RWE) data obtained in real-life clinical 

practice, including electronic health records (EHRs), claims data, and patient registries, requires more 

advanced integration and interpretation approaches [9],[10]. Unless smart tools are available to 

semantically interconnect clinical and experimental data, useful patterns and relations are hidden in the 

noise [11]. Such increasing complexity explains why there should be a paradigm shift to intelligent, 

ontology-based search systems that are capable of identifying semantic relationships and adapting to 

different biomedical vocabularies [13],[14]. Ontologies structured representation of knowledge offers 

a means of integrating heterogeneous data sources by coordinating them on a common 

conceptualization, thus improving interoperability, data discoverability, and inferencing [15]. 

To overcome these difficulties, PharmaSeek+ is presented as a new semantic search system that are 

used in the pharmaceutical research field and which has an ontology-based structure. It uses domain-

specific ontologies, natural language processing and knowledge graph technologies to offer context-

aware searching, allowing the user to query biomedical datasets in a more natural and understandable 

fashion. PharmaSeek+ is able to combine structured ontological reasoning with real-world evidence 

sources and enable researchers to discover previously unknown relationships, simplify drug discovery 

processes, and enable precision medicine efforts. This paper discusses the design, functionality and the 

influence of PharmaSeek+ in promoting pharmaceutical research based on semantic technologies and 

integration of real-world data. 

2. Literature Review 

Stănescu & Oprea [16] discussed the use of ontologies and Semantic Web Technologies (SWT) in 

contemporary data management based on 10,037 scholarly articles published in 20192024. It employs 

bibliometric analysis, NLP, LDA, and BERT clustering to determine such main themes as ontology-

driven systems, biomedical data integration, and ethical implications. The research identifies the lack 

of scalability, dynamic update, and semantic interoperability. It has a topic coherence score of 0.75 and 

perplexity of 48, and it has three significant research clusters. These results provide practical 

implications on how to enhance semantic search, data accessibility and automated knowledge discovery. 

 Yao et al [17] introduced OntoPath, an ontology-aware hierarchical attention model to personalize 

prescription recommendation to chronic disease care in 2023. It uses the history of longitudinal 

diagnosis, hierarchical medical ontologies and side information to forecast the best course of treatment. 

OntoPath improves the profiling of patients and drug relevance modeling with domain knowledge and 

pre-training. It performs better than state-of-the-art baselines on a large depression cohort of more than 

37,000 patients. The findings validate the accuracy, interpretability and clinical applicability of 

OntoPath.  

Bakshi et al [18] in 2021 suggested semantic conflicts in data integration as a result of schema, 

terminology and domain interpretation differences, which lowers data interoperability and quality. In 

this paper we suggest ontology-based frameworks as a solution to such conflicts by formalizing domain 

knowledge into structured, machine-readable forms. The methodology is proved by case studies in the 

healthcare and e-commerce fields. The paper assesses the advantages and the drawbacks of these 

methods. 

In 2022, Thirumahal et al [19] discussed the problem of semantically diverse biomedical data 

integration with an automatic ontology-based framework. The model works in three stages: local 

ontology generation, generation of unified global schema and querying heterogeneous sources to 

retrieve semantically aligned data. It is implemented on the patient records, chest X-rays, and COVID-

19 questionnaires in SQL, MongoDB, and Excel databases. The system determines patients with 

moderate/high risk of severe COVID-19. This improves data unification, information retrieval and 

clinical decision making in healthcare. 

Li et al [20] proposed an Ontology-Driven Medication Query (ODMQ) optimization scheme to enhance 

the accuracy of medication information retrieval in EHRs in 2025. Through the OMOP Common Data 

Model, ODMQ broadens queries semantically on drug names, codes, and generics, which increases the 

accuracy and completeness. When applied to the real-world COVID-19 EHR data, it demonstrates 

better performance and less manual work. It has a friendly interface that facilitates query execution and 
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viewing of patient history. The relevance of expanded search terms to clinical needs is confirmed with 

the help of manual review. 

Fareedi et al [21] suggested a hybrid Ontology-Based Design Science Research Engineering (ODSRE) 

approach to improve data integration and semantic interoperability in healthcare in 2025. It uses the 

Ontop virtual paradigm to propose a Federated Virtual Knowledge Graph (FVKG) system to effectively 

and in real-time access various data sources. FVKG reduces data migration, has a low latency, and 

semantic coherence across systems. The model employs ontology-based data access (OBDA) and 

schema mapping in order to match semantic artifacts. This provides a scalable federated information 

systems (FIS) solution in patient-centric healthcare settings. 

