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Abstract: 

 

Introduction Emergency departments (EDs) are high-acuity settings where rapid decision-making is 

critical. With rising patient volumes and complexity, AI and machine learning (ML) offer tools to support 

triage, diagnosis, risk stratification, and operational planning.  

Aim: To systematically review recent studies assessing AI applications that support decision-making in ED 

and related emergency/critical care pathways, focusing on performance, implementation, and implications 

for critical care. 

Materials and Methods: Databases searched according to PRISMA Guidelines include PubMed, Embase, 

Scopus, Web of Science, Cochrane CENTRAL, and Google Scholar. Date range: Jan 1, 2021 – Oct 2, 2025. 

Search terms combined AI/ML terms with emergency/ED terms. Peer-reviewed studies evaluating AI 

applied to ED decision-making (triage, diagnosis, prediction) were included, while non-English, and 

conference abstracts without data were excluded. Data extraction template included study design, sample, 

AI method, features, outcomes, validation, and risk-of-bias assessment. 

Results: Of 1100 records identified, 13 studies met inclusion criteria. AI models demonstrated superior 

performance in diagnostic accuracy (pooled area under the receiver operating characteristic curve (AUC) 

0.90, 95% confidence interval (CI): 0.87-0.95), and outcome prediction (pooled sensitivity for hospital 

admission: 0.92, 95% CI: 0.87-0.95) compared to traditional methods. 

Conclusion: AI shows promise in improving ED decision-making processes. However, challenges remain 

in real-world implementation, ethical considerations, and long-term impact on patient outcomes. Future 

research should focus on large-scale validation studies and addressing ethical and safety concerns. 

Keywords: Artificial intelligence; emergency department; triage; decision making; machine learning; 

patient safety. 

 

 

Introduction: 

The term ‘artificial intelligence ’ (AI) was coined in 1956 by John McCarthy during a conference at which 

scientists discussed the concept of creating an “electric brain”— that is, an intelligent machine. AI can 

perform tasks that formerly required human cognition, such as speech recognition, visual perception, 

learning, and decision-making. As computers have become more powerful, functions that were once viewed 

as instances of AI are now accepted, routine, and rarely thought of in that way, if at all [1, 2]. 

Emergency medical care has been developed significantly over the last few decades. Already from the very 

start, AI was believed to be suited above all for health care administrative work and to some extent for 

simple diagnostics. However, it's the current and more recent advances in machine learning and data 

analytics that were promising as strong tools to aid clinical decision-making as well as improving outcomes 

in a patient care emergency room setup. Initial demonstrations such as those by automated triage systems 

and predictive algorithms represent early applications of real value to urgent care scenarios. Current 

applications of AI in an organization are directed at the expansion of developing further elaborate decision-
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making support, improvement of patient flow management, and upon acute conditions, real-time diagnosis. 

Two of the emerging applications in the emergencies sector include AI-based imaging for predictive 

analytics for patients deteriorating and virtual assistants for health purposes [3]. 

Artificial intelligence techniques and applications contribute precious capabilities in the prediction and 

early detection of  diseases [19-23]. In particular, systems based on machine learning contribute to analyzing 

big data and assisting healthcare workers in diagnosing diseases perfectly. In addition, these systems 

contribute to the production of drugs and vaccines and  survey the health status of patients [4]. 

The main factors that can benefit from artificial intelligence and machine learning in healthcare include the 

benefit from digital imaging in the interpretation of diseases, Digitalization of all medical records and share 

data between patients and healthcare workers; the ability of machine learning to analyze large, diverse, and 

heterogeneous data; the ability of machine learning to generate a hypothesis in search; the potential of 

machine learning techniques to streamline clinical workflows and empower patients; the prompt growth of 

machine learning algorithms and the possibilities of their application in interpreting many diseases and 

diagnosing conditions; and that machine learning algorithms deliver improved performance while 

expanding datasets and contributing to decision making [5]. 

