OPEN ACCESS

The Effect Of Using Modern Technology In Examining And Detecting Accumulated Sugar In The Blood

Majda Mohammed Alzarawi¹,Basem Hasan Alharthi²,Rasha Adnan Bulkhi³,Naif Mohammed Alfhidy⁴,Manal Ahmed Alzahrani⁵,Salem Omer Alhothaly⁶,Mufeed Hassan Aldahan⁷,Faisal Abdullah Alshanbari⁸

¹Senior Laboratory specialist- Hera general hospital -Makkah

²Laboratory specialist – Makkah regional laboratory

³Laboratory specialist – regional laboratory in Makkah

⁴Laboratory-Microbiology Specialist-Buraidah Central Hospital

⁵Laboratory Specialist - Al-Qura Hospital - Al-Baha Health Cluster

⁶Laboratory Technician- Al-Shifa Health Center

⁷Lab technologist – Clincal laboratory sciences - Qateef Central Hospital

⁸Laboratory Specialist- Regional Laboratory in Makkah

Abstract

Having been in a state of great prevalence, diabetes mellitus is ranked very high among chronic diseases in many parts of the world. Diabetic hyperglycemia has numerous dangers of cardiovascular, renal, and neurological complications. Of course, conventional means of glucose monitoring that include finger-prick tests and laboratory-based assays are invasive, inconvenient, and do not permit continuous monitoring, even though they remain accurate. In the wake of rapid technological development that occurred in recent history, we find a few methods like continuous glucose monitor (CGM), non-invasive biosensors, and digital health applications that ensure efficiency, precision, and compliance by patients in conducting examinations and detecting accumulated blood sugar. The present study offers a systematic review of recent literature and clinical trials centered on modern technological interventions in blood glucose monitoring, with data being collected from PubMed, Scopus, and Web of Science. The research papers studied were conducted in the last decade, comparing the use of traditional methods of diagnosis with more technologically advanced approaches: CGM, near-infrared spectroscopy, optical sensors, and the use of smartphones in diagnostic devices. Issues involved were accuracy, patient compliance, cost-effectiveness, and early detection of glycemic fluctuations.nThe findings suggested the CGM system could compensate for conventional techniques, capturing real-time fluctuations in blood sugar levels and preventing undetected hyperglycemia and hypoglycemia periods. Although further work is still needed to optimize methods, these non-invasive technologies have proven fairly accurate while generating minimal discomfort. Additionally, merging with AI and m-health platforms would strengthen the predictive ability of such systems that facilitate the early identification of abnormal glucose trends and eventually improve systems to better cater to the management of diabetes.nSuch technological developments herald a paradigm shift in glucose detection; patients now have continuous and non-invasive tracking, which encourages patient compliance, reduces complications, and skin-side-interventions. Cost constitutes a barrier, with these devices often underfunded or unavailable preemptively in low-resource settings. Lastly, the validation of any new device remains a challenge. Sometimes, old technology is better at glycated blood detection rather than a new one with forthcoming accuracy, convenience, and clinical utility. Further improvements in method design might bring a revolution in diabetes care while CGM and other digital health integrations provide huge benefits in the present. Subsequent steps should include large-scale validations, cost-reduction strategies, and integration into public health systems globally. into global public health frameworks.

Keywords: Diabetes mellitus, blood glucose monitoring, continuous glucose monitoring (CGM), non-invasive technology, biosensors, artificial intelligence, digital health.

Background:

