OPEN ACCESS

Core Gene Identification Of The Congenital Adrenal Hyperplasia (CAH) By Computational Approach

Rekha Chandra Gautam¹, Prof (Dr). Kamlesh Manohar Palandurkar^{1*}, Prof (Dr). Parameswarappa S. Byadgi²

¹Department of Biochemistry, Institute of Medical Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 ²Department of Vikriti Vigyan, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005

*Corresponding author
Dr. Kamlesh Manohar Palandurkar
Department of Biochemistry
Institute of Medical Science
Banaras Hindu University, Varanasi, Uttar Pradesh 221005

Abstract

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders that are mostly caused by a deficiency in the enzymes that are necessary for the manufacture of cortisol. Typically, classical studies focus on specific gene changes. The utilisation of a systems-level approach that incorporates a computational approach provides a unique framework for understanding the complicated mechanism of CAH-associated core gene disease. As a result of this procedure, the POMC, CYP21A2, CYP17A1, CYP11B1, CYP11B2, and HSD3B2 core genes have been identified via a computational approach. These screened core genes, POMC, CYP21A2, CYP17A1, CYP11B1, CYP11B2, and HSD3B2, make it possible to illustrate how CAH progression occurs. It can have a negative impact on the entire steroidogenic network. These changes can then result in hormonal imbalances, adrenal hyperplasia, and other symptoms that can be observed in clinical settings. The mapping of proteinprotein interactions, regulatory pathways, and downstream metabolic effects explains how this occurs. Furthermore, this approach enables the discovery of new genes that are linked to therapies that are being administered at currently available hormonal therapies. This article provides a summary of how the computational approach is used to focus on the way in which the core genes CYP11B1, CYP11B2, CYP21A2, CYP17A1, POMC, and HSD3B2 work together in the progression of CAH. The study also could contribute to the development of targeted therapies that are more effective in the treatment of this complicated CAH disease.

Keywords: CAH, POMC, CYP21A2, CYP17A1, CYP11B1, CYP11B2, HSD3B2.

Introduction

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive illnesses caused by abnormalities in the genes encoding enzymes which are required for the generation of adrenal hormones [1-3]. The adrenal glands, which are situated on the top of both kidneys, are impacted by CAH. Typically, adrenal glands are responsible for the secretion of three different hormones like corticosteroids, mineralocorticoids as well as androgens. If the body fails to produce any of the above hormones due to a specific enzyme shortage, the system will overproduce a different kind of hormone precursor for making up the imbalance. There are two types classical CAH (salt-wasting, simple virilization) and non-classical CAH [4]. Out of these CAH, high incidence of CAH is reported in non-classical CAH than classical CAH[5]. CAH symptoms are directly linked to the disorder's two hormone effects, which include low cortisol along with aldosterone levels, as well as high androgen levels[6]. Classical CAH symptoms include adrenal shortage, ambiguous genitalia in females, apparent precocious puberty in childhood [7], but non-classical CAH effects appear in late childhood, teenagers,

and eventually later life [8]. Female abnormalities include hirsutism (having excessive facial/body hair) like symptoms [9].

Ninety five percent of CAH cases is attributable to a shortage in 21-hydroxylase, which is the consequence of mutations in the CYP21A2 gene [10]. People who get a diagnosis at pregnancy or in their infancy stages are at a greater chance of having major enzymatic abnormalities.

CAH medication is permanent and requires accurate hormone replacement therapies such as glucocorticoid, mineralocorticoid replacement, surgical removal [11], and new therapies. Corticotropin-releasing factor type 1 (CRF1) receptor [12]. A computational approach is new technique that predicts the specific gene target that is responsible for the progression of the disease [13]. The aim of this study to identify the core gene of congenital adrenal hyperplasia (CAH) via computational approach.

Materials and method

Mining of the target gene of CAH

Mining of the target gene of CAH carried out from two disease database like DisGeNet (https://www.disgenet.org/) [14] and Gene Cards (https://www.genecards.org/) database [15]. The genes were taken on the basis of the relevance score.

Intersection and protein protein interaction (PPI) network of the common gene

The common genes of both databases were screened from Venny Tool 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/) web tool [16]. After that the common gene visualized through Cytoscape (software version3.10.3) [17] software for the visualization of PPI network at 0.400 confidence.

Selection of the core gene

The core genes of CAH were selected through CytoNCA application that was plugged in Cytoscape software. Three variables like degree, betweenness and closeness were taken for selection of the core gene.

Assessment of Gene ontology (GO) and Kyoto Encyclopaedia of Gene and Genome (KEGG) pathway

The assessment of the GO and KEGG pathways performed by the ShinyGO 0.85 (http://bioinformatics.sdstate.edu/go74/) [18]. Four parameters like biological processes, cellular components, molecular function, and KEGG pathways taken at the False discovery rate (FDR) cutoff 0.05.