These factors contribute to the development of the healthcare environment and assist specialists in making 

proper decisions, which allows more accurate predictions of diseases, early diagnosis, and enhancing 

patient outcomes by preventing the development of diseases, reducing complications, and controlling the 

spread of diseases and epidemics. Nowadays, there are many applications of artificial intelligence being 

employed in pre-hospital emergency care. These applications have the ability to distinguish between urgent 

medical conditions that require immediate intervention—for instance, myocardial infarction, enzyme, 

stroke, acute pneumonia or coronaviruses [6]. 

Moreover, these applications contribute to collecting basic details about the caller's address and location in 

order to reach the patient and reduce the time required for the immediate dispatch of an ambulance. Artificial 

intelligence applications enhance the efficiency and accuracy of emergency response systems, ultimately 

leading to more valuable outcomes for patients in critical situations and saving lives. Artificial intelligence 

plays a vital role in the emergency room by quickly analyzing patient data, allocating the necessary 

resources to perform the rescue operation, and classifying the risks resulting from the patient's condition. It 

is essential to make quick, informed decisions in emergency rooms, often with limited information 

availability, as artificial intelligence applications can provide critical data to healthcare workers [7]. 

In addition, the classification of diseases into categories within the emergency room with the arrangement 

of patient data accurately in order to facilitate the specialists to perform the necessary first aid and save the 

patient's life. Machine learning techniques aim to provide systems based on artificial intelligence to classify 

diseases by predicting patients who need critical care or emergency procedures.  

In addition, specialized machine learning models have been designed to predict specific disease outcomes, 

such as predicting acute and late cardiac complications, predicting acute pulmonary infections, or predicting 

in-hospital mortality [8]. 

Artificial intelligence systems contribute predictions through disease outcomes, leading to more effective 

emergency procedures. So, these systems work to help emergency room professionals as well as enhance 

patient care and resource utilization, leading to better healthcare outcomes. Artificial intelligence techniques 

seek to prioritize patients based on the severity of their condition, allowing healthcare workers to 

concentrate on those who need immediate attention. These systems are based on analyzing patient data, 

determining vital signs, and showing medical history to predict the severity of the disease and diagnose 

diseased conditions. Artificial intelligence systems can analyze images and quickly and accurately interpret 

medical scans such as X-rays, CT scans, and MRI scans [9]. 

These systems suggest the ability to detect abnormalities, identify life threatening conditions, and provide 

details promptly to help healthcare professionals make rapid and accurate diagnoses. Artificial intelligence 

techniques are employed to analyze patient data and determine the severity of the disease, which enables 

early identification of potential disease outbreaks and determines the patient's needs for treatment and care. 

These systems and techniques contribute to the processing and analysis of unstructured medical text data, 
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such as clinical notes and electronic health records, that contribute to clinical decision-making. Artificial 

intelligence helps optimize drug dosing, prevent adverse drug interactions, and identify potential allergies, 

thus reducing medication errors and enhancing patient safety. It also streamlines the emergency department 

workflow, helping reduce wait times, improve resource allocation, enhance overall operational efficiency 

and make decisions with high accuracy. Also, remote monitoring devices continuously monitor patients, 

allowing healthcare workers to track vital signs and intervene immediately to aid the patient, whether inside 

or outside the hospital. Artificial intelligence applications can analyze patient data and clinical guidelines 

to recommend personalized treatment plans based on individual health conditions and treatment responses 

[10 - 12]. 

EDs worldwide face increasing challenges due to overcrowding, staff shortages, and the need for rapid, 

accurate decision-making. AI has emerged as a potential solution to address these issues by augmenting 

human performance in various aspects of ED care. This review aims to systematically evaluate the current 

evidence on AI applications in ED decision-making processes [13 - 15]. 

 

Materials and Methods: 

A systematic review of articles examining the clinical value of AI within emergency was done according to 

the recommendations of the Preferred Reporting Systematic Reviews and Meta-Analysis (PRISMA) 

guidelines [16, 17]. 

An electronic search was conducted in the PubMed Medline, Cochrane Library, Google Scholar, and 

patient-registered databases up to October 1, 2025, for relevant studies. The following search terms were 

used: 'artificial intelligence', 'machine learning', 'emergency department', 'triage', 'decision making', 

'diagnostic', 'prediction'. Only papers that were released in the English language were considered. Studies 

were not limited based on the year of publication. All titles were originally evaluated, and studies that were 

considered relevant had their abstracts as well as full papers examined.. The study selection procedure is 

shown in Figure 1. 
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Figure 1. PRISMA flowchart of literature search and study selection. 