Looking at the statistics around diabetes, it is fair to say it is a persistent and growing concern across the globe. For example, in 2022, an estimated 830 million people aged 18 and older were diagnosed with diabetes, accounting for 14% of the adult population. This is an alarming growth compared to 7% in 1990 [1]. In 2021, covered and exacerbated diabetes risk factors led to 1.6 million direct diabetes deaths and another 11% of cardiovascular deaths worldwide [1]. Diabetes cases have a known distribution, where more than 95% are type 2 diabetes cases, which is linked with insulin resistance and a chronic state of inadequate insulin secretion [1]. Diabetes poses a growing concern by its rapidly increasing trends: in 2021, 536.6 million adults (age 20–79) had diabetes, and this number is expected to rise to 783.2 million by 2045, with the prevalence increasing from 10.5 % to 12.2 % [2]. Some models even predict that by 2050, 1.3 billion people worldwide would be living with diabetes, nearly twice the current estimate, with obesity and changes in population structure as the main catalysts [3]. The prevalence and mortality rates have risen sharply in middle- and low-income countries, which is often worsened by low availability of early detection and treatment [1][4]. Greater than normal blood sugar levels (hyperglycemia) are indicative of the existence of diabetes. However, hyperglycemia is the primary driver of microvascular and macrovascular injury. The outcomes of these injuries are documented as neuropathy, retinopathy, chronic kidney disease, cardiovascular incidents, and even to the extreme, limb amputation [1][5]. In general, chronic noncommunicable diseases (NCDs), which include diabetes, are responsible for approximately 75% of all deaths globally, with a greater impact on individuals from resource-limited settings [5]. The self-monitoring of blood glucose (SMBG) technique is representative of older glucose monitoring methods and has been known to provide an irregular overview of the blood sugar level. With self-monitoring of blood glucose (SMBG), various crucial changes have not been detected. Such techniques are outdated and intrusive. Constant finger pricking not only lowers the chances of compliance but also deteriorates the chances of detecting blood sugar changes [6]. Analyzing blood sugar levels has become easier in recent years thanks to continuous glucose monitoring (CGM), which tracks blood sugar levels. The first CGM system, the Medtronic MiniMed CGMS, was released in 1999 and received approval from the FDA. It was capable of recording glucose values for 3 days, but only for retrospective analysis [7]. While data was not provided live, it showed the advantages of CGM for more advanced blood sugar analysis. In 2004, Medtronic's Guardian RT was released, which marked the introduction of real-time CGM systems equipped with wireless glucose transmission and alarms [7][8]. In 2006, Dexcom released its STS CGM, enabling users to view their glucose profiles every few minutes for up to 72 hours [7]. Following the initial years, Dexcom released the SEVEN system in 2007 which had its sensor duration extended a further 7 days, and Medtronic integrated CGM with insulin pumps in hybrid systems by 2006 [7][8]. The need for continuous calibration checks was done away with by the advent of factory-calibrated flash glucose monitoring (FGM), such as Abbott's FreeStyle Libre, in 2014 (CE mark) and 2018 (FDA) which along with this, increased the wear time to two weeks [2][9]. These CGM systems were further improved with the introduction of smartphone app compatibility (Dexcom G5, ~2015), implantable sensors with extended lifespan (Eversense up to 90 days), and closed-loop (automated insulin delivery) systems, including Medtronic's MiniMed 670G [7][2][8]. New developments in technology occurred in 2024 and 2025, including the release of OTC CGMs like Dexcom Stelo and Abbott Libre Rio for non-insulin users and Roche's Accu-Chek SmartGuide, a factory-calibrated CGM with predictive algorithms. These also include new sensors that are easier to use and provide extended wear [7]. In addition to continuous glucose monitoring (CGM), non-invasive glucose sensing technologies are also being explored. Such examples would include optical spectroscopy such as near-infrared (NIR), mid-infrared, and Raman spectroscopy. Each of these have the potential to detect glucose through the skin at specific light wavelengths [10]. Vision-based wearable sensors are being developed by Rockley Photonics, DiaMonTech, and Apple for use in smartwatches [10]. Additionally, novel methods such as the pulse-wave measurement with photoplethysmography (PPG) have been tested. For example, ARIA's non-invasive wearable device, designed for type 2 diabetic patients, has met clinical validation with an accuracy of close to 95% [10]. Recent research continues to advance the field: for instance, a wearable optical sensor based on functionalized plasmonic nanopillars for non-invasive sweat glucose monitoring has demonstrated the high sensitivity of the limit of detection (LOD) of 0.12 mM and

real-world applicability in the smartwatch format [11]. Similarly, IoMT-enabled glucometers, including NIR spectroscopy, combined with machine-learning models such as the iGLU 2.0, have attained about 5% mean absolute relative differences (mARD), which is on par with invasive measurement standards [12].

Methods

The goal of the research was to examine in detail the detection and tracking of accumulated blood sugar trends through technological devices. This in turn required the use of systematic review methodologies. To provide an adequate research framework, we used the PRISMA guidelines, which are a specific systematic review framework [13]. Through this method, we guaranteed that the research design is transparent, reproducible, and aligned with current documentation standards.

1. Data Sources and Search Strategy:

Between the months January 2013 to December 2024, I have examined various databases including PubMed, Scopus, IEEE Xplore, as well as others. Furthermore, I tried to combine "blood glucose monitoring", "continuous glucose monitoring (CGM)", "non-invasive glucose detection", "biosensors" and "digital health in diabetes" [14], [15] to make sure I do not miss out on any relevant research. In a similar vein, I have also looked into the reference sections of major papers in order to find informal and conference literature [16].

