OPEN ACCESS

The Effectiveness Of Deep Breathing Techniques In Improving Lung Function In Patients With Chronic Obstructive Pulmonary Disease (COPD)

Khalid Mohammed Abdulrahman Alfawzan¹, Mohammed Abdoh Mohammed Aljizany¹, Khaled Yousef solaiman Albudayri², Dhafer Abdullah Dhafer Algahtani³, Rawan Addal Saad Alotaibi⁴, Basmah Mousa Ahmad Mubaraky⁵, Ibtisam Mujahid Mushbari⁶, Abdulaziz Ayedh O Alharbi⁷, Wasaif Mubark Albarqawi⁶, ALAnoud Ahmed Saad ALMuflih⁶, Mohammad Abdulghafour Mohammad Neyazi⁸, Abdulrahman Naji Salem Alzahrani⁹

¹Respiratory Therapist, Alquwayiah General Hospital, Saudi Ariba.

²Respiratory Therapist, King Fahad Medical City, Saudi Ariba.

³Respiratory Therapist, Durma General Hospital, Saudi Ariba.

⁴Respiratory Therapist, Al Iman General Hospital, Saudi Ariba.

⁵Respiratory Therapist, Ad Diriyah Hospital, Saudi Ariba.

⁶Respiratory Therapist, Imam Abdulrahman Alfaisal Hospital, Saudi Ariba.

⁷Senior Specialist in Respiratory Care, Al Muzahimiyah General Hospital, Saudi Ariba.

⁸Respiratory Therapy, Prince Mohammad Bin Abdulaziz Hospital - NGHA, Saudi Ariba.

⁹Resident Physician – Internal Medicine / Intensive Care Unit, Long-Term Care Hospital in Albaha city, Saudi Ariba.

Abstract

Background: The lung disorder known as chronic obstructive pulmonary disease (COPD) reduces airflow, making breathing difficult for sufferers. Common complaints range from dyspnea to chronic coughing to frequent respiratory infections. Treatment generally focuses on symptom control and improvement of lung function by means of medication, oxygen therapy, and rehabilitative activities. Recent years have seen great interest in deep breathing exercises and other respiratory therapies as potential support for patients managing symptoms and improving pulmonary capacity. These workouts aim to increase respiratory muscle strength, reduce breathing effort, and permit more efficient gas exchange, thereby providing potential relief and better disease control for COPD sufferers. Studies have shown that deep breathing exercises—including diaphragmatic and pursed-lip breathing—have increased oxygen intake, improved ventilation efficiency, and enlarged lung capacity. More study is still required, though, to find how effectively these non-pharmacological COPD treatments improve lung function.

Aim: Our study aimed to evaluate "The Effectiveness of Deep Breathing Techniques in Improving Lung Function in Patients with Chronic Obstructive Pulmonary Disease (COPD)".

Conclusion: The results of this study confirm the possible efficiency of deep breathing methods in enhancing lung capacity among COPD sufferers. Patients who include diaphragmatic breathing and pursed-lip breathing in their regular activities will find better oxygenation and more effective respiratory muscles. These activities help to lower the sensation of dyspnea, encourage relaxation, and maybe lessen the frequency of flare-ups. Deep breathing exercises offer a possible supplemental therapy to conventional COPD therapies since they are a non-invasive and easily available intervention. More study is therefore necessary to fully appreciate the long-term advantages and maximize the training strategies to get the best results for patients. Customizing breathing exercises to fit specific patient requirements together with suitable professional advice could provide a complete method to more successfully control COPD symptoms.

WWW.DIABETICSTUDIES.ORG 33

Keywords: Chronic obstructive pulmonary disease, Strategies for deep breathing, Breathing diaphragmatically, Pished-lip breathing, Treatment for respiratory issues.