Results

Target gene of CAH analysis

A total 2550 target genes were mined CAH mined from Gene Cards and nine genes obtained from the DisGeNet database. Using Venny Tool, nine genesCYP11B1, CYP11B2, CYP21B1, CYP17A1, POMC, HSD3B2, POR, STAR, and TNXB were found to be common in both databases (Fig.1).

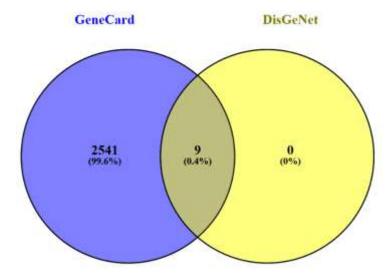


Fig 1. Mining of common gene of CAH from Genecard and DisGeNet database

Protein protein network and core gene analysis

The protein protein network analysis of 9 genes (CYP11B1, CYP11B2, CYP21B1, CYP17A1, POMC, HSD3B2, POR, STAR, and TNXB) was carried out by STRING and Cytoscope software at confidence scores 0.400 shows in Figure 2. The CytoNCA reveals that CYP11B1, CYP11B2, CYP21B1, CYP17A1, POMC and HSD3B2 gene highest degree, closeness and betweenness. These six genes(CYP11B1, CYP11B2, CYP21B1, CYP17A1, POMC and HSD3B2) were considered as coregene (Fig. 3).

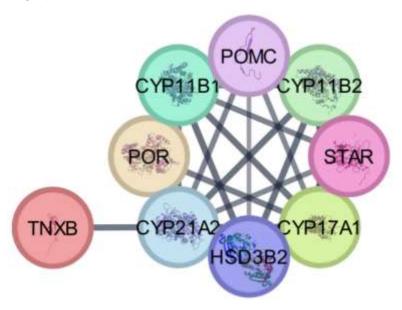


Fig 2. Protein protein interaction network of common gene of CAH

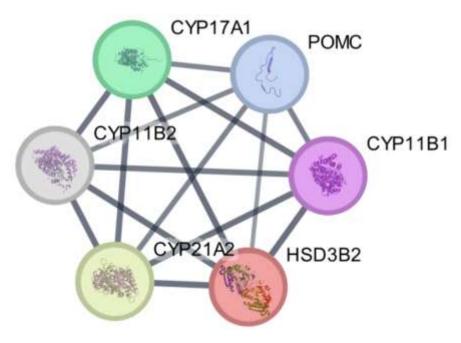


Fig 3. Core gene of CAH

Gene ontology (GO) analysis

In order to investigate the biological functions, cellular component, biological process and pathways, we carried out the GO and KEGG pathway enrichment analysis.

Several biological process Androgen biosynthetic process, Cortisol biosynthetic process, Tertiary alcohol biosynthetic process, Glucocorticoid biosynthetic process, Aldosterone biosynthetic process, Mineralocorticoid biosynthetic process, Aldosterone metabolic process, Cortisol metabolic process, Primary alcohol biosynthetic process, Cellular response to potassium ion, Glucocorticoid metabolic process, C21-steroid hormone metabolic process, Steroid hormone biosynthetic process, Hormone biosynthetic process, Steroid biosynthetic process, Hormone metabolic process, Steroid metabolic process, Regulation of hormone levels and Lipid biosynthetic process were carried out by screen core gene (Fig. 4 and Table 1)

