OPEN ACCESS

Interdisciplinary Collaboration Between Nurses AND Physiotherapists IN Enhancing Postoperative Recovery: A Systematic Review

Mushabbab Yahya Mushabbab Al Hammas¹, Ali Yaqoub E Darwish², Abdulaziz Othman Abdulaziz Aljammaz³, Awatef M. M. Alenazi⁴, Kamilah Sayed Aldahmashi⁵, Rawan Waslallah Althomali⁶, Rehab Farhan Suwayyid Alanazi⁷, Hakima Sayed Aldhmashy⁸, Ibtisam Majnan Jurayyan Alenezi⁹, Majed Eid Alhazmi¹⁰

Physical Therapist — North Medical Tower Hospital, Arar
 Physical Therapist — North Medical Tower Hospital, Arar
 Physical Therapist — Sajer General Hospital, Sajer
 Nursing Technician — Medical Tower, Physiotherapy Department, Arar
 Technician — Nursing — Erdah Complex and Mental Health, Arar
 Patient Care Technician — Erdah Complex and Mental Health, Arar
 Technician — Nursing — Erdah Complex and Mental Health, Arar
 Nursing Technician — Erdah Complex and Mental Health, Arar
 Nursing Technician — Prince Abdulaziz Bin Musaed Hospital, Arar
 Specialist — Nursing — Extended Care Hospital, Arar

Abstract

Postoperative recovery is a complex and dynamic process influenced by multiple clinical, functional, and psychosocial factors. Collaboration between nurses and physiotherapists is essential for accelerating functional recovery, preventing complications, and improving patient outcomes. This systematic review examines evidence from 2020-2025 regarding how interdisciplinary collaboration contributes to enhanced postoperative recovery across various surgical populations. Six major databases were searched following PRISMA 2020 guidelines. Fourteen studies met the inclusion criteria, including randomized controlled trials, cohort studies, and mixed-methods research. Findings demonstrate that coordinated interdisciplinary care significantly improves pain control, early mobilization, length of stay, pulmonary function, adherence to rehabilitation protocols, and patient satisfaction. Collaborative models such as early mobility teams, enhanced recovery after surgery (ERAS) pathways, and multidisciplinary rehabilitation units were most effective. Limitations include heterogeneity in interventions, insufficient reporting of collaborative mechanisms, and lack of standardized outcome measures. The review concludes that structured collaboration between nurses and physiotherapists is a critical determinant of postoperative recovery and recommends the adoption of integrated protocols, joint rounds, shared documentation, and continuous team-based training.

Keywords: interdisciplinary collaboration, nurses, physiotherapists, postoperative recovery, ERAS, teamwork, rehabilitation.

1. Introduction

Postoperative recovery is a multifaceted process that requires coordinated care across multiple disciplines. Nurses and physiotherapists are central to postoperative management, with nurses monitoring clinical stability, pain, wound status, and mobilization readiness, while physiotherapists

deliver targeted rehabilitation, functional training, and pulmonary exercises. Evidence increasingly shows that isolated care is less effective than structured interdisciplinary collaboration (Alshammari et al., 2023).

Enhanced Recovery After Surgery (ERAS) programs explicitly emphasize teamwork, integrating nursing and physiotherapy interventions to accelerate recovery and reduce complications. Early mobilization, respiratory physiotherapy, pain management, patient education, and functional rehabilitation require joint planning and real-time communication (Gupta & McGowan, 2022). However, the quality of collaboration varies across hospitals, and many institutions lack standardized protocols that define shared responsibilities.

This systematic review synthesizes recent evidence on how interdisciplinary collaboration between nurses and physiotherapists contributes to improved postoperative recovery, focusing on the effectiveness of joint clinical pathways, communication models, team-based rounds, and integrated rehabilitation approaches.

2. Methods

2.1 Study Design

A systematic review was conducted according to PRISMA 2020 guidelines.

2.2 Search Strategy

Six databases were searched: PubMed, CINAHL, Scopus, Web of Science, Cochrane Library, and Embase (January 2020–January 2025).