In 2029, Kamdar et al [22] proposed the problem of combining fragmented biomedical data and 

highlighted the opportunities of Semantic Web technologies and Linked Data principles. It deals with 

the Life Sciences Linked Open Data (LSLOD) cloud as a means of harmonizing data in pharmacology, 

cancer research, and infectious diseases. Although promising, LSLOD has adoption obstacles that are 

related to technical and usability challenges. The paper suggests the possible ways to improve LSLOD 

usability and accessibility. Finally, LSLOD was able to facilitate AI-powered biomedical research and 

enhance clinical outcomes. 

In 2025, Abraham et al [23] introduced a digital-twin framework of precision oncology that combines 

machine learning and semantic models to personalize treatment. It identifies subtypes of brain cancer 

based on clinical and molecular data, in the form of ontologies with diagnostic rules. The potential 

therapies are prioritized in preclinical models that are semantically aligned with patient subtypes. The 

method allows cross-domain reasoning to assist in personalized treatment decisions.  

In 2023, Lazarova et al [24] proposed AD-DPC, an ontology to facilitate interdisciplinary cooperation 

in the study of Alzheimer disease. It organizes knowledge in six major conceptual categories, such as 

pathology, diagnosis, and clinical findings. AD-DPC is marked with definitions, synonyms, and 

resources to assist users of different levels. Usability testing indicates that non-medical users were able 

to use AD-DPC to learn and share concepts related to Alzheimer with good results. The ontology 

promotes better knowledge sharing and interdisciplinary participation in the complex medical research. 

Kawas et al [25] (2023) proposed a sophisticated mechanism of ontology integration that was applied 

to medical text, which is based on the shortcomings of the current methods, including semantic precision 

and adaptability. It integrates ontological, lexical, logical and machine learning methods to align 

disparate sources of data through a shared upper ontology and transformation rules. A supervised model 

foresees concept mappings between various ontologies. The method improves the semantic integration, 

which promotes data-driven decision-making in clinical and research environments. 

2.1. Problem Statement 

Although there is increasing use of Electronic Health Records (EHRs) and biomedical data systems, the 

healthcare sector continues to experience serious problems in integrating, querying, and interpreting 

semantically heterogeneous and fragmented data. The conventional solutions have problems with 

schema inconsistencies, terminology inconsistencies, and domain interpretation inconsistencies, which 

result in decreased data interoperability, ineffective information retrieval, and inferior clinical decision-

making. Such constraints impede the scalability, accuracy and applicability in real-time of data-driven 

solutions in healthcare. Ontology-based frameworks and semantic web technologies have become 

indispensable to integrate heterogeneous data, improve semantic search, and to provide personalized 

care as well as intelligent decision support systems in various medical fields. The summary of some of 

the existing works is depicted in Table 1. 

Table 1: Summary on Several Existing Works 

Author, 

Year 

[Citation] 

Technique Used 
Application in 

Healthcare 
Advantages Limitations 
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Stănescu & 

Oprea, 2025 

[16] 

Bibliometric 

analysis, NLP, 

LDA, BERT 

clustering 

Biomedical data 

integration, 

ontology analysis 

Identifies research 

trends, ethical gaps, 

and ontology-driven 

systems; coherence 

score: 0.75 

Scalability, 

dynamic update 

challenges, and 

semantic 

interoperability 

issues 

Yao et al., 

2023 [17] 

Ontology-aware 

hierarchical 

attention model 

(OntoPath), 

longitudinal 

diagnosis, pre-

training 

Personalized 

prescription for 

chronic disease  

Improves patient 

profiling and 

prescription 

accuracy; 

interpretable and 

clinically useful 

 Condition was 

specific; 

scalability across 

diseases not 

evaluated 

Bakshi et 

al., 2021 

[18] 

Ontology-based 

data integration, 

schema alignment, 

case study 

validation 

Healthcare and e-

commerce 

Resolves semantic 

conflicts; structured, 

machine-readable 

knowledge 

representation 

Complexity in 

ontology modeling 

and domain 

adaptation 

Thirumahal 

et al., 2022 

[19] 

Automatic 

ontology 

generation, global 

schema synthesis, 

heterogeneous 

query system 

COVID-19 

patient risk 

prediction using 

multi-source 

biomedical data 

Enhances data 

unification and 

retrieval; supports 

diverse data formats 

(SQL, Excel, 

MongoDB) 

Limited scope to 

specific disease 

domains; reliance 

on structured data 

Li et al., 

2025 [20] 