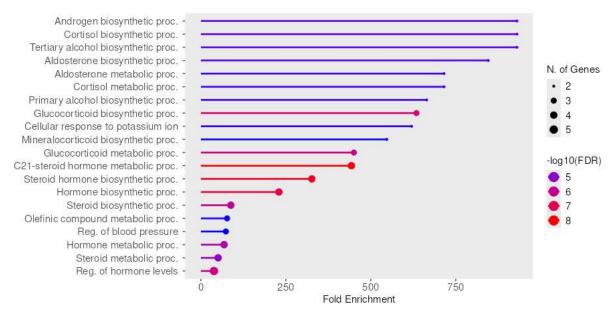


Fig. 4 Biological process of CAH core gene

Table 1. List of core gene in several biological process

Enrichment FDR	Pathway Genes	Fold Enrichment	Pathway	Genes
3.56E-05	10	775.2666667	GO:0006702	HSD3B2 CYP17A1
			Androgen	
			biosynthetic proc.	
3.56E-05	10	775.2666667	GO:0034651	CYP11B1 CYP11B2
			Cortisol	
2.565.05	1.0	775 266667	biosynthetic proc.	CVD11D1 CVD11D2
3.56E-05	10	775.2666667	GO:1902645	CYP11B1 CYP11B2
			Tertiary alcohol biosynthetic proc.	
6.41E-10	22	704.7878788	GO:0006704	CYP11B1 CYP11B2
0.41L-10	22	704.7070700	Glucocorticoid	CYP21A2 CYP17A1
			biosynthetic proc.	
4.08E-05	11	704.7878788	GO:0032342	CYP11B1 CYP11B2
			Aldosterone	
			biosynthetic proc.	
1.39E-07	17	684.0588235	GO:0006705	CYP11B1 CYP11B2
			Mineralocorticoid	CYP21A2
			biosynthetic proc.	
1.80E-07	19	612.0526316	GO:0008212	CYP11B1 CYP11B2
			Mineralocorticoid	CYP21A2
5 1 4F 05	12	506 2500744	metabolic proc.	CVD11D1 CVD11D2
5.14E-05	13	596.3589744	GO:0032341	CYP11B1 CYP11B2
			Aldosterone	
5.14E-05	13	596.3589744	metabolic proc. GO:0034650	CYP11B1 CYP11B2
J.14L-03	13	390.3369/44	Cortisol metabolic	CITTIBLE CITTIB2
			proc.	
5.68E-05	14	553.7619048	GO:0034309	CYP11B1 CYP11B2
			Primary alcohol	
			biosynthetic proc.	
6.22E-05	15	516.8444444	GO:0035865	CYP11B1 CYP11B2
			Cellular response to	
			potassium ion	
2.07E-09	31	500.172043	GO:0008211	CYP11B1 CYP11B2
			Glucocorticoid	CYP21A2 CYP17A1
£ 00E 00	42	260 1746022	metabolic proc. GO:0008207 C21-	CVD17A1 CVD11D1
5.88E-09	42	369.1746032	steroid hormone	CYP17A1 CYP11B1 CYP11B2 HSD3B2
			metabolic proc.	CITIIB2 IISD3B2
9.47E-11	57	340.0292398	GO:0120178	CYP11B1 CYP11B2
,, <u></u> .1	<i>5 1</i>	5.0.02,23,0	Steroid hormone	CYP21A2 CYP17A1
			biosynthetic proc.	HSD3B2
2.89E-10	81	239.2798354	GO:0042446	CYP17A1 CYP11B1
			Hormone	CYP11B2 HSD3B2
			biosynthetic proc.	CYP21A2
1.07E-08	211	91.85624013	GO:0006694	CYP11B1 CYP11B2
			Steroid biosynthetic	HSD3B2 CYP21A2
2.425.00	252	7 0.00 7 116	proc.	CYP17A1
3.42E-08	273	70.995116	GO:0042445	CYP17A1 CYP11B1
			Hormone metabolic	CYP11B2 HSD3B2
			proc.	CYP21A2

1.34E-07	367	52.81108084	GO:0008202	CYP17A1 CYP11B1
			Steroid metabolic	CYP11B2 HSD3B2
			proc.	CYP21A2
1.07E-08	605	38.44297521	GO:0010817 Reg.	POMC CYP17A1 CYP11B1
			of hormone levels	CYP11B2 HSD3B2
				CYP21A2
5.87E-06	828	23.40780998	GO:0008610 Lipid	CYP11B1 CYP11B2
			biosynthetic proc.	HSD3B2 CYP21A2
				CYP17A1

The screened core genes were distributed in several cellular component like Smooth endoplasmic reticulum membrane, Mitochondrial inner membrane, Organelle inner membrane, Mitochondrial membrane, Mitochondrial envelope, Endoplasmic reticulum membrane, Endoplasmic reticulum subcompartment, Nuclear outer membrane-endoplasmic reticulum membrane network, Organelle subcompartment, Organelle envelope and its membrane (Fig. 5 and Table 2).