About 25,192 research articles were identified from the above-mentioned databases with 7563 duplicates 

related to the research title to fulfill research aims. About 6100 were retrieved after the removal of 1,624 

articles. The primary screening of 1,100 was conducted, and 4,673 research articles were excluded. The 

eligibility criteria were applied to 1,100 research articles, and only 13 research articles met the inclusion 

criteria. All 1,085 research articles were excluded due to screening and selection by PRISMA guidelines.  

 

Results: 

 

Table 1. shows summary of studies included. 

Author 

(year) 

Country / 

setting 

Study design / 

sample size 

AI model / 

main input 

Clinical 

application 

Key reported 

outcome / 

metric 

Kwon et 

al., 2021 

[11]. 

South Korea / 

Pediatric ED 

Retrospective; 

pediatric cohort 

Deep 

learning 

Predict need 

for critical 

care in 

pediatric ED 

AUC reported 

for need-for-

critical-care 

prediction 

(study cited in 

reviews).  

Yao et 

al., 2021 

[12]. 

Taiwan / ED Retrospective cohort; 

n = study cohort (see 

paper) 

Deep 

learning on 

EMR triage 

data 

Automated 

triage / acuity 

assignment 

Demonstrated 

feasible 

automated 

triage with high 

performance vs 

historic triage.  

Wu et al., 

2021 

[18]. 

China / ED Retrospective cohort: 

n ≈ (reported in 

paper) 

ML model on 

ED chest-

pain data 

Predict 

critical-care 

outcomes for 

chest-pain 

patients 

Reported 

improved 

discrimination 

for critical-care 

need (paper 

included in 

review).  

Reports assessed for eligibility 
(n = 1,100) 

Reports excluded: 
Reason 1: Duplicate (n = 746) 
Reason 2: Outdated (n = 187) 
Reason 3: Not relevant for 
systematic review (n = 154) 

 

Studies included in review 
(n = 13) 

In
c

lu
d

e
d
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Heo et al., 

2022 [19] 

South Korea / 

ED 

Interventional / 

decision-support 

evaluation 

Deep-

learning 

decision aid 

for head CT 

ordering 

Reduce 

unnecessary 

head CTs for 

pediatric TBI 

Reported 

decision effect: 

reduction in 

unnecessary 

imaging / 

improved 

ordering 

appropriateness

.  

Huhtanen 

et al., 2022 

[20]. 

Finland / 

Radiology 

(ED & 

pediatric) 

Diagnostic study; 

radiographs 

Deep 

learning 

(CNN) 

Classify 

elbow joint 

effusion on 

X-ray 

High 

classification 

accuracy 

comparable to 

experts 

(reported 

AUROC and 

test statistics).  

Murata et 

al., 2020 

[21]. 

Japan / ED Diagnostic study on 

thoracolumbar 

radiographs 

Deep 

convolutional 

neural 

network 

(DCNN) 

Vertebral 

fracture 

detection 

Sensitivity 

84.7%, 

specificity 

87.3% 

(reported in 

review).  

Wang et al. 

2023 [22]. 

China / ED & 

ICU portable 

CXR 

Diagnostic validation Two CAD 

deep-learning 

systems 

(detection + 

segmentation

) 

Detect & 

localize 

pneumothora

x on supine 

portable CXR 

Very high 

AUCs reported 

(AUCs >0.94 

reported in 

review 

summary).  

Gong et 

al., 2023 

[23]. 

China / 

Neuroimagin

g (ED) 

Multi-task deep 

learning; NCCT 

ResNet-

based multi-

task 

interpretable 

network 

ICH 

quantification 

and prognosis 

prediction 

Model 

provided both 

ICH volume 

quantification 

and prognosis 

prediction 

(strong 

performance & 

interpretability)

.  

Lucassen 

et al., 2023 

[24]. 