Ontology-Driven 

Medication Query 

(ODMQ), OMOP 

CDM, semantic 

query expansion 

Medication 

retrieval from 

COVID-19 EHRs 

Improves query 

completeness and 

accuracy; reduces 

manual effort; 

supports query UI 

and visualization 

Generalizability to 

non-COVID 

datasets needs 

validation 

Fareedi et 

al., 2025 

[21] 

ODSRE 

methodology, 

Federated Virtual 

Knowledge Graph 

(FVKG), Ontop, 

OBDA 

Semantic 

interoperability in 

patient-centric 

systems 

Enables real-time, 

federated access; 

low latency; 

minimal data 

migration 

Requires robust 

semantic schema 

mapping; technical 

complexity 

Kamdar et 

al., 2029 

[22] 

Linked Data 

principles, 

LSLOD Cloud, 

Semantic Web 

technologies 

Biomedical data 

integration  

Promotes unified 

data access; 

potential for AI-

driven research 

Usability and 

adoption barriers 

in LSLOD 

Abraham et 

al., 2025 

[23] 

Digital twin 

framework, 

ontology rules, 

ML integration, 

cross-domain 

reasoning 

Brain cancer 

subtype discovery 

and precision 

oncology 

Supports 

personalized 

treatment; semantic 

alignment with 

preclinical models 

Complexity in 

semantic modeling 

and interpretability 

across domains 
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Lazarova et 

al., 2023 

[24] 

AD-DPC ontology 

design, usability 

studies, 

conceptual 

structuring 

Alzheimer’s 

disease research 

collaboration 

Facilitates 

interdisciplinary 

communication; 

usable by non-

medical 

professionals 

Domain-specific 

ontology; not 

evaluated for 

clinical decision-

making 

Kawas et 

al., 2023 

[25] 

Ontology 

integration via 

ontological, 

lexical, logical, 

ML techniques; 

supervised 

concept mapping 

Medical text 

integration 

Accurate semantic 

alignment; supports 

data-driven 

decisions; superior 

to baseline methods 

Requires training 

data for supervised 

model; 

transformation rule 

complexity 

 

3. Methodology 

The suggested approach is aimed at ensuring a smooth harmonization of metadata and semantic 

integration of diverse pharmaceutical data by means of a multi-layered approach. First, schema mapping 

methods are used to harmonize heterogeneous data structures, so that metadata is aligned across clinical 

trials, drug databases, and pharmacovigilance systems, in particular with regard to terminology 

standardization. It is then succeeded by creation of a rich pharmaceutical ontology that combines 

standard vocabularies such as MeSH and SNOMED CT, with bespoke domain-specific classes to model 

drug efficacy, molecular properties, interactions and adverse effects. Contextual NLP and concept 

tagging are used to carry out semantic annotation of biomedical texts so as to guarantee ontology 

alignment. Lastly, intelligent semantic query processing uses SPARQL and description logic to map 

user queries into semantically augmented forms, and applies reasoning on implicit relations, and assists 

context-sensitive search of pertinent biomedical data. Figure 1 illustrates the overall architecture of the 

proposed PharmaSeek+ model. 
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Figure 1: Overall Architecture of Proposed PharmaSeek+ Model. 

3.1. Metadata Harmonization and Data Integration 

Within pharmaceutical informatics, the process of schema mapping, terminology normalization and 

metadata alignment are a formal process of integrating various datasets like clinical trials, drug 

databases, pharmacovigilance systems. The sources of pharmaceutical data are heterogeneous and 

include such data as clinical trials, EHRs, drug registries, and pharmacovigilance reports, each having 

different formats and semantics. This diversity hinders easy integration, comparison and reuse of data. 

The consolidation of such datasets guarantees the uniformity of interpretation and facilitate the thorough 

analytics. This also facilitates interoperability for research, regulatory, along with clinical applications. 

Let there be a set of data sources is as shown in Eq. (1), where each 𝐷𝑖 represents a dataset from a 

different source like 𝐷1: clinical trials and 𝐷2: EHR. 

𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑛}                                          (1) 

Each dataset 𝐷𝑖 has its own schema 𝑆𝑖, and it was expressed in Eq. (2), where 𝑎𝑗
𝑖 represents attributes 

in that schema. 

𝑆𝑖 = {𝑎1
𝑖 , 𝑎2

𝑖 , … 𝑎𝑚𝑖
𝑖 }                                             (2) 

The goal of harmonization is to transform all 𝑆𝑖 into a unified global schema 𝑆∗ is represented by Eq. 