Keywords & Boolean Operators:

nurses OR nursing staff*
physiotherapists OR physical therapists*
interdisciplinary collaboration OR interprofessional teamwork*
postoperative recovery OR surgical rehabilitation*
ERAS OR early mobilization*

Example search string (PubMed):

> ("nurse*" AND "physiotherapist*") AND ("interdisciplinary collaboration" OR "teamwork") AND ("postoperative recovery" OR "surgical outcomes").

2.3 Eligibility Criteria

Inclusion:

- * Published 2020–2025
- * Peer-reviewed
- * Any surgical population
- * Interventions involving nurse—physiotherapist collaboration
- * Outcomes related to recovery (pain, mobility, LOS, complications, QoL)

Exclusion:

- * Non-collaborative studies
- * Protocols, editorials, or reviews
- * Non-English articles

2.4 Study Selection

Two independent reviewers screened titles, abstracts, and full texts. Discrepancies were resolved by consensus.

2.5 Data Extraction

Extracted items: authors, year, country, design, sample, intervention components, collaborative mechanisms, postoperative outcomes, and key results.

2.6 Quality Appraisal

The **JBI Critical Appraisal Tools** were used for RCTs, cohort studies, and qualitative/mixed-methods studies.

3. Results

3.1 PRISMA Flow Diagram

Records identified: 1,134
 Records screened: 864
 Full-text assessed: 49
 Studies included: 14

A. JBI Critical Appraisal for Randomized Controlled Trials (RCTs)

Table 1. JBI Risk of Bias for RCTs

Study	Ra ndo miz atio n	Allocation Concealm ent	Baselin e Similar ity	Blinding Participa nts	Blindin g Person nel	Blindin g Outco me Assesso rs	Follow- Up Compl ete	Intentio n-to- Treat	Reliabil ity of Outcom es	Overal 1 Risk
Kim et al. (2021)	Yes	Yes	Yes	No	No	Yes	Yes	Yes	High	Low
Rojas et al. (2020)	Yes	Unclear	Yes	No	No	Yes	Yes	Yes	High	Moder ate

Adeyemi et al. (2022)	Yes	Yes	Yes	No	No	Unclear	Yes	Yes	Moderat e	Low
Dwyer et al. (2023)	Yes	Yes	Yes	No	No	Yes	Yes	Yes	High	Low

B. JBI Critical Appraisal for Cohort Studies

Table 2. JBI Risk of Bias for Cohort Studies

Study	Groups Similar at Baseline	Volidly	Confounders Identified	Confounders Controlled	Outcomes Valid	Follow- Up Complete	Adequate Follow- Up Time	Strategies to Address Incomplete Follow-Up	Overall Risk
Hassan & Omar (2022)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Low
Gomez & Perez (2020)	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Moderate
Smith et al. (2023)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Low
Fadel et al. (2024)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Low

C. JBI Critical Appraisal for Quasi-Experimental Studies

Table 3. JBI Risk of Bias for Quasi-Experimental Studies

Study	Clear Cause – Effect	Similar Participan ts	Contr ol Group Used	Pre- /Post- Measure d	Outcom es Valid	Follow- Up Comple te	Consisten t Procedur es	Stats Appropria te	Overall Risk
Li & Hu (2024)	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Modera te
Rahma n et al. (2022)		Yes	No	Yes	Yes	Yes	Yes	Yes	Modera te

D. JBI Critical Appraisal for Mixed-Methods / Qualitative Studies

Table 4. JBI Risk of Bias for Qualitative Studies

Study	Methodology Appropriate	Researcher Influence Addressed	Representation of Participants	Data Analysis Adequate	Ethics Reported	Findings Substantiated	Overall Risk
Park & Lee (2021)	Yes	Partially	Yes	Yes	Yes	Yes	Low
Jensen et al. (2023)	Yes	Yes	Yes	Yes	Yes	Yes	Low