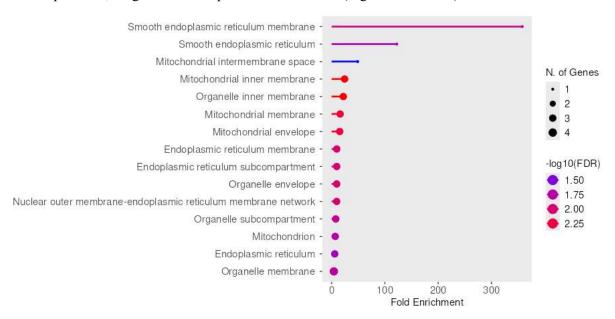


Fig. 5Cellular component of CAH core gene

Table 2. List of core gene in several components

Enrichment	Pathway	Fold	Pathway	Genes
FDR	Genes	Enrichment	·	
0.010961547	13	298.1794872	GO:0030868 Smooth endoplasmic reticulum membrane	HSD3B2
0.027039238	38	102.0087719	GO:0005790 Smooth endoplasmic reticulum	HSD3B2
0.002494197	570	20.40175439	GO:0005743 Mitochondrial inner membrane	CYP11B1 CYP11B2 HSD3B2
0.002725739	634	18.34227129	GO:0019866 Organelle inner membrane	CYP11B1 CYP11B2 HSD3B2
0.004577805	866	13.42840647	GO:0031966 Mitochondrial membrane	CYP11B1 CYP11B2 HSD3B2

0.004577805	917	12.68157034	GO:0005740	CYP11B1 CYP11B2
			Mitochondrial envelope	HSD3B2
0.002494197	1433	10.82019074	GO:0005789	CYP17A1 CYP11B1
			Endoplasmic reticulum	HSD3B2 CYP21A2
			membrane	
0.002494197	1439	10.77507528	GO:0098827	CYP17A1 CYP11B1
			Endoplasmic reticulum	HSD3B2 CYP21A2
			subcompartment	
0.002494197	1458	10.63465935	GO:0042175 Nuclear	CYP17A1 CYP11B1
			outer membrane-	HSD3B2 CYP21A2
			endoplasmic reticulum	
			membrane network	
0.002725739	1782	8.701084923	GO:0031984 Organelle	CYP17A1 CYP11B1
			subcompartment	HSD3B2 CYP21A2
0.012356954	1441	8.070090215	GO:0031967 Organelle	CYP11B1 CYP11B2
			envelope	HSD3B2
0.00476252	2352	6.592403628	GO:0005783	HSD3B2 CYP17A1
			Endoplasmic reticulum	CYP11B1 CYP21A2
0.027869582	2029	5.731394776	GO:0005739	CYP11B1 CYP11B2
			Mitochondrion	HSD3B2
0.004577805	4340	4.465821813	GO:0031090 Organelle	CYP11B1 CYP11B2
			membrane	CYP17A1 HSD3B2
				CYP21A2

Various molecular function such as Steroid 17-alpha-monooxygenase activity, Steroid delta-isomerase activity, Type 1, 3 and 4 melanocortin receptor binding, 3-beta-hydroxy-delta5-steroid dehydrogenase (nad+) activity, Melanocortin receptor binding, Oxidoreductase activity acting on paired donors with incorporation or reduction of molecular, Steroid 21-monooxygenase activity, 17-hydroxyprogesterone 21-hydroxylase activity, Progesterone 21-hydroxylase activity, Steroid hydroxylase activity, Intramolecular oxidoreductase activity transposing c=c bonds, Monooxygenase activity, Heme binding, Iron ion binding, Tetrapyrrole binding, Oxidoreductase activity acting on paired donors with incorporation or reduction of molecular, Oxidoreductase activity and Transition metal ion binding govern by core gene (Fig. 6 and Table 3).