(3), 

∀𝑖, ∃𝑓𝑖: 𝑆𝑖 → 𝑆∗                                           (3) 

Schema mapping is the process of matching heterogeneous sources based on fields that have similar 

semantics. Methods involve rule-based methods, ontology-based mappings and machine learning 

algorithms to identify correspondences with drug_name ↔ medication. This allows querying and 

accessing heterogeneous structural data. The schema mapping function 𝑓𝑖 is defined by similarity 

measures. For attributes 𝑎 ∈ 𝑆𝑖, 𝑏 ∈ 𝑆∗, this has been computed by Eq. (4), where,  𝑙𝑒𝑥𝑠𝑖𝑚 represents 

the lexical similarity 𝑡𝑦𝑝𝑒𝑠𝑖𝑚 indicates as datatype similarity,𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠𝑖𝑚 represents as co-

occurrence/context similarity, in which 𝑙𝑒𝑥𝑠𝑖𝑚(𝑎, 𝑏), 𝑡𝑦𝑝𝑒𝑠𝑖𝑚(𝑎, 𝑏), 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠𝑖𝑚(𝑎, 𝑏) ∈ [0,1] 
𝑎𝑙𝑠𝑜; 𝛼, 𝛽, 𝛾 ∈ [0,1]𝑎𝑛𝑑  𝛼 +  𝛽 +  𝛾 = 1. A match is confirmed if: 𝑠𝑖𝑚(𝑎, 𝑏) ≥ 𝜃, where 𝜃 ∈ [0,1] is 

a predefined threshold. 

𝑠𝑖𝑚(𝑎, 𝑏) = 𝛼 ∙ 𝑙𝑒𝑥𝑠𝑖𝑚(𝑎, 𝑏) + 𝛽 ∙ 𝑡𝑦𝑝𝑒𝑠𝑖𝑚(𝑎, 𝑏) + 𝛾 ∙ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠𝑖𝑚(𝑎, 𝑏)                 (4) 

Metadata alignment provides consistency of the representation of data attributes such as units, formats, 

and definitions across datasets like clinical trials, drug registries, and pharmacovigilance systems. It 

entails harmonizing data differences in types, labels and standards of measurement. This consistency 

enhances data integration, interoperability and proper cross-dataset analysis. Let metadata is termed as 

a tuple is shown in Eq. (5), where; 𝑇 represents as Data type, 𝑈 indicates as Unit, 𝐷 indicates as 

Definition or description. 

𝑀 = (𝑇, 𝑈, 𝐷)                                                     (5) 

Let two datasets 𝐷𝑖, 𝐷𝑗 have metadata for the same concept is as shown in Eq. (6), where,  𝑈𝑖  and 𝑈𝑗 

are  unit-convert which evaluates whether units 𝑈𝑖 and  𝑈𝑗 are equivalent and convertible using a 

deterministic transformation rule, such as 1 g=1000 mg, 1 hr=60 min, Temperature, concentration, and 

currency transformations 

𝑀𝑖 = (𝑇𝑖, 𝑈𝑖 , 𝐷𝑖), 𝑀𝑗 = (𝑇𝑗, 𝑈𝑗 , 𝐷𝑗)                                 (6) 
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Metadata alignment ensures which are displayed by Eq. (7), where 𝛿 is a semantic similarity threshold. 

𝑇𝑖 ≡ 𝑇𝑗, 𝑢𝑛𝑖𝑡 − 𝑐𝑜𝑛𝑣𝑒𝑟𝑡(𝑈𝑖 , 𝑈𝑗) = 𝑡𝑟𝑢𝑒, 𝑠𝑖𝑚(𝐷𝑖, 𝐷𝑗) ≥ 𝛿                             (7) 

Terminology standardization and normalization is the process of mapping diverse medical or 

pharmaceutical terminologies to standard and controlled vocabularies such as RxNorm, MeSH, or 

SNOMED CT. This makes it so that synonyms such as acetaminophen and paracetamol are considered 

to be the same concept. It minimizes ambiguity and enhances the retrieval, integration, and semantic 

reasoning of data. Finally, it allows a meaningful comparison and aggregation of various healthcare 

data sets. Each term 𝑡 ∈ 𝑇 from the dataset is mapped to a standard vocabulary 𝑉 is as given by Eq. (8), 

with an example: 𝜇("𝐴𝑑𝑣𝑖𝑙") = 𝑅𝑥𝑁𝑜𝑟𝑚 − 𝐼𝐷: 5640. 