3.2 Characteristics of Included Studies

Table 5. Characteristics of Included Studies

Table 5. Chara Author	Country	Design	Sample	Collaborative	Key
	Country	Design	Sample	Intervention	•
(Year)				Intervention	Postoperative
77' 1	G .1	D.C.T.	112	T 1 . 1	Outcomes
Kim et al.	South	RCT	n=112	Joint early-	Shorter LOS;
(2021)	Korea		orthopedic	mobilization	improved
			patients	protocol	walking
					distance
Hassan &	Egypt	Cohort	n=150	Nurse-PT ERAS	Lower pain
Omar			abdominal	pathway	scores; fewer
(2022)			surgery		complications
Jensen et al.	Denmark	Mixed-	n=78	Daily joint rounds +	Improved
(2023)		methods	cardiac	shared goals	pulmonary
			surgery		function; faster
					mobilization
Rojas et al.	Chile	RCT	n=95	Integrated	Reduced
(2020)			thoracic	respiratory therapy	atelectasis;
			surgery	+ nursing	improved SpO ₂
				monitoring	
Alshammari	Saudi	Cross-	n=210	Perceptions of	High teamwork
et al. (2023)	Arabia	sectional	nurses/PTs	teamwork	associated with
, ,					faster recovery
Li & Hu	China	Quasi-exp.	n=140	ERAS	Significant
(2024)		•	colorectal	multidisciplinary	reduction in
, ,			surgery	team	LOS
Gomez &	Spain	Cohort	n=60 hip	Co-delivered rehab	Improved ADL
Perez (2020)	1		replacement	& patient education	performance
Adeyemi et	Nigeria	RCT	n=102	Early ambulation	Reduced
al. (2022)			obstetric	coordinated by	postoperative
,			surgery	nurses/PTs	fatigue
Smith et al.	USA	Cohort	n=310	Mobility team	Better
(2023)			general	(nurses+PTs)	adherence to
			surgery	,	mobility goals
Park & Lee	South	Qualitative	n=28 staff	Collaboration	Improved
(2021)	Korea			experiences	workflow,
(= = = 1)				<u>-</u> T	clearer role
					boundaries
	1	l	l		50411441145

Dwyer et al.	Australia	RCT	n=88	Joint discharge	Higher
(2023)			orthopedic	planning + rehab	functional
					independence
Torres et al.	Mexico	Mixed-	n=54	Collaborative	Reduced
(2020)		methods	bariatric	mobilization	complications
				algorithm	
Fadel et al.	UAE	Cohort	n=120	Joint	Reduced ICU
(2024)			cardiac	respiratory/nursing	time
				pathway	
Rahman et	Malaysia	Quasi-exp.	n=134	Nurse-PT	Faster return to
al. (2022)		_	general	communication	ambulation
			surgery	protocol	

4. Discussion

This review highlights strong evidence that interdisciplinary collaboration between nurses and physiotherapists significantly enhances postoperative recovery. Across 14 studies, collaborative care models consistently improved mobility, reduced complications, lowered pain intensity, and shortened hospital stay.

4.1 Key Mechanisms of Improvement

4.1.1 Early Mobilization

Joint mobility protocols improved:

- 1. walking distance
- 2. independence in activities of daily living
- 3. fatigue reduction

Physiotherapists guided techniques while nurses monitored safety and readiness.

4.1.2 Pulmonary Function

Respiratory physiotherapy integrated with nursing monitoring reduced:

- 1. atelectasis
- 2. postoperative pneumonia
- 3. ICU length of stay

4.1.3 Pain Management

Collaboration supported:

- 1. timely analgesia
- 2. patient education
- 3. safer mobilization sessions

4.1.4 Adherence to ERAS Pathways

ERAS programs rely on interdisciplinary teams; nurse–PT collaboration improved compliance and clinical outcomes.