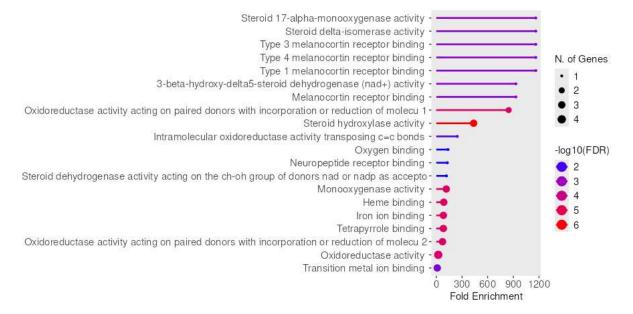


Fig. 6 Molecular function of CAH core gene

 Table 3. List of core gene in several molecular function

Enrichment FDR	Pathway Genes	Fold Enrichment	Pathway	Genes
0.003021027	4	969.0833333	GO:0004508 Steroid 17-alpha- monooxygenase activity	CYP17A1
0.003021027	4	969.0833333	GO:0004769 Steroid delta-isomerase activity	HSD3B2
0.003021027	4	969.0833333	GO:0031781 Type 3 melanocortin receptor binding	POMC
0.003021027	4	969.0833333	GO:0031782 Type 4 melanocortin receptor binding	POMC
0.003021027	4	969.0833333	GO:0070996 Type 1 melanocortin receptor binding	POMC
0.003303893	5	775.2666667	GO:0003854 3-beta- hydroxy-delta5-steroid dehydrogenase (nad+) activity	HSD3B2
0.003303893	5	775.266	GO:0031779 Melanocortin receptor binding	POMC
1.56E-05	11	704.787	GO:0016713 Oxidoreductase activity acting on paired donors with incorporation or reduction of molecu	CYP11B1 CYP11B2
0.003338312	6	646.055	GO:0004509 Steroid 21-monooxygenase activity	CYP21A2
0.003338312	6	646.055	GO:0103069 17- hydroxyprogesterone 21-hydroxylase activity	CYP21A2
0.003338312	6	646.055	GO:0106309 Progesterone 21- hydroxylase activity	CYP21A2
1.81E-09	32	484.541	GO:0008395 Steroid	CYP17A1 CYP11B1 CYP11B2 CYP21A2
0.010028732	19	204.017	hydroxylase activity GO:0016863 Intramolecular oxidoreductase activity transposing c=c bonds	HSD3B2
2.06E-07	120	129.211	GO:0004497 Monooxygenase	CYP17A1 CYP11B1 CYP11B2 CYP21A2
3.35E-07	160	96.90833333	activity GO:0020037 Heme binding	CYP21A2 CYP11B1 CYP11B2 CYP17A1

3.35E-07	170	91.20784314	GO:0005506 Iron ion	CYP17A1 CYP11B1
			binding	CYP11B2 CYP21A2
3.35E-07	170	91.20784314	GO:0046906	CYP21A2 CYP11B1
			Tetrapyrrole binding	CYP11B2 CYP17A1
4.55E-07	192	80.75694444	GO:0016705	CYP17A1 CYP11B1
			Oxidoreductase activity acting on	CYP11B2 CYP21A2
			paired donors with	
			incorporation or	
			reduction of molecu	
1.87E-06	823	23.55002025	GO:0016491	CYP17A1 CYP11B1
			Oxidoreductase	CYP11B2 HSD3B2
			activity	CYP21A2
0.000565348	1277	12.14199948	GO:0046914	CYP17A1 CYP11B1
			Transition metal ion	CYP11B2 CYP21A2
			binding	

KEGG pathways analysis

Several biological pathways like steroid hormone biosynthesis, cortisol synthesis and secretion, aldosterone synthesis and secretion, ovarian steroidogenesis, cushing syndrome, adipocytokine signaling pathway, prolactin signaling pathway, melanogenesis, estrogen signaling pathway and metabolic pathways were controlled by core gene of CAH (Fig. 7 and Table 4).

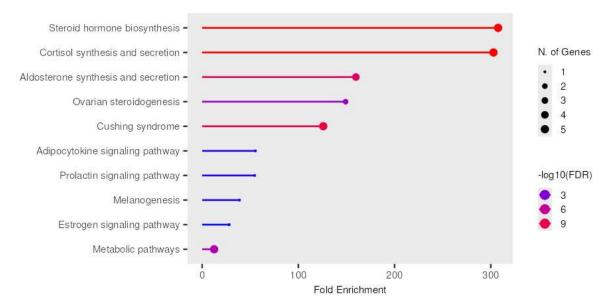


Fig. 7 Involvement of CAH core gene in several biological pathways

Table 5 List of CAH core gene in several biological pathways

Enrichment FDR	Pathway Genes	Fold Enrichment	Pathway	Genes
5.23E-12	63	307.6455026	Path:hsa00140 Steroid	CYP11B1 CYP11B2
			hormone biosynthesis	CYP17A1 CYP21A2 HSD3B2
5.23E-12	64	302.8385417	Path:hsa04927	CYP11B1 CYP17A1
			Cortisol synthesis and secretion	CYP21A2 HSD3B2 POMC
1.38E-08	97	159.8487973	Path:hsa04925	CYP11B2 CYP21A2
			Aldosterone synthesis and secretion	HSD3B2 POMC
0.000158431	52	149.0897436	Path:hsa04913	CYP17A1 HSD3B2
			Ovarian	
			steroidogenesis	
3.08E-10	154	125.8549784	Path:hsa04934	CYP11B1 CYP17A1
			Cushing syndrome	CYP21A2 HSD3B2 POMC
0.029540874	70	55.37619048	Path:hsa04920 Adipocytokine	POMC
0.029540874	71	54.59624413	signaling pathway Path:hsa04917	CYP17A1
0.029340674	/ 1	34.37024413	Prolactin signaling	CITI/AI
			pathway	
0.036868832	100	38.76333333	Path:hsa04916	POMC
			Melanogenesis	
0.045604574	138	28.08937198	Path:hsa04915	POMC
			Estrogen signaling pathway	
1.96E-05	1556	12.45608398	Path:hsa01100	CYP11B1 CYP11B2
			Metabolic pathways	CYP17A1 CYP21A2
				HSD3B2

Discussion

Congenital adrenal hyperplasia (CAH) is a series of autosomal recessive illnesses [1] caused by enzyme abnormalities in the adrenal cortex's steroidogenic pathway. Cortisol shortage results in an ensuing rise in adrenocorticotropic hormone (ACTH), which causes adrenal hyperplasia [19] and the buildup of precursors components. With an approximate worldwide frequency of 1 in in 15,000-20000 live births in Western countries [20]. CAH is a crucial for understanding the interactions of genetics, hormone biochemistry, and clinical medicine [21]. The most common variant, accounting for more than 95% of cases, is 21-hydroxylase deficiency (21-OHD), caused by mutations in the CYP21A2 gene [22].