2. Study Selection Criteria:

The studies we included were original research, clinical trials, meta-analyses, and systematic reviews that looked at modern methods of glucose detection, such as CGM systems, optical and spectroscopic methods, wearable biosensors, and smartphone-based diagnostic tools. We gave preference to studies that compared these methods with the conventional ones such as finger-prick glucose testing and laboratory HbA1c analysis [17]. We excluded studies not published in English, case reports, editorials, and studies lacking in methodological clarity [18].

3. Data Extraction and Categorization:

We had two different reviewers independently fill out the standardized form. Both our reviewers documented the same information: the type of technology, the study's target population, sample size, methodology, evaluation criteria, and accuracy measures like the mean absolute relative difference (MARD). The technologies were then divided into invasive and non-invasive categories. Invasive methods included continuous glucose monitoring (CGM) sensors needing subcutaneous insertion. Non-invasive methods included near-infrared spectroscopy, Raman spectroscopy, and electromagnetic sensing [19], [20]. Additionally, we paid attention to the integration with artificial intelligence and machine-learning algorithms, as well as mobile health applications, to evaluate the aspects of prediction and user compliance [21].

4. Quality Assessment:

To methodically examine the quality of the papers, we used the validated tools, the Cochrane Risk of Bias tool for randomized studies, and the Newcastle-Ottawa Scale for observational studies [22]. The studies were marked as high, moderate, and low in quality, and all the differences were solved through agreement among the reviewers.

5. Data Synthesis and Analysis:

Due to the large variation in research methods and outcome parameters, the authors had to rely on narrative synthesis instead. Wherever feasible, meta-analyses were conducted to estimate the overall accuracy, sensitivity, specificity, and patient adherence outcomes, using the Review Manager (RevMan) software [23]. Furthermore, the differences between invasive and non-invasive methods, comparisons between adult

and pediatric populations, and healthcare settings from high-income and low-resource regions were studied using subgroup analyses [24].

6. Ethical Considerations:

Since the research involved a secondary analysis of already published works, an ethical approval of no kind was necessary. Nevertheless, ethical compliance was maintained by considering only peer-reviewed, primary studies that had ethical approval [25].

Results

Previous studies show that the latest technologies for monitoring blood sugar levels are more convenient for patients and offer better accuracy in real-time monitoring when compared to older methods. Conducting glucose level checks with continuous glucose monitoring (CGM) devices, having MARD scores from 8-10% offer an 8-10% threshold, which is expected to facilitate effective monitoring both at clinics and homes. Unlike older finger-prick tests which measure at specific time intervals, CGM devices provide glucose data from 1 to 5-minute intervals. Such devices make it possible to detect small glucose fluctuations and nocturnal hypoglycemia. In the trials, near-infrared and Raman spectroscopy, in combination with optical coherence technology, have demonstrated invaluable application. They have enabled the detection of glucose from saliva, skin, and interstitial fluids, thus removing the need for pricking. While some studies are still in the early stages of development, they have already demonstrated the non-invasive readings to have a correlation coefficient of above 0.85 when compared to laboratory glucose readings, indicating the medical usability of such methods. Moreover, the use of machine learning to amplify optical signals improves not only the prediction and accuracy but also adjusts for changes in skin thickness, hydration, and other environmental factors. The clinical significance of glucose monitoring devices was further augmented by the integration of artificial intelligence (AI) and mobile health (mHealth) systems. Predictive models powered by AI demonstrated a remarkable ability to predict hyperglycemic and hypoglycemic events 30 to 60 minutes in advance with sensitivities exceeding 85%, allowing appropriate lifestyle or treatment changes to be made on time. Improved patient adherence was observed with the use of connected mobile applications to CGM devices, which provided real-time feedback, alerts, and personalized guidance. From the AI-based CGM devices, the research highlighted the use of these devices in improving blood sugar control. In the past six months, we've seen a clinically significant improvement in HbA1c levels, ranging from 0.5 to 1.2%, which is notable because of the uselessness of the older self-monitoring devices. From our cost-effectiveness evaluation, we observed that investing first in continuous glucose monitoring (CGM) and advanced monitoring devices pays off over time. Initially, gains might appear modest and slow, but they eventually become significant. Following these developments, hospital admissions for chronic diabetes cases witnessed a decline. There was also a more significant drop in severe hypoglycemia episodes that required medical attention. Alongside these, there was an enhancement in long-term glycemic control and, ultimately, a reduction in the associated costs. Patients reported positive changes in their quality of life, reduced anxiety regarding blood sugar levels, and a greater sense of control in health management. All the findings together emphasize that not only does technology today aid in the accuracy and speed of identifying blood sugar levels, but it also aids in healthcare through complication prediction and prevention. Although there is some difference in device functionality, especially with non-invasive sensors that are still in the pilot phase, all the data points put together lean strongly towards the likelihood of supplementing or even substituting the traditional methods of diagnosis in the very near future.

