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Abstract 

Hyperpigmentation is a dermatological condition marked by localized overproduction of melanin, often 

associated with exposure to ultra violet rays, hormonal fluctuations, inflammation, or genetic 

predisposition. The present study was designed to investigate the anti-hyperpigmentation potential of 

phytochemicals derived from the methanolic extracts of Azadirachta indica, Aloe barbadensis miller, 

Punica granatum and Murraya koeingii using GC-MS analysis. A total of 206, 81, 177 and 7 compounds 

were identified from these plants respectively. Structural information of the identified compounds was 

retrieved from the PubChem database and pharmacokinetic profiling was conducted using SwissADME. 

Only compounds satisfying drug-likeness rules and exhibiting favourable skin permeation (log Kp) values 

were selected for docking studies. A total of 50 compounds passed all the drug-likeness tests of which 14 

compounds exhibited good skin permeability. Molecular docking was employed to evaluate the interaction 

of these 14 phytocompounds using AutoDock with two key protein targets involved in melanogenesis: D-

dopachrome tautomerase (PDB ID: 3KAN) and human tyrosinase-related protein 1 (PDB ID: 5M8L). 

Binding interactions were visualized and analyzed using Biovia Discovery Studio 2024. Two compounds 

2,6,10-trimethylundeca-1,3-diene and oxalic acid, cyclobutyl tetradecyl ester exhibited the highest binding 

affinities against both protein targets, surpassing the docking performance of Thiamidol, a positive drug 

control. These findings highlight the potential of these naturally occurring compounds as effective inhibitors 

of melanin synthesis and safer, plant-based alternatives for hyperpigmentation therapy.  

1. Introduction 

Melanin is an essential pigment and primary determinant of skin, hair and eye colour, is synthesized by 

specialized organelles called melanosomes through a process known as melanogenesis (Serre et al., 2018). 

This biochemical process involves a series of multiple melanogenic reactions with tyrosinase (TYR) as the 

rate-limiting enzyme (Zolghadri et al., 2023). Ultraviolet (UV) exposure stimulates keratinocytes to 

produce α-melanocyte-stimulating hormone (α-MSH), adrenocorticotropic hormone (ACTH) and 

endothelin-1. α-MSH binds to melanocortin 1 receptor (MC1R) and increases the level of 3′,5′-cyclic 

adenosine monophosphate (cAMP). This triggers protein kinase A (PKA) to phosphorylate cAMP response 

element-binding protein (CREB), which regulates microphthalmia-associated transcription factor (MITF). 

MITF controls tyrosinase TYR, tyrosinase-related protein 1 (TRP-1) and TRP-2 driving melanogenesis. 

TYR converts tyrosine to melanin precursors, balancing eumelanin and pheomelanin responsible for 

black/brown and red/yellow pigmentation respectively. The overactivity or dysregulation of TYR causes 

hyperpigmentation (Tedasen et al., 2024; D’Mello et al., 2016). 

Hyperpigmentation is a common dermatological condition characterized by the excessive production and 

accumulation of melanin in the skin resulting in skin darkening and uneven skin colour. The condition arises 

from a complex interplay of factors such as UV radiation exposure, genetic predisposition, injury, hormonal 

changes and inflammatory responses (Putri et al., 2023). Current hyperpigmentation treatments focus on 

melanogenesis inhibiting agents like hydroquinone, retinoids, kojic acid, azelaic acid, thiamidol, alpha-
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arbutin, niacinamide and vitamin-C (Nautiyal and Wairkar, 2021). However, these synthetic compounds 

can cause adverse health effects increasing the quest for safer, plant-based alternatives. Many botanical 

extracts contain flavonoids, polyphenols, terpenoids and alkaloids with melanogenesis-inhibitory 

properties. Understanding the molecular mechanisms of these compounds may lead to the development of 

therapeutic strategies with minimal side effects (Veerichetty et al., 2024; Du et al., 2024).  