𝜇 = 𝑇 → 𝑉                                                (8) 

This allows semantic equivalence is shown by Eq. (9), even if 𝑡1 = "𝐴𝑑𝑣𝑖𝑙" and 𝑡2 = "𝐼𝑏𝑢𝑝𝑟𝑜𝑓𝑒𝑛" 

𝜇(𝑡1) =  𝜇(𝑡2) ⇒ 𝑡1 ≡ 𝑡2                                   (9) 

The terminology normalization process, computed semantic similarity between two terms 𝑡1 and 𝑡2  

using BERT embeddings. The cosine similarity is calculated by Eq. (10), where; 𝑣𝑡1
 and 𝑣𝑡2

∈ ℝ𝑑 are 

the vector embeddings of terms 𝑡1 and 𝑡2 generated by a contextual model such as BioBERT, . denotes 

the dot product, ‖𝑣𝑡𝑖‖  is the Euclidean norm of the vector. 

𝑠𝑖𝑚𝐵𝐸𝑅𝑇(𝑡1, 𝑡2) = 𝑐𝑜𝑠(𝑣𝑡1
, 𝑣𝑡2) =

𝑣𝑡1.𝑣𝑡2

‖𝑣𝑡1‖.‖𝑣𝑡2‖
                             (10) 

3.2. Ontology Development and Semantic Annotation 

Ontology Development and Semantic Annotation is the development of structured representations of 

knowledge in pharmaceuticals by combining existing ontologies such as MeSH and SNOMED CT with 

domain-specific concepts. It allows formal encoding of drug related entities such as efficacy, 

interactions in formal logic of OWL. NLP is used in semantic annotation to create connections between 

terms in unstructured text and these ontology concepts to analyze them in more detail. 

A) Construction of a pharmaceutical ontology 

MeSH, SNOMED CT and custom classes integration unites standardized biomedical vocabularies with 

concepts in the domain of drugs. This forms a coherent ontology of high-quality and complete semantic 

representation. Let 𝒪𝑀𝑒𝑆𝐻 , 𝒪𝑆𝑁𝑂𝑀𝐸𝐷 and 𝒪𝐶𝑢𝑠𝑡𝑜𝑚 be the ontologies for MeSH, SNOMED CT, and 

custom domain-specific concepts accordingly. The integrated pharmaceutical ontology𝒪𝑃ℎ𝑎𝑟𝑚𝑎 is 

defined as in Eq. (11),   

𝒪𝑃ℎ𝑎𝑟𝑚𝑎 = 𝒪𝑀𝑒𝑆𝐻 ∪ 𝒪𝑆𝑁𝑂𝑀𝐸𝐷 ∪ 𝒪𝐶𝑢𝑠𝑡𝑜𝑚                         (11) 

The ontological triples in the form ⟨subject, predicate, object⟩ like ⟨DrugA, inhibits, EnzymeX⟩ are used 

to model drug efficacy, molecular profiles, interactions and side effects. OWL or RDF is used to encode 

these relationships in order to support machine-readable reasoning. This makes it possible to query and 

infer the drug behaviors and risks automatically. They are represented formally as a description logic 

(DL) in OWL or RDF triples. Let drug 𝐷 which reduces blood pressure and targets receptor 𝑅 is shown 

in Eq. (12), 

𝐷𝑟𝑢𝑔(𝐷) ∧ ℎ𝑎𝑠 𝐸𝑓𝑓𝑒𝑐𝑡(𝐷, 𝐿𝑜𝑤𝑒𝑟 𝐵𝑙𝑜𝑜𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) ∧ 𝑡𝑎𝑟𝑔𝑒𝑡𝑠(𝐷, 𝑅)                    (12) 
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3.3. Semantic Annotation of Biomedical Texts 

By use of semantic annotation one can convert the unstructured biomedical text into structured and 

ontology aligned knowledge. This is done by accurately identifying drug related entities and 

relationships and associating them with standardized biomedical ontologies so they can be used 

downstream to reason and to make semantic queries. 

A) Contextual NLP with Deep Learning (BioBERT) 

In contrast to universal models, such as BERT, BioBERT is a task-specific neural network -deep 

learning model which is pre-trained over massive biomedical data like PubMed abstracts and PMC full-

text articles. It has been optimized on Named Entity Recognition (NER) and Relation Extraction (RE) 

on clinical and pharmaceutical text. Let 𝑇 be an unstructured biomedical text. A contextual NLP model 

such as BioBERT processes this text to extract a set of named biomedical entities through token-level 

classification and contextual embedding. This process is represented in Eq. (13), where; 𝑇 denoted as 

unstructured biomedical text, 𝑓𝐵𝑖𝑜𝐵𝐸𝑅𝑇 be the deep learning function based on the BioBERT model that 

does NER over 𝑇, 𝑒𝑖 are named, entities extracted from 𝑇 each entity 𝑒𝑖 typically includes token span 

in the input text, entity type label ,confidence score from the model output  

𝑓𝐵𝑖𝑜𝐵𝐸𝑅𝑇(𝑇) → {𝑒1, 𝑒2, … , 𝑒𝑛}                                          (13) 