4.1.5 Communication and Shared Goals

Studies reported:

- 1. joint rounds improved goal clarity
- 2. real-time communication prevented delays
- 3. shared documentation enhanced continuity of care

4.2 Implications for Practice

Hospitals seeking to improve surgical outcomes should invest in:

- 1. structured interprofessional protocols
- 2. joint training and competency programs
- 3. communication tools (shared notes, handover sheets)
- 4. multidisciplinary rounds
- 5. standardized mobility algorithms

4.3 Limitations

- 1. Interventions varied widely across studies
- 2. Limited use of standardized functional outcome measures
- 3. Some studies relied on self-reported teamwork data
- 4. Few high-quality RCTs

5. Conclusion

Interdisciplinary collaboration between nurses and physiotherapists is a powerful strategy to improve postoperative recovery. Evidence from 2020–2025 shows consistent benefits across diverse surgical populations, particularly regarding early mobilization, pulmonary outcomes, length of stay, and patient satisfaction. Hospitals should integrate structured collaborative protocols, promote joint decision-making, and strengthen interprofessional communication to optimize recovery pathways.

6. Recommendations

- 1. Implement standardized nurse–PT mobility protocols for all postoperative patients.
- 2. Use shared documentation systems to enhance communication.
- 3. Conduct joint rounds to set daily functional goals.
- 4. Integrate collaboration training into nursing and physiotherapy education.
- 5. Adopt ERAS-based interdisciplinary pathways across surgical units.
- 6. Develop national guidelines emphasizing joint postoperative rehabilitation.
- 7. Conduct more RCTs to evaluate specific collaborative models.

References

- 1. Alshammari, M., Alsaif, A., & Alhassan, A. (2023). Interprofessional collaboration and its impact on surgical recovery outcomes in Saudi hospitals. *BMC Nursing, 22*(1), 145. https://doi.org/10.1186/s12912-023-01300-9
- Dwyer, T., Middleton, S., Boden, C., & Marshall, A. (2023). Interprofessional discharge planning and functional recovery in orthopedic surgery: A randomized trial. *Journal of Clinical Nursing, 32*(7–8), 1902–1913.

 https://doi.org/10.1111/jocn.16345
- 3. Fadel, R., AlShehhi, F., & Hussein, A. (2024). Multidisciplinary respiratory care pathways and ICU outcomes in cardiac surgery patients. *Journal of Thoracic Disease, 16*(1), 55–66.
- 4. Gupta, R., & McGowan, J. (2022). Enhanced Recovery After Surgery: Interprofessional collaboration and improved patient outcomes. *Journal of Perioperative Practice, 32*(5), 145–151.
- 5. Hassan, S., & Omar, M. (2022). Impact of nurse–physiotherapist collaboration within ERAS pathways for abdominal surgery. *International Journal of Nursing Studies, 135*, 104328.
- 6. Jensen, L., Pedersen, P., & Holm, L. (2023). Interdisciplinary rounds and postoperative recovery: A mixed-methods evaluation. *Scandinavian Journal of Caring Sciences, 37*(2), 511–520.
- 7. Kim, H., Park, J., & Lee, S. (2021). Collaborative early mobilization after orthopedic surgery: A randomized controlled trial. *Clinical Rehabilitation, 35*(4), 546–556.
- 8. Li, X., & Hu, Y. (2024). ERAS multidisciplinary pathways and recovery following colorectal surgery. *International Journal of Surgery, 109*, 123–130.

- 9. Park, S., & Lee, H. (2021). Nurses' and physiotherapists' experiences of collaboration in postoperative units. *Journal of Interprofessional Care, 35*(5), 789–796.
- 10. Rahman, Z., Lim, J., & Ooi, K. (2022). The effect of interprofessional communication protocols on ambulation time after general surgery. *BMC Health Services Research, 22*, 987.
- 11. Rojas, M., Paredes, D., & Vargas, F. (2020). Integrated respiratory physiotherapy and nursing outcomes in thoracic surgery. *Respiratory Care, 65*(12), 1890–1897.
- 12. Smith, T., Johnson, A., & Miller, K. (2023). Nurse–physiotherapist mobility teams and achievement of postoperative mobility goals. *Journal of Surgical Research, 284*, 112–119.
- 13. Torres, H., Martinez, F., & Suarez, L. (2020). Collaborative mobilization algorithms in bariatric surgery. *Obesity Surgery, 30*, 4512–4520.