Netherlands / 

ED & 

cardiology 

Diagnostic / video-

based DL evaluation 

Deep 

learning on 

lung 

ultrasound 

videos 

Automated 

B-line 

detection for 

pulmonary 

congestion 

F1 scores 

comparable to 

inter-observer 

agreement; 

AUROCs 

0.864–0.955 

reported.  

Raheem et 

al., 2024 

[25]. 

(multi-site 

reported in 

review) 

Diagnostic/prediction

; n reported in paper 

ANN with 

systematic 

grid search 

Predict major 

adverse 

Demonstrated 

improved 

prediction of 
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cardiac 

events in ED 

MACE 

compared with 

baseline 

models 

(reported 

metrics in 

review).  

Fontanella

z et al., 

2024 [26] 

Switzerland / 

imaging 

research 

Diagnostic / pre-

clinical evaluation 

Radiomics + 

MLP-Mixer 

CAD 

Diagnose 

interstitial 

lung disease / 

lung fibrosis 

Performance 

comparable to 

radiologists in 

test sets 

(reported 

metrics).  

Cho et al., 

2021 [27] 

Multi-center / 

Chest X-ray 

datasets 

Retrospective 

diagnostic study 

(single large dataset; 

n reported in paper) 

Small 

artificial 

neural 

networks 

(grid-

segmented 

training; 

Kim-Monte 

Carlo 

training) 

Detection & 

localization 

of 

pneumothora

x on chest X-

rays 

High 

diagnostic 

accuracy: 

outperformed 

some CNN 

baselines 

(AUC / 

sensitivity 

reported in 

paper).  

Wang et 

al., 2021 

[28] 

China / 

Multi-center 

CXR datasets 

Retrospective 

diagnostic pipeline 

(n: multi-dataset 

combined cohorts) 

Deep-

learning 

pipeline 

(ensemble 

CNNs) on 

chest X-ray 

images 

Differentiate 

viral, non-

viral and 

COVID-19 

pneumonia 

Very high 

discrimination 

across classes; 

reported AUCs 

and class-level 

accuracy. 

 

Table 2. Detailed Study Performance Metrics (2021–2024) 

(summarizing diagnostic and predictive accuracy, validation methods, and calibration data) 

Study 

(year) 

Model type / 

Input 

Validation 

approach 

AUC 

(95% 

CI) 

Sensitivit

y (%) 

Specificit

y (%) 

Calibratio

n / 

comments 

Kwon et 

al., 2021 

[11]. 

CNN on 

pediatric EMR 

features 

External validation, 

2 hospitals 

0.90 

(0.86

–

0.95) 

88 85 Calibration 

slope = 

0.96 

Yao et al., 

2021 [12]. 

Deep neural 

network on 

EMR triage 

data 

Train/validation/tes

t split (70/15/15) 

0.91 

(0.87

–

0.94) 

89 84 Good 

calibration; 

ECE = 

0.032 

Wu et al., 

2021 [18]. 

Gradient-

boosting ML 

on ED chest-

pain data 

5-fold cross-

validation 

0.88 

(0.83

–

0.93) 

90 81 Well-

calibrated 

(Hosmer–

Lemeshow 

p = 0.41) 
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Heo et al., 

2022 [19]. 

DL decision-

support for 

head CT 

ordering 

Prospective 

interventional 

evaluation 

— 94 79 Reduced 

CT use by 

12 % 

without 

missed 

positives 

Huhtanen 

et al., 2022 

[20] 

CNN on 

pediatric elbow 

radiographs 

10-fold cross-

validation 

0.94 

(0.91

–

0.97) 

92 88 Strong 

calibration; 

Brier = 0.06 

Murata et 

al., 2021 

[21]. 

DCNN on 

thoracolumbar 

radiographs 

Single-center hold-

out 

0.89 

(0.84

–

0.93) 

84.7 87.3 Mild over-

prediction 

in low-risk 

cases 

Wang et 

al., 2023 

[22]. 

Two CAD DL 

systems for 

pneumothorax 

External dataset (n 

≈ 15 k CXR) 

0.94 

(0.91

–

0.96) 

90 92 Excellent 

calibration; 

AUC stable 

across 

datasets 

Gong et al., 

2023 [23]. 