Our study reveals that six core genes like CYP11B1, CYP11B2, CYP21B1, CYP17A1, POMC and HSD3B2 that's directly or indirectly participated in progression of the CAH.

The cytochrome P450 enzyme CYP17A1 is located in the endoplasmic reticulum of steroidogenic cells, which are present in the adrenal glands as well as gonads [23]. It exhibits two different types of enzymatic activities like 17α -hydroxylase and 17,20-lyase activity [24]. Each plays a vital rolein process of steroidogenesis [25]. Deletion and mutations cause a shortage of the both enzymatic activities [26].

CYP11B2 is located in Zona Glomerulosa of Adrenal Cortex [27]. It plays an important role in aldosterone synthesis via regulation of the Renin-Angiotensin-Aldosterone System (RAAS), Potassium signalling pathways. Lack of CYP11B2 causes CAH occurrence [28].

The rare form of 3β -hydroxysteroid dehydrogenase deficient form is caused by the HSD3B2 gene, which is known to have a crucial and non-redundant function in congenital adrenal hyperplasia (CAH)

[29]. In the adrenal glands and gonads, that HSD3B2 gene encodes an enzyme which is required for transforming $\Delta 5$ -steroids (for example, pregnenolone and 17α -hydroxypregnenolone) into $\Delta 4$ -steroids (which include progesterone and 17α -hydroxyprogesterone) [30]. This process is a crucial phase in the process of biosynthesis of all categories of active steroid hormones, which include glucocorticoids, mineralocorticoids, and sex steroids. When there are changes in the gene HSD3B2, the outcome is a deficit of an enzyme that it encodes [31]. This absence of the enzyme causes a reduction in the body's capability to make cortisol and aldosterone, whereas at the same time generating an increase in the concentration of precursor androgens, which have a minimal functional impact. Because of this, classic manifestations of the deficiencies during early development are marked by adrenal difficulties that result in the loss of salt from the body because of to a lack in aldosterone, as well as various forms of under virilization in genetic males (due to impaired testosterone synthesis) and moderate virilization in genetic females (due to the peripheral conversion of weak androgens) [32]. Consequently, HSD3B2 plays an essential role in the maintenance of steroidogenic flux[33], and their deficiency leads to an abrupt disruption of the whole hormonal pathway, which results in a multifaceted along with potentially fatal kind of CAH that is characterised through a lack of adrenal hormones and abnormal sexuality.

The pathophysiology of congenital adrenal hyperplasia (CAH) is significantly influenced by the proopiomelanocortin (POMC) gene [34], which serves an important but indirect function in the development of the disease. The peptide hormone known as adrenocorticotropic hormone (ACTH) is produced by the cleavage of the POMC gene byproduct that is the precursor of a variety of other hormones [35]. Consequently, the extremely low levels of cortisol present in CAH cause a persistent as well as excess triggering of both the expression and processing of the POMC gene in the pituitary corticotrophs [36]. This ultimately leads to significantly high amounts of ACTH. The abnormally high levels of adrenocorticotropic hormone (ACTH) cause the hyperplastic adrenal glands to secrete an excessive amount of adrenal androgens, which in turn results in the classic signs of congenital adrenal hyperplasia (CAH), including virilisation and other symptoms [36].

The CYP11B1 gene is responsible for the producing 11-beta-hydroxylase which plays a vital role in cortisol production [37]. Cortisol is responsible for the regulation of stressful circumstances [38]. It also plays a critical role in the regulation of blood pressure, metabolism, and immune function [38]. Mutation of this gene causes deficiency of the enzyme responsible for cortisol synthesis as a result CAH progression occurs [39].

Conclusion

Congenital adrenal hyperplasia is not just an endocrine deficit. It is a complex genetic ailment which demands clinicians to carefully balance hormone replacement, a bioethical approach that pushes the limits of surgical procedure and gestational medication, and a chronic health issue that necessitates thorough, permanent, personalised treatment. Discoveries in genes, neonatal examination, and the advancement of personalised therapies continue to improve our strategy, alongside the goal of improving not only longevity but also overall quality of life as well as medical benefits for people with CAH.