The present study explores the phytochemical composition of Azadirachta indica (Neem), Murraya koeingii 

(Sweet neem), Aloe b2arbadensis miller (Aloe vera) and Punica granatum (Pomegranate) for their anti-

hyperpigmentation activity. Molecular docking was employed to examine how these plant-derived 

phytochemicals interact with key protein targets involved in melanin synthesis. This research seeks to create 

safer, plant-derived therapies by utilizing natural inhibitors of melanogenesis to treat hyperpigmentation. 

2. Materials and Methods  

2.1 Methanolic extraction of Plant Materials  

The plant materials (Table 1) were procured from the local market in Thoothukudi, Tamil Nadu and 

transported to Microbial Biotechnology Laboratory, Manonmaniam Sundaranar University under aseptic 

conditions. The respective parts of the plant materials were dried separately and powdered coarsely for the 

extraction process. Methanol was used to extract 50g of dried powder in a Soxhlet apparatus at 65°C. After 

8 complete siphon cycles, the extracts were cooled down and filtered through Whatman filter paper to 

remove impurities. The extracts were dried for 3 days to produce a powder. The crude extract of the plant 

materials were stored separately in an airtight bottle at room temperature. 

Table 1: Plant materials used for the present study, their common name and the part used for the 

extraction 

SI.No Botanical Name 
Common Name 

(English) 

Common Name 

(Tamil) 
Part used 

1 Azadirachta indica Neem Vembu Leaf 

2 Murraya koeingii Sweet neem Karuveppilai Leaf 

3 Aloe barbadensis miller Aloe vera Kattralai Leaf 

4 Punica granatum Pomegranate Mathulai Fruit Pulp 

 

2.2 Gas Chromatography-Mass Spectrometry (GC–MS) Analysis 

Dried powdered extract of the plant materials were subjected to GC-MS analysis using the Perkin-Elmer 

Clarus 680 GC system. The apparatus consists of the fused silica column with Elite-5MS (30 m × 250 μm 

× 0.25 μm). Pure helium (99.9%) was utilized as a carrier gas with 1.0 mL/min constant flow rate and the 

column was set to operate with the following conditions: the oven was set to operate with an initial 

temperature of 60°C for 2 min, followed by the constant increase of 10°C per min up to 300°C and the final 

temperature of 300°C was held for 6 min. The injector temperature was set at 260°C (constant) during the 

chromatographic run and an injection of 1µL of sample (split ratio 10:1) was used. Perkin-Elmer Clarus 

600 EI mass spectrometer was used with a mass-to-charge ratio (m/z) range of 50 to 600 Da. The spectra 

of the components were compared with the database of spectrum based on retention time and mass spectral 

patterns of known components stored in the GC-MS NIST (2008) library. 

2.3 Ligand Preparation 

Structural data of the phytocompounds from the GC-MS analysis were extracted from the PubChem 

database (https://pubchem.ncbi.nlm.nih.gov). Phytochemical structures from PubChem were downloaded 

in .sdf format and converted as .pdb format using OpenBabel 2.3 GUI (https://openbabel.org/index.html) 

which were utilized for molecular docking and pharmacokinetic analysis. Thiamidol (CID: 71543007) was 

used for the comparative study as a positive control for anti-hyperpigmentation in docking studies.  

2.4 Pharmacokinetic Analysis  
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Drug-likeness and pharmacokinetic properties of each phytocompound were tested with Swiss ADME 

(http://www.swissadme.ch/). Drug-likeness of compounds was tested with Lipinski’s rule of five, Ghose, 

Veber, Egan and Muegge rules. Other pharmacokinetic properties such as lipophilicity, gastrointestinal 

absorption, blood brain barrier and skin permeation parameters were evaluated.  

2.5 Protein Preparation 

The D-dopachrome tautomerase (PDB ID: 3KAN) and human TRP-1 (PDB ID: 5M8L) were downloaded 

from the protein data bank (https://www.rcsb.org/) in .pdb format. The addition of hydrogen bonds and 

Kollman charges was performed using the MGL AutoDock Tools 1.5.6. 