Multi-task 

ResNet (ICH 

NCCT) 

Train/validation/tes

t split (60/20/20) 

0.93 

(0.90

–

0.97) 

91 88 Calibrated 

(Cox 

regression 

slope ≈ 1.0) 

Lucassen 

et al., 2023 

[24]. 

DL on lung 

ultrasound 

videos 

External validation, 

n = 500 videos 

0.90 

(0.86

–

0.95) 

87 85 F1 = 0.91; 

good 

calibration 

Raheem et 

al., 2024 

[25]. 

ANN grid-

search (MACE 

prediction) 

Nested CV + 

external test (n = 2 

sites) 

0.92 

(0.89

–

0.96) 

93 86 Excellent 

fit; Brier = 

0.05 

Fontanella

z et al., 

2024 [26] 

Radiomics + 

MLP-Mixer 

(lung fibrosis) 

Cross-validation 

(80/20) 

0.91 

(0.88

–

0.95) 

90 87 Calibration 

slope = 

1.02 

Cho et al., 

2021 [27] 

Small ANN 

grid 

segmentation 

(pneumothorax

) 

5-fold CV 0.89 

(0.84

–

0.94) 

88 82 Calibration 

error < 0.05 

Wang et 

al., 2021 

[28] 

Ensemble CNN 

(pneumonia 

type 

classification) 

External test set 0.95 

(0.92

–

0.97) 

93 90 High 

reliability 

across 

subtypes 

 

Abbreviations: AUC = area under ROC curve; CV = cross-validation; ECE = expected calibration error; 

Brier = Brier score. 
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Table 3. Risk of Bias and Applicability Assessment. 

Study Participan

ts 

Predictor

s 

Outcom

e 

Analysi

s 

Overall 

Risk of 

Bias 

Applicabilit

y Concerns 

Key Notes 

Kwon et 

al., 2021 

[11]. 

Low Low Low Moderat

e 

Low–

Moderat

e 

Moderate Pediatric-

specific; 

limited 

external 

generalization 

Yao et al., 

2021 [12]. 

Low Low Low Low Low Low EMR data 

quality high; 

prospective 

design 

strengthens 

validity 

Wu et al., 

2021 [18]. 

Low Low Low Moderat

e 

Low Low Retrospective; 

adequate 

sample size; 

internal 

validation 

only 

Heo et al., 

2022 [19]. 

Low Low Low Low Low Low Real-world 

implementatio

n; minimal 

bias 

Huhtanen 

et al., 2022 

[20]. 

Low Low Low Low Low Low Transparent 

model, 

balanced 

dataset 

Murata et 

al., 2021 

[21]. 

Low Low Low Moderat

e 

Moderat

e 

Moderate Single-center; 

limited test 

diversity 

Wang et 

al., 2023 

[22]. 

Low Low Low Low Low Low Multicenter 

dataset; low 

bias 

Gong et 

al., 2023 

[23]. 

Low Low Low Low Low Low Multi-task 

validated; 

interpretable 

architecture 

Lucassen 

et al., 2023 

[24]. 

Low Low Low Moderat

e 

Low–

Moderat

e 

Low External 

validation; 

some missing-

data bias 

Raheem et 

al., 2024 

[25]. 

Low Low Low Low Low Low Nested CV 

reduces bias 

Fontanella

z et al., 

2024 [26]. 

Low Low Low Low Low Low Balanced 

dataset; strong 

calibration 
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Cho et al., 

2021 [27]. 

Low Low Low Moderat

e 

Moderat

e 

Moderate Limited 

external test 

set 

Wang et 

al., 2021 

[28]. 

Low Low Low Low Low Low Multi-dataset 

external 

validation; 

minimal bias 

 

Definitions: “Low” = low risk/concern; “Moderate” = some concern; “High” = serious concern or 

unaddressed bias. 

Overall summary: 9 studies exhibited low overall risk of bias; 4 had moderate concerns primarily due to 

single-center retrospective designs or limited external validation. Applicability concerns were uniformly 

low, indicating good clinical relevance. 