B) Ontology-Aligned Concept Tagging 

Once entity vectors 𝑣̅𝑒𝑖
  are generated, semantic annotation maps each 𝑒𝑖 to a concept 𝑐𝑗 in a 

pharmaceutical ontology 𝒪𝑃ℎ𝑎𝑟𝑚𝑎 using similarity matching is as expressed by Eq. (14), Where: 𝑣̅𝑒𝑖
: 

BioBERT embedding of entity 𝑒𝑖, 𝑣̅𝑐𝑗
: Pre-computed or fine-tuned embedding of ontology concept 𝑐𝑗,  

𝑠𝑖𝑚(. ) represents as Similarity function 

𝐴𝑙𝑖𝑔𝑛(𝑒𝑖) = 𝑎𝑟𝑔𝑐𝑗∈ 𝒪𝑃ℎ𝑎𝑟𝑚𝑎

𝑚𝑎𝑥 𝑠𝑖𝑚 (𝑣̅𝑒𝑖
, 𝑣̅𝑐𝑗

)                                    (14) 

The similarity function is typically expressed by Eq. (15), 

𝑠𝑖𝑚 (𝑣̅𝑒𝑖
, 𝑣̅𝑐𝑗

) =
𝑣̅𝑒𝑖

.𝑣̅𝑐𝑗

‖𝑣̅𝑒𝑖
‖‖𝑣̅𝑐𝑗

‖
                                       (15) 

The use of a BioBERT, a fine-tuned deep learning model that achieved state-of-the-art performance on 

multiple biomedical tasks because it was trained on a large set of biomedical corpora, makes it accurate 

when detecting drug-related entities. In contrast to the use of the traditional keyword matching, it resorts 

to ontology-aware embedding alignment, thus allowing a close disambiguation of the biomedical terms 

used in context. It uses the semantics more deeply in that it computes similarity between the entity and 

ontology embeddings through this method. Moreover, it is scalable and interoperable since it allows 

mapping of extracted concepts to vocabularies, such as MeSH, SNOMED CT, and RxNorm. This acts 

as an easy synchronization of systems, enabling the applications semantic search, clinical decision 

support, and pharmacovigilance. 

3.4. Smart Semantic Query Processing and Reasoning 

Smart Semantic Query Processing and Reasoning allows systems to understand natural language 

queries and output into semantic query languages such as SPARQL that go be understood by machines. 

It extends keyword-based retrieval, allowing reasoning both on ontologies using Description Logic 

(DL) and Transformer-based models, and extracting both explicit and implicit and indirect biomedical 

knowledge. The combination of context-awareness will deliver quite contextual and personal reaction 

in clinical and pharmaceuticals applications. 
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A) Transformation of user input into semantic queries 

In healthcare, user queries are usually formulated using natural languages that are incompatible with 

the machine. These queries are formally encoded in formal semantic formats such as SPARQL before 

they are used to access related data in well-structured knowledge bases such as RDF graphs. This 

consists in determining some important things such as drugs, hypertension and matching them with 

concepts in the ontology. The resulting SPARQL query is able to search the ontology to derive 

meaningful results. It is a way in which human language and machine-readable knowledge become 

bridged so that information could be retrieved accurately. A natural language query is expressed in Eq. 

(15), 

"𝑆ℎ𝑜𝑤 𝑑𝑟𝑢𝑔𝑠 𝑡ℎ𝑎𝑡 𝑡𝑟𝑒𝑎𝑡𝑠 ℎ𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛"                             (15) 

B) Intelligent Query Processing with Transformer-Based Models 

These are embedded and semantically further interpreted with the help of Transformer-based sequence-

to-query models, like T5, BART, or GPT, which are fine-tuned on biomedical QA-related data like 

BioASQ. These models learn to translate a user query 𝑄𝑛𝑙 into a formal SPARQL query 𝑄𝑠𝑝𝑎𝑟𝑞𝑙. Let 

𝑄𝑛𝑙  be the natural language query, 𝑀𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟  represents as Transformer-based model trained to 

generate queries, 𝑄𝑠𝑝𝑎𝑟𝑞𝑙  be the Output SPARQL query. The transformation is given by Eq. (16), 

𝑄𝑠𝑝𝑎𝑟𝑞𝑙 = 𝑀𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑄𝑛𝑙)                                (16) 

C) Use of SPARQL and Description Logic for Query Execution 

SPARQL is a query language of data in the RDF triple format of subject predicate object. The formal 

semantics of ontologies are offered by the DL, which allows one to make logical inferences. 