Introduction

Leading cause of morbidity and death globally, Chronic Obstructive Pulmonary Disease (COPD) is typified by constant respiratory symptoms, airflow restriction, and lowered quality of life. Often driving patients to adopt sedentary lifestyles, which in turn aggravates deconditioning of respiratory muscles and lowers exercise tolerance, symptoms include chronic cough, shortness of breath, and activity-induced tiredness contribute to a decrease in functional ability. With mounting data showing the advantages of non-pharmacologic treatments, including several kinds of breathing exercises, pulmonary rehabilitation has become the pillar in the management of COPD. These methods—diaphragmatic breathing and pursed-lips breathing—seek to strengthen respiratory muscles, ease dyspnea, and eventually increase patients' functional capacity and quality of life.¹

Controlled breathing techniques have lately been shown to help COPD sufferers with lung function and quality of life. For example, whilst pursed-lips breathing promotes gas exchange by slowing exhalation, diaphragmatic breathing lowers the effort needed for each breath. Particularly important for COPD sufferers experiencing concern about dyspnea, techniques include yoga-based breathing have also shown potential in improving lung capacity and lowering stress. Furthermore, fresh studies suggest that group-based breathing exercise sessions could offer psychological and social advantages, so improving patient adherence and motivation.^{2,3}

Breathing exercises were shown in recent meta-analyses and studies to have statistically significant effects on measures of lung function including forced expiratory volume (FEV1), exercise tolerance, and health-related quality of life (HRQoL) in COPD patients. Particularly as part of home-based or group-based pulmonary rehabilitation programs, which are accessible and affordable means to improve respiratory health and lower hospital readmissions, this data supports including breathing exercises into COPD therapy methods.⁴

Background and Pathophysiology of COPD

Mostly resulting from continuous exposure to harmful inhalants like cigarette smoke and environmental pollutants, COPD, a chronic and progressive inflammatory lung disease, is typified by persistent respiratory symptoms including dyspnea (shortness of breath), chronic cough, and sputum production. The pathogenesis of COPD is the constriction of the small airways, loss of alveolar tissues, and persistent inflammation that causes irreversible airflow limitation and poor gas exchange.⁵

With heterogeneity that helps to explain variations in disease severity and progression, the 2023 GOLD (Global Initiative for Chronic Obstructive Lung Disease) report notes that COPD pathology differs widely among patients, including elements of emphysema, chronic bronchitis, and small airways disease. Although other exposures—like biomass fuel smoke in low- and middle-income countries—also play a major role, environmental elements, most especially tobacco smoke, remain a substantial concern. Particularly in non-smoking populations, occupational hazards and air pollution have become very important factors, therefore broadening the range of at-risk groups outside of smokers alone. Further hastening disease development and spread are genetic predispositions like mutations in the SERPINA1 gene linked with alpha-1 antitrypsin deficiency, which impair lung defenses against proteolytic enzymes, hence increasing vulnerability to COPD.⁶

Furthermore, new studies underline how particular immunological and inflammatory reactions lead to COPD and stress the complicated interaction of gene-environment interactions. Though standardized guidelines and definitions remain under debate to improve diagnosis and management strategies, advances in imaging and molecular studies are enhancing knowledge of COPD's varied pathology, which has opened avenues for more individualized treatment strategies tailored to specific COPD phenotypes.⁷

Overview of Deep Breathing Techniques

Often used to help COPD patients breathe better, deep breathing techniques seek to reduce dyspnea and improve lung function by means of deliberate, effective breathing. Targeting many facets of respiratory control and encouraging oxygenation and lung capacity, the most often used techniques are diaphragmatic breathing, pursed-lip breathing, and deep breathing.⁸

Often referred to as "belly breathing," diaphragmatic breathing works the diaphragm to lower shallow, quick breathing and advance deeper breaths. Placing a hand on the stomach and inhaling deeply lets the diaphragm expand, so encouraging COPD sufferers to use this technique. Particularly helpful during physical activity is this help in lowering the respiratory rate and relieving the work of breathing.⁹

This method, known as pursed lip breathing, helps keep open airways for longer by inhaling slowly through the nose and exhaling via pursed lips, therefore enhancing gas exchange. Particularly helpful during activities causing dyspnea is pursed-lip breathing since it helps to release trapped air, relaxes the respiratory muscles, and supplies a consistent supply of oxygen.¹⁰

These exercises consist of slow, deep breaths to fill the lungs to capacity and then in a progressive exhale. Deep breathing exercises can help to improve oxygen intake and help to avoid air trapping. By encouraging relaxation, they also help to lower anxiety, a key COPD trigger for dyspnea.¹¹

Under the direction of healthcare professionals, regular practice of these approaches can assist COPD patients control symptoms, lower anxiety related with dyspnea and enhance general respiratory performance. Comprehensive pulmonary rehabilitation programs meant to improve quality of life in COPD patients sometimes include such breathing exercises.¹²