 

Discussion: 

This systematic review synthesized evidence from 13 recent studies (2021–2024) examining the impact of 

artificial intelligence (AI) on emergency department (ED) decision-making. Collectively, these 

investigations demonstrate consistent improvements in diagnostic accuracy, triage precision, and predictive 

performance when AI is integrated into clinical workflows. The pooled analysis revealed a mean diagnostic 

area under the curve (AUC) of 0.90 (95% CI: 0.87–0.95) and pooled predictive sensitivity for hospital 

admission of 0.92 (95% CI: 0.87–0.95), supporting the superior efficacy of AI-based models over 

conventional methods. 

 

AI Performance in Diagnostic Applications: 

Recent studies have highlighted AI’s capacity to enhance image-based diagnosis in emergency care. 

Huhtanen et al. [20] validated a convolutional neural network (CNN) model for detecting pediatric elbow 

joint effusions, achieving performance comparable to expert radiologists. Murata et al. [21] used a deep 

convolutional neural network (DCNN) for vertebral fracture detection, with sensitivity and specificity of 

84.7% and 87.3%, respectively. These results underscore AI’s reliability in radiographic interpretation and 

its potential to mitigate human error in high-volume emergency settings. 

Advanced neuroimaging applications further demonstrate AI’s clinical versatility. Gong et al. [23] 

developed a ResNet-based, multi-task interpretable network for intracerebral hemorrhage (ICH) 

quantification and prognosis prediction, achieving accurate volume estimation and strong predictive 

performance. Similarly, Fontanellaz et al. [26] integrated radiomics features with a multilayer perceptron 

(MLP)-Mixer architecture to detect interstitial lung disease with accuracy comparable to that of expert 

radiologists. Such findings illustrate AI’s role not only in detection but also in prognostication and risk 

stratification, broadening its clinical utility. 

Pulmonary diagnostics have also benefited from deep learning. Wang C.-H. et al. [22] validated two 

computer-aided detection (CAD) systems for pneumothorax on portable supine chest X-rays, with both 

achieving AUCs exceeding 0.94. Cho et al. [27] introduced small artificial neural networks for 

pneumothorax detection, demonstrating high diagnostic accuracy despite reduced computational 

complexity. Wang G. et al. [28] built an ensemble CNN pipeline that differentiated viral, non-viral, and 

COVID-19 pneumonia on chest X-rays with excellent discrimination. Collectively, these studies confirm 

the capability of AI to enhance thoracic image interpretation in time-sensitive emergency contexts. 

 

AI in Decision Support and Resource Optimization: 

Beyond imaging, AI-driven decision-support systems have proven effective in optimizing clinical 

workflows.. Wu et al. [18] designed a machine learning model for chest-pain presentations, improving 

prediction of critical-care requirements relative to traditional triage scores. Heo et al. [19] implemented a 

deep-learning model to guide head CT ordering for pediatric traumatic brain injury, reducing unnecessary 
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imaging while preserving diagnostic safety. Both studies underscore AI’s potential to support evidence-

based resource allocation and enhance patient safety in crowded EDs. 

At the triage level, Kwon et al. [11] had success in predicting pediatric critical-care admissions using deep-

learning techniques, achieving high AUCs for critical-care prediction. Such algorithms offer real-time, data-

driven decision support that may augment clinical judgment during high patient influx. Yao et al. [12] 

achieved similar success employing deep-learning model by utilizing electronic medical record (EMR) data 

could automate acuity assignment with accuracy comparable to human triage, reducing subjectivity and 

interobserver variability. 

 

Outcome Prediction and Prognostication: 

Several studies emphasized AI’s predictive and prognostic capabilities. Raheem et al. [25] developed an 

artificial neural network (ANN) optimized via systematic grid search to predict major adverse cardiac 

events (MACE) in chest-pain patients, outperforming logistic regression models in sensitivity and 

specificity. Lucassen et al. [24] applied deep learning to lung ultrasound videos for automated detection of 

B-lines—markers of pulmonary congestion—and reported AUROCs ranging from 0.864 to 0.955, 

comparable to expert sonographers. These predictive tools enable early identification of high-risk patients 

and can guide timely interventions, potentially improving clinical outcomes. 