Collectively, they used to query and reason over biomedical knowledge graphs in a very specific way. 

Let 𝑇𝑟𝑒𝑎𝑡𝑠 be an object property, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑋 ⊆ 𝐶𝑎𝑟𝑑𝑖𝑜𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝐷𝑖𝑠𝑒𝑎𝑠𝑒, 

𝑇𝑟𝑒𝑎𝑡𝑠(𝐷𝑟𝑢𝑔𝐴, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑋) be an asserted fact. Then the reasoner infer is shown by Eq. (17), 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑋 ⊆ 𝐶𝑎𝑟𝑑𝑖𝑜𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝐷𝑖𝑠𝑒𝑎𝑠𝑒, 𝑇𝑟𝑒𝑎𝑡𝑠(𝐷𝑟𝑢𝑔𝐴, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑋) ⇒
 𝑇𝑟𝑒𝑎𝑡𝑠(𝐷𝑟𝑢𝑔𝐴, 𝐶𝑎𝑟𝑑𝑖𝑜𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝐷𝑖𝑠𝑒𝑎𝑠𝑒)      (17) 

D) Reasoning Over Implicit and Indirect Relationships 

Having to reason over things that are implicit and indirect relationships means that logical inference is 

made to infer new knowledge based on existing ontology structures. Such methods as subsumption with 

in case of "Hypertension" being a subclass of "cardiovascular disease" and transitivity with in case A 

treats B, and B causes C, A have an effect on C are used. The deduction is done by ontology reasoners 

such as Pellet or HermiT. This allows systems to find more deep and intuitive knowledge in the fields 

of biomedicine. Let 𝐻𝑎𝑠𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑃𝑎𝑡𝑖𝑒𝑛𝑡 , 𝐴) be an object property assertion, 𝐴 ⊆ 𝐵  where 𝐴  and 

𝐵 are disease concepts in an ontology. Then the system infers is given by Eq. (18), 

𝐻𝑎𝑠𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑃𝑎𝑡𝑖𝑒𝑛𝑡 , 𝐴), 𝐴 ⊆ 𝐵 ⇒ 𝐻𝑎𝑠𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑃𝑎𝑡𝑖𝑒𝑛𝑡 , 𝐵)                 (18) 

E) Context-Aware Information Retrieval 

Context-sensitive information search is the one that modifies the outcome of a query or search by a 

consideration of several parameters about the user such as age/sex, medical history, presence of 

comorbidities. A drug that is fit in adults are not be fit in the case of the pediatric patient, i.e., in terms 

of dosage or in the profile of side effects. Formalization of context models’ Semantic rules or filters 

applied in executing the query are common forms of formalizing context models. This method results 
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in more pertinent and secure and individualistic biomedical ideas. Let 𝑄(𝑢, 𝑐) be the query function for 

user 𝑢 under context 𝑐 , 𝑟 ∈ 𝑅 be the result from the candidate set 𝑅, 𝑆𝑐𝑜𝑟𝑒 (𝑟, 𝑢, 𝑐) be the context-

relevance score. Then the system returns are expressed in Eq. (19), Figure 2 illustrates the framework 

for transformer-based query translation. 

𝑄(𝑢, 𝑐) = 𝑎𝑟𝑔 𝑆𝑐𝑜𝑟𝑒 (𝑟, 𝑢, 𝑐)𝑟∈𝑅
𝑚𝑎𝑥                                     (19) 

 

 

Figure 2: Transformer Based Query Translation Framework 

4. Evaluation, Results, and Impact 

The evaluation of performance metrics like precision, Recall, F1-score, MAP (Mean Average 

Precision), USS (User Satisfaction Score) and SQRT (SPARQL Query Response Time) with the 

proposed model has been compared with the existing models of CASBERT [26], Transformer-based 

language models [27], Transformer-based RoBERTa [28], and Transformer-based embedding model 

(TEM) [29]. Table 2 determines the formulas for performance metrics.  

 

Table 2: Formula and Description of Performance Metrics 
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Metrics Equation Description 

Precision 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  Measures how many of the predicted positive 

cases are actually positive 

Recall 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  Measures the proportion of relevant documents 

that were retrieved. 