Review of Key Studies on Deep Breathing Techniques for COPD

Recent research showed how well deep breathing exercises could enhance several health effects in people with chronic obstructive pulmonary disease (COPD). Especially various systematic reviews and clinical studies have concentrated on how approaches include diaphragmatic breathing, pursed-lip breathing, and yoga-based breathing practices affect lung function, exercise tolerance, and quality of life. ¹³

Deep breathing techniques have been shown in studies to help measures including the six-minute walk distance (6MWD) and forced expiratory volume (FEV₁). For instance, a meta-analysis of diaphragmatic and pursed-lip breathing techniques revealed increases in 6MWD by 35–50 meters over several months, therefore indicating improved exercise tolerance. Particularly helpful for patients with advanced COPD, yoga-based practices—especially pranayama, or timed breathing—have shown increases in lung capacity and oxygen saturation.¹⁴

Many COPD sufferers report less dyspnea and more respiratory muscle strength from consistent breathing exercises. Reducing dyspnea has clearly benefited from methods including expiratory muscle training (EMT) and inspiratory muscle training (IMT). Studies show that these breathing exercises can increase lung volume and strengthen respiratory muscles, therefore helping patients to control everyday chores.¹⁵

Deep breathing exercises also provide psychological advantages, helping to reduce anxiety and depression that may accompany COPD. Diaphragmatic breathing and other relaxation-oriented breathing techniques have been found in controlled studies to help lower anxiety, therefore enhancing general well-being and quality of life. Patients that include deep breathing exercises into regular lung rehabilitation regimens (BMC, 2023) especially show this impact.¹⁶

These studies demonstrate that although deep breathing methods might not be able to undo lung damage, they are good complementary treatments for COPD symptoms management and enhancement of patient quality of life. Based on the data from these most recent studies, doctors are progressively advising to include these techniques into everyday routines and pulmonary rehabilitation programs.¹⁷

Mechanisms Underlying Deep Breathing's Effects on COPD

Deep breathing techniques' processes behind their effects on COPD sufferers are complex and combine psychological and physiological elements encouraging improved lung function and symptom alleviation. One of the main advantages of deep breathing exercises including diaphragmatic and pursed-lip breathing is the enhancement in respiratory muscle efficiency. These methods help patients maximize the use of their diaphragm instead of depending on auxiliary muscles, therefore lowering the labor of breathing and minimizing tiredness. Deeper, slower breaths allow patients to increase lung volume, thereby enhancing ventilation and oxygenation.¹⁸

COPD is typified by inflammation and constriction of the airways, which causes air trapping and lung hyperinflation. By encouraging extended exhalation and so enabling the release of trapped air more efficiently, techniques such as pursed-lip breathing help to ease these problems. This increases the general respiratory mechanics and lowers residual capacity in the lungs, so allowing more effective breathing.¹⁹

Deep breathing exercises are quite helpful in relieving the dyspnea, a feature of COPD, especially. These approaches help to lower the panicked, quick breathing pattern that sometimes aggravates dyspnea by regulating the depth and rate of breathing. The parasympathetic nervous system is also triggered by controlled breathing, which helps to relax and lessens the sense of COPD Foundation, 2023; Verywell Health, 2023 difficulty of breathing.²⁰

Deep breathing exercises, particularly when paired with inspiratory muscle training, have been demonstrated to increase gas exchange efficiency by means of oxygen saturation. These approaches encourage more complete alveolar ventilation by raising tidal volume and reducing fast, shallow breaths, hence improving oxygen exchange and oxygen saturation in the blood.²¹

Psychological Benefits: COPD can aggravate dyspnea by causing worry and depression among other psychological problems. By triggering the body's relaxation response, therefore lowering stress, and so improving mental well-being, deep breathing techniques help to ease these symptoms. Research indicate that consistent application of these methods can significantly lower anxiety levels, so improving quality of life.²²

Deep breathing techniques help COPD sufferers not only with lung function but also with managing symptoms and boosting mental health, therefore transcending their simple benefits. Deep breathing is therefore frequently advised as part of thorough lung rehabilitation regimens as these mechanisms explain why.²³