 

Interpretability and Clinical Integration: 

Recent progress has been made toward improving AI interpretability—a critical factor for clinician 

adoption. Gong et al. [23] and Fontanellaz et al. [26] incorporated explainable components, allowing 

visualization of model attention maps that align with radiologic features. Such transparency fosters clinician 

trust and facilitates validation. Moreover, real-world implementation, as demonstrated by Heo et al. [19], 

highlights AI’s transition from conceptual feasibility to clinical utility. These developments are crucial for 

integrating AI into emergency medicine without compromising clinician oversight. 

Despite these advancements, many models still function as “black boxes,” limiting interpretability. 

Standardized reporting frameworks, such as TRIPOD-AI and PROBAST-AI, remain underutilized. 

Ensuring adherence to these guidelines will improve methodological transparency and reproducibility in 

future AI research. 

 

Ethical and Operational Considerations: 

Ethical and operational challenges accompany AI adoption in the ED. Issues of patient data privacy, 

algorithmic bias, and model explainability are particularly salient. Overreliance on algorithmic outputs may 

introduce automation bias, while insufficient oversight could endanger patient safety. Maintaining human-

in-the-loop systems, continuous model monitoring, and transparent reporting of performance metrics are 

essential safeguards. Operationally, successful deployment depends on integration with hospital 

information systems, real-time data access, and clinician education to ensure appropriate tool utilization. 

 

Limitations: 

This review has several limitations. First, although the search identified recent high-quality studies, most 

were retrospective, introducing potential bias in data selection and outcome ascertainment. Second, 

variations in AI architectures, datasets, and performance metrics precluded direct quantitative comparison 

beyond pooled estimates. Third, few studies conducted external validation or reported cost-effectiveness, 

limiting generalizability and practical applicability. Fourth, publication bias toward positive outcomes may 

have exaggerated the perceived benefits of AI tools. Finally, while this review included studies published 

up to 2024, rapid technological evolution means that newer models may already surpass the reported 

benchmarks. Future work should incorporate living systematic review methodologies to remain current 

with emerging evidence. 

Also, heterogeneity among studies remains a major limitation in synthesizing outcomes. Differences in 

study design (retrospective vs. prospective), dataset size, input features, and validation strategies contribute 
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to variability in reported performance. While retrospective analyses dominate current literature, prospective 

and interventional trials (e.g., Heo et al. [19]) offer more robust evidence but are logistically challenging. 

Additionally, dataset homogeneity—many studies were conducted within single institutions or geographic 

regions—limits external generalizability. Cross-institutional and international collaborations are needed to 

confirm model robustness across diverse populations and clinical environments. 

 

Clinical Implications: 

The cumulative findings indicate that AI can meaningfully augment decision-making across the emergency 

care continuum—triage, diagnosis, and prognostication. When integrated appropriately, AI systems may 

reduce diagnostic delays, enhance safety, and optimize ED efficiency. However, AI should complement 

rather than replace clinician expertise. A synergistic model—combining human judgment and AI 

analytics—will likely achieve the best outcomes in emergency medicine. 

 

Future Directions: 

Further research should prioritize prospective multicenter validation, standardized performance reporting, 

and evaluation of clinical outcomes following AI implementation. Transparent algorithmic development, 

integration with clinical decision support systems, and attention to fairness and bias mitigation are 

imperative for responsible translation into practice. Collaborative efforts between clinicians, data scientists, 

and policymakers will be essential to ensure equitable and sustainable AI deployment. 

 

Conclusion: 

Across the 13 included studies, AI consistently outperformed traditional methods in diagnostic accuracy 

and predictive performance in emergency medicine. Deep-learning and machine-learning models achieved 

superior AUCs, sensitivities, and specificities across diverse diagnostic domains. Despite methodological 

variability and implementation challenges, the trajectory of evidence supports AI’s transformative potential 

in enhancing ED decision-making, provided that future research emphasizes transparency, validation, and 

ethical integration. 
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