Reference

- 1. Claahsen-van der Grinten HL, Speiser PW, Ahmed SF, et al. Congenital adrenal hyperplasia-current insights in pathophysiology, diagnostics, and management. Endocr Rev. 2022;43:91–159.
- 2. Speiser PW, Arlt W, Auchus RJ, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2018;103:4043–88
- 3.Chen S, Wu L, Ma X, Guo L, Zhang J, Gao H, Zhang T. Current status and prospects of congenital adrenal hyperplasia: A bibliometric and visualization study. Medicine. 2024 Nov 8;103(45):e40297.
- 4. El-Maouche D, Arlt W, Merke DP. Congenital adrenal hyperplasia. Lancet (London, England). 2017;390:2194–210.
- 5. Auchus RJ. The classic and nonclassic concenital adrenal hyperplasias. Endocr Pract. 2015;21:383–9.

- 6. Raff H, Sharma ST, Nieman LK. Physiological basis for the etiology, diagnosis, and treatment of adrenal disorders: Cushing's syndrome, adrenal insufficiency, and congenital adrenal hyperplasia. Comprehensive Physiology. 2014 Apr 17;4(2):739-69.
- 7. İsakoca M, Erdeve Ş, Çetinkaya S. Rare Types of Congenital Adrenal Hyperplasias Other Than 21-hydroxylase Deficiency. Journal of Clinical Research in Pediatric Endocrinology. 2025 Jan 10.
- 8. Adriaansen BP, Schröder MA, Span PN, Sweep FC, van Herwaarden AE, Claahsen-van der Grinten HL. Challenges in treatment of patients with non-classic congenital adrenal hyperplasia. Frontiers in Endocrinology. 2022 Dec 12;13:1064024.
- 9.Livadas S, Bothou C. Management of the female with non-classical congenital adrenal hyperplasia (NCCAH): a patient-oriented approach. Frontiers in endocrinology. 2019 Jun 6;10:366.
- 10. Pignatelli D, Carvalho BL, Palmeiro A, Barros A, Guerreiro SG, Macut D. The complexities in genotyping of congenital adrenal hyperplasia: 21-hydroxylase deficiency. Frontiers in Endocrinology. 2019 Jul 4;10:432.
- 11. Mallappa A, Merke DP. Management challenges and therapeutic advances in congenital adrenal hyperplasia. Nature Reviews Endocrinology. 2022 Jun;18(6):337-52.
- 12. Newfield RS, Sarafoglou K, Fechner PY, Nokoff NJ, Auchus RJ, Vogiatzi MG, Jeha GS, Giri N, Roberts E, Sturgeon J, Chan JL. Crinecerfont, a CRF1 receptor antagonist, lowers adrenal androgens in adolescents with congenital adrenal hyperplasia. The Journal of Clinical Endocrinology & Metabolism. 2023 Nov;108(11):2871-8.
- 13. Piro RM, Di Cunto F. Computational approaches to disease-gene prediction: rationale, classification and successes. The FEBS journal. 2012 Mar;279(5):678-96.
- 14. Pinero J, Saüch J, Sanz F, Furlong LI. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Computational and structural biotechnology journal. 2021 Jan 1;19:2960-7.
- 15. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N, Bahir I, Doniger T, Krug H, Sirota-Madi A. GeneCards Version 3: the human gene integrator. Database. 2010 Jan 1;2010.
- 16. Oliveros JC. VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb. csic. es/tools/venny/index. html. 2007.
- 17. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research. 2003 Nov 1;13(11):2498-504.
- 18. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020 Apr 15;36(8):2628-2629. doi: 10.1093/bioinformatics/btz931. PMID: 31882993; PMCID: PMC7178415.
- 19. Lousada LM, Mendonca BB, Bachega TA. Adrenal crisis and mortality rate in adrenal insufficiency and congenital adrenal hyperplasia. Archives of Endocrinology and Metabolism. 2021 Jul 28;65(4):488-94.
- 20. Sharma L, Momodu II, Singh G. Congenital adrenal hyperplasia. InStatPearls [Internet] 2025 Jan 27. StatPearls Publishing.
- 21.Nordenström A, Falhammar H. Management of endocrine disease: diagnosis and management of the patient with non-classic CAH due to 21-hydroxylase deficiency. European journal of endocrinology. 2019 Mar;180(3):R127-45.
- 22. Arriba M, Ezquieta B. Molecular diagnosis of steroid 21-hydroxylase deficiency: A practical approach. Frontiers in Endocrinology. 2022 Mar 29;13:834549.
- 23. Singh H, Kumar R, Mazumder A, Salahuddin, Mazumder R, Abdullah MM. Insights into interactions of human cytochrome P450 17A1: A review. Current Drug Metabolism. 2022 Mar 1;23(3):172-87.
- 24. Van Rooyen D, Yadav R, Scott EE, Swart AC. CYP17A1 exhibits 17αhydroxylase/17,20-lyase activity towards 11β-hydroxyprogesterone and 11-ketoprogesterone metabolites in the C11-oxy backdoor pathway. J Steroid Biochem Mol Biol. 2020 May;199:105614. doi: 10.1016/j.jsbmb.2020.105614. Epub 2020 Jan 30. PMID: 32007561.
- 25. Guengerich FP, McCarty KD, Tateishi Y, Liu L. Steroid 17α-hydroxylase/17, 20-lyase (cytochrome P450 17A1). InMethods in enzymology 2023 Jan 1 (Vol. 689, pp. 39-63). Academic Press.
- 26. Kelestimur F, Unluhizarci K. Congenital Adrenal Hyperplasia (CAH): Definition and Enzymatic Defects in Various Forms. InFertility and Reproductive Outcomes in Different Forms of Congenital Adrenal Hyperplasia 2021 Sep 29 (pp. 1-18). Cham: Springer International Publishing.