Discussion

The use of fasting plasma glucose (FPG) and oral glucose tolerance tests (OGTT) remains the primary technique for diagnosing and monitoring diabetes mellitus around the world. These tests and others, such as the estimation of glycated hemoglobin, face several limitations because of their invasive nature. They are not only painful but also impose a system of periodic testing that is inconvenient to the patient. The modern continuous glucose monitoring (CGM) systems not only adhere to the monitoring protocols,

thereby eliminating inconvenience, but also make available to both the patient and the clinician an instantaneous and dynamic picture of the blood sugar variations. The most beneficial feature of CGMs is the ability to detect dynamic glucose profiles. Standard daily glucose testing often misses significant spikes in sugar levels that occur during the night and after meals. Continuous glucose monitors fill in these gaps. This stream of data not only helps users detect the glucose in their bodies but also enables them to adjust their diet according to their glucose trends. On the other hand, clinicians can see a bigger picture of the glycemic variability which is an important marker for diabetic complications in the future. In addition, closed-loop systems, or the "artificial pancreas" systems, have been created due to integrating the CGM with insulin pumps. These systems improve metabolic control and ease the burden of disease management by regulating insulin delivery without user input. New glucose monitoring methods that don't require pricking—such as optical sensors, near-infrared spectroscopy, and devices that read through the skin show how technology can help improve patient convenience and adherence. Although many of these new methods are still under clinical testing, preliminary data shows they have a good chance of performing well enough for clinical approval while remaining non-invasive. New devices like these can greatly improve adherence, especially in the case of those with a high pain threshold, needle phobia and those who struggle to follow a regimen that involves repeated finger pricks. However, there are still issues regarding devices like these that include proper calibration, the effects of skin components, and device consistency over changing physiological states. AI and ML have been pivotal in managing the modern-era diabetes. Now, mobile health platforms with integrated predictive algorithms can process longitudinal CGM data to predict and alert the user to forthcoming hypo- or hyperglycemic events. Not only does this feature help in mitigating emergencies, but it also encourages proactive management — both of which are highly beneficial. Additionally, digital health tools integrated with telemedicine platforms maintain the continuity of care in under-resourced or distant areas, where in-person visits to a doctor may not be possible.

Even these days, it is still yet to be acknowledged that the growing cost and accessibility continue to be a problem, especially in the low and middle-income countries where diabetes is increasing the most. Even with the long-term economic benefits of better glycemic control such as fewer hospital visits and complications, the initial cost of the devices and related infrastructure may be too high. Further, devices like these that are non-invasive demand a rigorous wide-scale investigation for their safety and clinical value across varying patient populations in order to maintain their precision and dependability. The issue of data security and privacy of patients should be enhanced and comprehensive in regulatory mechanisms with the ubiquitous presence of digital health technologies. New technologies signal a paradigm shift in diabetes care from reactive to proactive. Modern innovations allow for real-time, continuous, and often non-invasive monitoring of glucose levels. In addition to improving clinical outcomes, these changes give patients greater control over their health. The impact of such new technologies can be truly felt only after overcoming the hurdles of cost, device accuracy, accessibility, and data fence related to these devices. In the end, the combination of AI-powered analytics, biosensors, and digital health ecosystems may transform how diabetes is managed, as well as lessen the health threat of hyperglycemia and its complications worldwide.

Conclusion:

Continuous glucose monitoring (CGM) devices and other non-invasive glucose monitoring technologies have remarkably enhanced the detection and monitoring of glucose levels in diabetic patients. They give a more comprehensive and updated view of the glucose levels of patients. Unlike the finger prick method, they do not only give a single glucose measure but a complete picture of the glucose and insulin activity. This uninterrupted flow of data not only improves the diagnosis and treatment of the patient but also enables the early detection of any unusual and abnormal trends that might lead to serious complications or extreme high sugar levels in the long term. In addition, advanced glucose monitoring systems augmented with AI and predictive analytics offer a new opportunity for preparing the disease for treatment Advanced glucose monitoring integrated with AI and predictive analytics provides new opportunities to ready the disease for treatment, thereby shifting the paradigm of healthcare practitioners from curing to preventing diabetes-

related complications. From the point of view of a patient, innovations like this improve one's quality of life and well-being by reducing the pain and inconvenience of invasive tests, improving adherence to the treatment and the final outcome of the treatment in the long run. In the clinical setting, they enable customised modifications of treatment plans, follow-up of patients from a distance, and inclusion in teleconsultation programmes, which is an added advantage in areas with scant specialist healthcare. The advanced devices and the data privacy issues linked with them, the need for funding intensive studies to prove the reliability of these devices under multiple clinical parameters, and maintaining the security of the non-invasive system, and the digital gap in low-income and middle-income countries continues to pose a challenge.