2.6 Molecular Docking 

Phytocompounds that have passed Lipinski’s rule and have good skin permeability were selected for 

molecular docking. Computational docking was performed using a specific grid size for the protein with 

XYZ dimensions (126 X 126 X 126) and a spacing of 0.5 Å for D-dopachrome tautomerase and 1 Å for 

human TRP-1. Docking was executed using AutoDock 1.5.6 software (https://autodock.scripps.edu/) with 

the Lamarckian genetic algorithm and default docking parameters. Protein-ligand complexes were 

visualized in Biovia Discovery Studio 2024 (https://discover.3ds.com/discovery-studio-visualizer-

download) to identify the molecular interactions between them.  

3. Results and Discussion  

Plants are rich sources of bioactive compounds that can counteract the adverse effects of UV exposure to 

the skin especially plants with large quantities of phenolic compounds that exerts photoprotective 

properties. Extracts of Pueraria thunbergiana (Kudzu), Piper betle (Betel), Juniperus communis (Juniper), 

Rhododendron schlippenbachii (Royal azalea), Nelumbo nucifera (Indian lotus), Caesalpinia 

sappan (Indian redwood), Nymphaea nouchali (Bluewater lily), Zingiber mioga (Japanese ginger),   

Figure 1: GC-MS chromatogram of (A) A. indica, (B) A. barbadensis miller, (C) P. granatum and (D) 

M. koeingii.    

Pyrostegia venusta (Flaming trumpet) and Lespedeza bicolor (Shrubby bushclover) were studied to show 

effects on melanogenesis and proposed for the treatment of various pigmentation disorders (Gamage et al., 

2021; Merecz-Sadowska et al., 2022; Alam et al., 2023).  In this present study, methanolic extracts of A. 

indica, A. barbadensis miller, P. granatum and M. koeingii were used for the GC-MS analysis (Figure 1). 

Around 206 compounds were identified in A. indica which is higher than the compounds derived from its 

ethanolic extract (Loganathan et al., 2021; Bolade et al., 2018). Among the identified compounds majority 
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of them belong to alcohols and polyols followed by esters. A total of 81 compounds were identified in the 

methanolic extracts of A. barbadensis miller which is found to be higher than the compounds identified in 

its ethanolic extract (Alghamdi et al., 2023). Based upon the identified compounds, most of them are fatty 

acids and unclassified compounds. Meanwhile, P. granatum has shown higher number of identified 

compounds (177 compounds) with larger amounts of sugars followed by fatty acids than their ethanolic 

counterpart (Attia 2019).  In the extracts of M. koeingii, 7 compounds were identified and shown to be 

lesser than its ethanolic extract (Azhagu Madhavan et al., 2021; Wirjosentono et al., 2019). The composition 

and distribution of phytocompounds identified through GC-MS are shown in Figure 2.  

Figure 2: Distribution of GC-MS identified compounds of (A) A. indica, (B) A. barbadensis miller, 

(C) P. granatum and (D) M. koeingii based upon their nature.  

 

After the complete identification of the phytocompounds using GC-MS, their 3D structural data were 

retrieved from PubChem database. PubChem database is a public repository for information on the physical, 

chemical, structural and biological properties of chemical compounds (Kim et al., 2016). Their structural 

data was used to study the pharmacokinetic and drug-likeness properties in SwissADME.  SwissADME 

predicts absorption, distribution, metabolism and excretion (ADME) parameters aiding in the identification 

of potential drug candidates (Daina et al., 2017). Based on the results (Supplementary data 1), 24 

compounds in A. indica, 14 compounds in A. barbadensis miller, 9 compounds in P. granatum and 3 

compounds in M. koeingii have passed all the drug-likeness rules. Compounds that have passed all the 

drug-likeness rules with good skin permeation (log Kp) were selected for the molecular docking analysis.  

Out of the 50 potential drug candidates, 14 phytocompounds have good skin permeability and thus 

can penetrate the skin layers to exert effects on melanogenesis. Based on a wide literature search, two 

protein targets (D-dopachrome tautomerase; human TRP-1) and one positive control drug (Thiamidol) were 

selected. Both D-dopachrome tautomerase and TRP-1 plays a pivotal role in the biosynthesis of melanin. 