- 27. Curnow KM, Tusie-Luna MT, Pascoe L, Natarajan R, Gu JL, Nadler JL, White PC. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Molecular Endocrinology. 1991 Oct 1;5(10):1513-22.
- 28. Nimkarn S, New MI. Steroid 11β-hydroxylase deficiency congenital adrenal hyperplasia. Trends in Endocrinology & Metabolism. 2008 Apr 1;19(3):96-9.
- 29.Martínez de la Piscina Martín I. Clinical and molecular characterization of DSD patients: Impact of Next Generation Sequencing in diagnosis.
- 30. Baquedano MS, Ciaccio M, Marino R, Perez Garrido N, Ramirez P, Maceiras M, Turjanski A, Defelipe LA, Rivarola MA, Belgorosky A. A novel missense mutation in the HSD3B2 gene, underlying nonsalt-wasting congenital adrenal hyperplasia. new insight into the structure-function relationships of 3β-hydroxysteroid dehidrogenase type II. The Journal of Clinical Endocrinology & Metabolism. 2015 Jan 1;100(1):E191-6.
- 31. Benkert AR, Young M, Robinson D, Hendrickson C, Lee PA, Strauss KA. Severe salt-losing 3β-hydroxysteroid dehydrogenase deficiency: treatment and outcomes of HSD3B2 c. 35G> A homozygotes. The Journal of Clinical Endocrinology & Metabolism. 2015 Aug 1;100(8):E1105-15.
- 32. Gawlik Z, Preizner-Rzucidło E, Kaleta K, Szwarkowska M, Wróblewska M, Jurek A, Książek T, Jażdżewski K, Siejka A, Starzyk J, Janus D. Diagnostic and Therapeutic pitfalls in the management of pediatric patients with 3β-hydroxysteroid dehydrogenase type 2 (3β-HSD2) Deficiency–a single center experience. Frontiers in Endocrinology. 2025 Sep 25;16:1642051.
- 33. Mwaura E. Prevalence of Adrenal Steroid Hormone Abnormalities Among Patients With Disorders of Sexual Differentiation, and Clinical Characteristics of Patients With Disorders of Sexual Differentiation at Kenyatta National Hospital (Doctoral dissertation, University of Nairobi).
- 34. Charmandari E. Congenital adrenal hyperplasia: The influence of puberty on cortisol pharmacokinetics. University of London, University College London (United Kingdom); 2001.
- 35. Cawley NX, Li Z, Loh YP. 60 YEARS OF POMC: Biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides. Journal of molecular endocrinology. 2016 May 1;56(4):T77-97.
- 36. Daniel E. Medical treatment and monitoring for disorders of cortisol and adrenocorticotrophin excess and deficiency (Doctoral dissertation, University of Sheffield).
- 37. White PC, Curnow KM, Pascoe L. Disorders of steroid 11β -hydroxylase isozymes. Endocrine reviews. 1994 Aug 1;15(4):421-38.
- 38. Young EA, Abelson J, Lightman SL. Cortisol pulsatility and its role in stress regulation and health. Frontiers in neuroendocrinology. 2004 Jul 1;25(2):69-76.
- 39. Su Y, Ge RS, Xie H. Steroidogenesis of corticosteroids, genetic mutation, and endocrine disruption leading to adrenal insufficiency. InCortisol-Between Physiology and Pathology 2023 Nov 13. IntechOpen.