Comparison with Other Non-Pharmacological Interventions

Several treatments are routinely employed in clinical practice when comparing deep breathing techniques to other non-pharmacological strategies for COPD, such pulmonary rehabilitation, exercise training, and the use of non-invasive ventilation (NIPPV), each of which offers complimentary benefits.²⁴

Usually comprising exercise training, dietary advice, psychological support, and education, pulmonary rehabilitation is a thorough, multidisciplinary approach. In COPD patients, pulmonary rehabilitation has been proven to greatly reduce dyspnea and fatigue, increase exercise capacity, and improve general health-related quality of life Archivos de Bronconeumología It does not, however, increase lung function or slow down the course of disease. Since they encourage relaxation, lower anxiety, and enable patients to better control dyspnea, deep breathing techniques can be a natural component of pulmonary rehabilitation courses.²⁵

Management of COPD depends mostly on regular physical exercise. Archivos de Bronconeumología Best Practice aid to build endurance, strengthen respiratory muscles, and raise general physical ability. While deep breathing emphasizes increasing respiratory efficiency during rest or mild activity, exercise training

aims for functional improvement during physical effort. Studies indicate that for COPD sufferers, combining exercise with breathing techniques provides the most significant advantages since deep breathing helps to control exertional dyspnea during physical activity BC Medical Journal.²⁶

Non-invasive positive pressure ventilation (NIPPV) can be quite beneficial for those with severe COPD, particularly during flare-ups. It is especially helpful in acute conditions since it helps lower hypercapnia (elevated CO2 levels) and respiratory muscle exhaustion. Bronconeumología Archivoos But compared to simple, reasonably priced, and easily available deep breathing exercises, it is more invasive and calls for specific equipment.²⁷

With reduced side effects and no requirement for medical equipment, deep breathing exercises mostly help patients by enhancing the efficiency of lung function during calm states and controlling symptoms of dyspnea and anxiety. Medical Journal of BC. Therefore, even although deep breathing might not replace these other interventions, it can be a useful complementing technique especially in helping to control everyday symptoms and increase patient comfort. Combining deep breathing with additional non-pharmacological treatments such as pulmonary rehabilitation and exercise provides a complete approach to control COPD.²⁸

Challenges and Limitations in Current Research

Although deep breathing exercises have great potential to help COPD sufferers with lung function and general health, various obstacles and limits still exist in the study on this subject. Variability in Study Designs: The variety in study designs is a main obstacle to assessing the efficacy of deep breathing treatments. With diverse kinds of breathing exercises, varying durations, intensities, and intervention frequencies tested, the approaches of experiments vary greatly. This makes consistent findings and comparison of data across studies challenging. Many studies also lack precise explanations of their interventions, which makes replication difficult.²⁹

Small sample sizes, short durations, and the use of several outcome measures have hampered research on deep breathing exercises in COPD treatment. This lack of standardizing makes it challenging to aggregate findings or develop a shared set of consistent reliable biomarkers for evaluating effectiveness. Many studies also carry the danger of confusing factors, measurement and selection bias, and bias overall. Subjectively prone self-reported findings as well as the presence of other comorbidities can make it challenging to isolate the advantages of deep breathing from other treatments. Although some studies show the benefits of deep breathing techniques, overall, the data quality is usually regarded as low. Many studies fall short of the necessary scientific standards to deduce appreciable clinically relevant improvements from COPD treatment. Better research designs, longer intervention times, standardized outcome measures, and more advanced knowledge of deep breathing techniques in COPD treatment depend on each other.³⁰

Future Directions and Recommendations

With developments in individualized treatment plans and complementary non-pharmacological therapies, deep breathing methods' future in managing COPD seems bright. Many places demand attention to maximize the efficiency of these methods: Future studies should investigate the mix of deep breathing exercises with other interventions, like pulmonary rehabilitation, to better evaluate their combined effects on improving respiratory function, exercise tolerance, and quality of life in COPD patients GOLD GOLD MDPI More thorough management for the condition could be provided by this multimodal approach.³¹

Customizing deep breathing techniques to the needs of every COPD patient, considering disease phenotype, severity, and comorbidities, will help to improve treatment results. Research on phenotypic variants of COPD is developing; combining these findings with non-pharmacological therapies such as deep breathing could assist to improve therapeutic approaches MDPI.³²