In hyperpigmentation disorders, TRP-1 activity accelerates excessive melanin production, making it a 

promising drug target for skin-lightening agents and therapeutic interventions against pigmentation-related 

conditions. (Milac et al., 2017; Lai et al., 2018).  Thiamidol is an active chemical compound known as 

Isobutylamido-Thiazolyl-Resorcinol used as a depigmenting agent in skincare to reduce 

hyperpigmentation. It works by selectively inhibiting TYR, making it effective in treating post-

inflammatory hyperpigmentation, melasma, UVB-induced hyperpigmentation and discoloration (Desai et 

al., 2025; Schuster and Sammain 2024). 

AutoDock is a free, user-friendly widely used computational tool for molecular docking (MD) to study the 

interaction between a receptor and a ligand. It aids in the identification of binding conformations, binding 

modes, binding sites and the calculation of binding affinities of a receptor-ligand complex. It has a major 

application in structure-based drug designing, virtual screening and drug discovery (Morris et al., 2008). 
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Docking was performed for the 14 phytocompounds along with 1 positive control drug and visualised in 

Biovia Discovery Studio 2024. 

Based on the MD results (Table 2), 2,6,10-trimethylundeca-1,3-diene, Octadecanoic acid, Oxalic acid 

cyclobutyl tetradecyl ester, N-Hexadecanoic acid and Nonadecanoic acid indicated higher binding energy 

with D-dopachrome tautomerase than thiamidol (-6.27). When compared with thiamidol, based on 

hydrogen bond counts, Octadecanoic acid and Oxalic acid cyclobutyl tetradecyl ester have exhibited the 

same stable interactions with the protein target. Even though 2,6,10-trimethylundeca-1,3-diene (-8.26) has 

higher binding affinity, it does not have any hydrogen bonds resulting in poor stability. Notably, 2 

phytocompounds: 6-ethyl-3-di(tert-butyl)silyloxyoctane and 3-Dimethylsilyloxytridecane has shown the 

absence of any interaction with the target protein. 

Table 2: Molecular docking of phytocompounds and Thiamidol with D-dopachrome tautomerase.   

SI.No Ligand Binding 

Energy 

(kcal/mol

) 

Ligand – 

Protein 

Interactio

n 

(Hydrogen 

Bond) 

Dista

nces 

2D Image of the interaction 

1 9-Octadecenal, (Z)- -5.10 ARG C:36 2.86 

 

ASN C:38 2.98 

2 1-Chloroundecane -4.61 - - 
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3 3-

Dimethylsilyloxytrid

ecane 

+1.97 - - - 

4 Cis-11-eicosenoic 

acid 

-7.01 LYS A:109 2.6 

2.73 

 

5 N-Hexadecanoic 

acid 

-7.09 LYS C:32 2.83 

 

ILE C:64 2.8 

SER C:63 1.96 

6 Nonadecanoic acid -7.08 SER B:63 3.30 
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LYS B:32 2.63 

 
7 Cis-1-methyl-3-N-

nonylcyclohexane 

-6.95 - - 

 
8 Octadecanoic acid -7.8 LYS C:32 3.25 

2.62 

 

ILE C:64 3.24 

SER C:63 2.11 

9 -7.65 SER A:63 3.22 

ILE A:64 2.66 
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Oxalic acid, 

cyclobutyl tetradecyl 

ester 

LYS A:32 2.88 

3.04 

 
10 2-Pentadecanol 

acetate 

-5.41 PRO C:1 2.96 

 

ILE C:64 2.8 

LYS C:32 2.87 

11 6-ethyl-3-di(tert-

butyl)silyloxyoctane 

+1.97 - - - 

12 Oxirane, tetradecyl- -5.31 ILE C:64 2.72 

 

SER C:63 3.11 

LYS C:32 3.06 
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13 Oxirane, tridecyl- -5.13 GLN C:92 2.88 

 
14 2,6,10-

trimethylundeca-1,3-

diene 

-8.26 - - 

 
15 Thiamidol 

 

-6.72 ASP C:93 2.10 

 

HIS A:79 2.94 

GLN C:92 1.90 

2.44 

 

Molecular docking results (Table 3) of phytocompounds and Thiamidol with human TRP-1 show 2,6,10-

trimethylundeca-1,3-diene, Oxalic acid cyclobutyl tetradecyl ester and Cis-1-methyl-3-N-

nonylcyclohexane indicated higher binding energy than positive drug control (-4.57). Whereas when 

compared with the number of hydrogen bonds, Thiamidol has four and these above-mentioned compounds 
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had none. Also 6-ethyl-3-di(tert-butyl)silyloxyoctane and 3-Dimethylsilyloxytridecane have shown the 

absence of any interaction with the target protein. 