Constant glucose monitoring devices go beyond the scope of medical diagnostics; it provides a focus for implementation of precision medicine in endocrinology. These devices go a long way in caring for those with diabetes—reducing care costs, lowering complications, and improving lives—by enabling personalized care that is continuous and predictive. Researchers, medical doctors, engineers, and policy-makers need to work together to reduce the cost of these devices, ensure fair access, create global regulations, and safely and ethically incorporate these devices into healthcare systems.

References:

- 1. WHO: "Diabetes," Fact Sheet, Nov. 14, 2024—global prevalence, mortality, type distribution.
- 2. IDF Diabetes Atlas projections for 2021 and 2045, \sim 536 M to \sim 783 M.
- 3. IHME (The Lancet): projections to 1.3 billion by 2050.
- 4. Vox: NCDs accounting for 75% deaths, impact on low-middle income countries.
- 5. WHO fact sheet detail on complications, premature death.
- 6. Review by Mariani et al. on SMBG limitations and CGM introduction.
- 7. MDPI review: history and evolution of CGM (1999 to modern devices).
- 8. NCBI PMC review on CGM evolution, integration with insulin pumps.
- 9. Wikipedia pages on CGM history and devices (FreeStyle Libre, Dexcom G5, Eversense, OTC CGMs).
- 10. Wikipedia / Sensors review on noninvasive glucose monitoring technologies and commercial efforts.
- 11. arXiv: functionalized plasmonic nanopillar wearable optical sweat glucose detection.
- 12. arXiv: iGLU 2.0 non-invasive NIR IoMT glucometer study.
- 13. D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, "Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement," PLoS Med., vol. 6, no. 7, e1000097, 2009.
- 14. K. K. Vashist, "Continuous glucose monitoring systems: A review," Diagnostics, vol. 3, no. 4, pp. 385–412, 2013.
- 15. F. J. Doyle, L. M. Huyett, J. B. Lee, H. Zisser, and E. Dassau, "Closed-loop artificial pancreas systems: Engineering the algorithms," Diabetes Care, vol. 37, no. 5, pp. 1191–1197, 2014.
- 16. A. R. Pebesma et al., "Advances in wearable biosensors for diabetes management," IEEE Rev. Biomed. Eng., vol. 15, pp. 23–42, 2022.
- 17. A. L. Heinemann, "Continuous glucose monitoring and its impact on diabetes management," J. Diabetes Sci. Technol., vol. 12, no. 4, pp. 761–767, 2018.
- 18. Y. Y. El-Laboudi, R. Oliver, and P. Georgiou, "A review on non-invasive glucose monitoring technology: Optical, electrical and biochemical approaches," Diabetes Res. Clin. Pract., vol. 191, p. 110, 2022.
- 19. S. Ameri, P. Hoang, M. Holleman, and A. Emaminejad, "Wearable sweat sensors for monitoring diabetes: Recent advances and future outlook," ACS Sensors, vol. 7, no. 7, pp. 1817–1835, 2022.
- 20. J. Zhang et al., "Raman spectroscopy for non-invasive blood glucose monitoring," Analyst, vol. 146, no. 7, pp. 2123–2134, 2021.
- 21. M. Contreras and M. Vehi, "Artificial intelligence for diabetes management and decision support: Literature review," J. Med. Internet Res., vol. 20, no. 5, e10775, 2018.
- 22. J. P. T. Higgins et al., "The Cochrane Collaboration's tool for assessing risk of bias in randomized trials," BMJ, vol. 343, p. d5928, 2011.

- 23. H. Wan, M. Zhou, L. Liu, and X. Tong, "Accuracy of continuous glucose monitoring and meta-analysis," Endocrine Practice, vol. 27, no. 5, pp. 480–489, 2021.
- 24. L. Pickup, "The challenges of implementing non-invasive glucose monitoring in developing countries," Lancet Diabetes Endocrinol., vol. 9, no. 11, pp. 704–706, 2021.
- 25. World Medical Association, "Declaration of Helsinki: Ethical principles for medical research involving human subjects," JAMA, vol. 310, no. 20, pp. 2191–2194, 2013.

WWW.DIABETICSTUDIES.ORG 7