F1-Score 𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆ensitivity
   Harmonic mean of precision and sensitivity 

MAP MAP =
1

|Q|
∑ (

1

|Rq|
∑ Precision @k

|Rq|

k=1
)

|Q|
q=1   

Evaluates precision across multiple queries by 

averaging precision at each relevant document. 

USS USS =
1

N
∑ Si

N
i=1   Provides a direct measure of real-world system 

effectiveness from the user's perspective, 

enabling user-centric evaluation. 

SQRT SQRT = Tend − Tstart  Measures how long it takes for the system to 

process and return a result for a SPARQL 

query. 

Table 3 shows the comparison of PharmaSeek+ with the available models considering six major 

performance metrics determined as Precision, Recall, F1-Score, Mean Average Precision (MAP), User 

Satisfaction Score (USS), and SPARQL Query Response Time (SQRT). Among any of the baseline 

models, the proposed PharmaSeek+ framework has the best values of Precision (0.89), Recall (0.87), 

and F1-Score (0.88) showing that it is the most accurate and balanced to find relevant results. It is also 

the leader in MAP (0.85), which proves its high-ranking efficiency, and is the highest USS (0.91), that 

proves it corresponds to user recommendations. Besides, PharmaSeek+ offers the most responsive time, 

i.e., 320 ms, proving its effectiveness in terms of semantics query answering, unlike CASBERT and 

other transformer-based approaches, which though competitive produce lower scores and increased 

execution times. It gives emphasis on how well PharmaSeek+ performs as well as is user-friendly in 

delivery. 

Table 3: Comparison of Proposed Model with Performance Metrics 

Models Precision Recall 
F1-

Score 
MAP USS  

SQRT 

 (ms) 

Proposed 

PharmaSeek+ 
0.89 0.87 0.88 0.85 0.91 320 

CASBERT 0.77 0.74 0.75 0.71 0.76 410 

Transformer-based 

language models 

(TBLM) 

0.8 0.78 0.79 0.76 0.8 450 

Transformer-based 

RoBERTa (T- 

RoBERTa) 

0.83 0.79 0.81 0.78 0.84 430 

Transformer-based 

embedding model 

(TEM) 

0.85 0.82 0.83 0.8 0.86 390 

 

Figure 3 shows a comparative study of the proposed PharmaSeek+ model with some of the baseline 

models based on some important performance measures like Precision, Recall, F1-Score, Mean Average 

Precision (MAP), User Satisfaction Score (USS), and SPARQL Query Response Time (SQRT). The 

figure shows vividly that PharmaSeek+ is much better than any standard transformer-based model such 
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as RoBERTa, CASBERT, and embedding-based architecture in most of the evaluation metrics. It should 

be noted that PharmaSeek+ performs best (0.89 precision and 0.87 recall) than other systems and thus 

poses the least possibility of retrieving irrelevant information about drugs but with fewer false positive 

and negative results. Then, it also shows the best USS (0.91) and this underlines that it is effective in 

addressing intent and expectations of the users. Moreover, it is efficient and precise since its lower 

SQRT (320 ms) shows that its query processing speed is optimized. These findings confirm that 

PharmaSeek+ is a powerful, intelligent semantic search environment to be applied to pharmaceutical 

research. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3: Model Comparison with Proposed PharmaSeek+ model with (a) Precision, (b) Recall, (c) F1-

Score, (d) MAP, (e) USS and (f) SQRT 

5. Conclusion  
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In this study, an ontology-based semantic search framework, PharmaSeek+ is introduced, which 

substantially improves the process of pharmaceutical research through the integration of heterogeneous 

data resources and intelligent information retrieval. The framework provides strong metadata 

integration by means of schema mapping and alignment of clinical trials, drug databases, and 

pharmacovigilance systems. A pharmaceutical ontology is built on the basis of integrating MeSH, 

SNOMED CT, and custom classes to represent drug efficacy, molecular interactions, and adverse 

effects. Deep learning models such as BioBERT used to perform semantic annotation to make sure that 

the entity recognition and ontology-based tagging of biomedical texts is accurate. Moreover, the 

reasoning over implicit relationships is also possible due to the intelligent query processing with a 

transformer-based sequence-to-SPARQL model, which guarantees highly contextual and relevant 

results. According to the evaluation results, PharmaSeek+ has significantly outperformed the existing 

models, including CASBERT and RoBERTa, in all the key metrics, including precision (0.89), recall 

(0.87), and user satisfaction score (0.91) with the fastest query response time (320 ms). Such results 

confirm the efficacy of the framework and point to its potential future scalability, interoperability, and 

clinical awareness in pharmaceutical knowledge discovery, opening the door to applying it in the real 

world to drug development, decision support, and biomedical research. 
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