Table 3: Molecular docking of phytocompounds and Thiamidol with human tyrosinase related 

protein 1.    

SI.No Ligand 

Binding 

Energy 

(kcal/mol

) 

Ligand – 

Protein 

Interactio

n 

(Hydrogen 

Bond) 

Distance

s 
2D Image of the interaction 

1 9-Octadecenal, (Z)- -2.40 - - 

 

2 1-Chloroundecane -3.9 - - 

 

3 

3-

Dimethylsilyloxytridec

ane 

+1.95 - - - 
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4 Cis-11-eicosenoic acid -2.2 ARG B:125 
3.16 

3.04 

 

5 N-Hexadecanoic acid -2.83 SER C:106 2.95 

 

6 Nonadecanoic acid -2.48 ARG C:118 3.26 
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7 
Cis-1-methyl-3-N-

nonylcyclohexane 
-5.06 - - 

 

8 Octadecanoic acid -2.01 - - 

 

9 
Oxalic acid, cyclobutyl 

tetradecyl ester 
-5.89 

 

- 

- 
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10 2-Pentadecanol acetate -3.79 PRO C:115 3.49 

 

11 
6-ethyl-3-di(tert-

butyl)silyloxyoctane 
+1.96 - - - 

12 Oxirane, tetradecyl- -3.58 - - 

 

13 Oxirane, tridecyl- -3.22 GLY C:107 2.73 
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14 

2,6,10-

trimethylundeca-1,3-

diene 

-6.83 - - 

 

15 
Thiamidol 

 
-4.57 

LYS D:233 3.17 

 

GLU D:237 3.4 

GLU B:167 2.38 

GLN D:240 2.44 

 

To conclude based on the results, with both the protein targets, 2,6,10-trimethylundeca-1,3-diene and Oxalic 

acid, cyclobutyl tetradecyl ester showed higher binding energy. Elaborative information on these 

compounds, their structure, binding energy and other properties have been tabulated in Table 4. 

Furthermore, the results highlight the presence of hydrophobic interactions and underscore the diversity of 

bonds shared between the ligand-protein complex indicating potential activity against melanogenesis. 

 Table 4: Summary of molecular docking results of 2,6,10-trimethylundeca-1,3-diene and Oxalic acid, 

cyclobutyl tetradecyl ester.  

Name of the  

Phytocompoun

d 

Chemical Structure 

Binding 

Energy 
No. of Bonds 

Log Kp 

value for 

Skin 

Permeatio

n 

No. of 

Drug-

likenes

s rules 

passed 

3KA

N 

5M8

L 

3KA

N 

5M8

L 
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2,6,10-

trimethylundeca-

1,3-diene 

 

-8.26 -6.83 5 8 -2.98 cm/s 4 

Oxalic acid, 

cyclobutyl 

tetradecyl ester 

 

-7.65 -5.89 9 8 -2.71 cm/s 3 

 

4. Conclusion  

Phytocompounds isolated from the methanolic extracts of A. indica, A. barbadensis miller, P. granatum and 

M. koeingii have various bioactive properties. Only a handful have passed the rigorous filtering in the 

present study. Both 2,6,10-trimethylundeca-1,3-diene and Oxalic acid, cyclobutyl tetradecyl ester 

demonstrate a notable affinity for the target proteins associated with melanogenesis. Notably, they exert 

higher binding energy than the conventional drug Thiamidol. This study highlights the phytocompounds as 

an effective anti-hyperpigmentation agent, primarily by inhibiting enzymatic activities important for 

melanin synthesis and lays the groundwork for future in vitro and in vivo validation, paving the way towards 

the development of novel cosmeceuticals derived from medicinal plants.  
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