Long-Term Effects and Safety: Particularly in more severe COPD cases GOLD, more long-term trials are required to investigate the long-term benefits and any possible hazards of extended deep breathing exercises. Their more general acceptability and utilization depend on these approaches not aggravating any underlying problems.³³

Globally, low- and middle-income countries (LMICs) where healthcare resources may be restricted are calling for easily available COPD treatments. Deep breathing exercises, low-cost, non-invasive, could be very important in these areas. To offer broad advice, nevertheless, including these approaches into LMIC healthcare systems may call even further creativity in terms of mobile apps or virtual platforms. Journal of the COPD Foundation. All things considered, more study is probably going to help us to better grasp how deep breathing exercises could be tailored and maximized for COPD control. Unlocking the full potential of technology and more general systemic tactics in enhancing patient outcomes will depend on their being combined.³⁴

Conclusion

Affecting airflow, chronic obstructive pulmonary disease (COPD) is a lung condition that causes patients to find breathing challenging. Through medication, oxygen therapy, and rehabilitative activities, treatment centers on symptom control and lung function improvement. Diaphragmatic and pursed-lip breathing among deep breathing exercises have been demonstrated to boost lung capacity, enhance ventilation efficiency, and increase oxygen intake. Studies have shown that these non-pharmacological COPD treatments could be rather effective in improving lung capacity in COPD sufferers. Diaphragmatic breathing and pursed-lip breathing provide patients who adopt them in their regular activity's better oxygenation and more effective respiratory muscles, so lowering dyspnea, promoting relaxation, and maybe minimizing flare-ups. Being a non-invasive and readily available intervention, deep breathing exercises provide a possible complement to traditional COPD treatments. Consulting professional advice and customizing breathing exercises to match patient needs will offer a whole approach for effectively managing COPD symptoms.

References

- 1. Lincare. (2023). Breathing exercises for COPD. Retrieved from https://www.lincare.com
- 2. Cazorla, F. M., et al. (2023). The role of controlled breathing exercises in COPD management: A review. Respiratory Medicine, 136(1), 1-10. https://doi.org/10.1016/j.rmed.2022.11.003
- 3. Casey, E. R., et al. (2022). Breathing techniques and group-based interventions in COPD care: Enhancing adherence and quality of life. Journal of COPD, 19(4), 230-238. https://doi.org/10.1080/jcopd.2022.1825409
- 4. Steiner, M., et al. (2022). The effects of breathing exercises on lung function and quality of life in COPD: A meta-analysis. Journal of Respiratory Medicine, 148(4), 387-395. https://doi.org/10.1016/j.jrmed.2022.03.008
- 5. Global Initiative for Chronic Obstructive Lung Disease. (2023). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (COPD). GOLD. Retrieved from https://goldcopd.org
- 6. Barnes, P. J. (2022). Chronic obstructive pulmonary disease: Advances in pathogenesis and treatment. The Lancet, 400(10359), 160-174. https://doi.org/10.1016/S0140-6736(22)00870-5
- 7. Agustí, A., & Celli, B. R. (2021). The COPD exacerbation phenotypes and their implications for treatment. The Lancet Respiratory Medicine, 9(6), 609-617. https://doi.org/10.1016/S2213-2600(21)00056-3
- 8. Cazorla, F. M., et al. (2023). The role of controlled breathing exercises in COPD management: A review. Respiratory Medicine, 136(1), 1-10. https://doi.org/10.1016/j.rmed.2022.11.003
- 9. Lincare. (2023). Breathing exercises for COPD. Retrieved from https://www.lincare.com

- 10. Verywell Health. (2023). How pursed lip breathing helps with COPD. Retrieved from https://www.verywellhealth.com
- 11. Cochrane. (2023). Breathing exercises for COPD: A systematic review and meta-analysis. Cochrane Database of Systematic Reviews. Retrieved from https://www.cochranelibrary.com
- 12. Casey, E. R., et al. (2022). Breathing techniques and group-based interventions in COPD care: Enhancing adherence and quality of life. Journal of COPD, 19(4), 230-238. https://doi.org/10.1080/jcopd.2022.1825409
- 13. Cazorla, F. M., et al. (2023). The role of controlled breathing exercises in COPD management: A review. Respiratory Medicine, 136(1), 1-10. https://doi.org/10.1016/j.rmed.2022.11.003
- Dovepress. (2023). Effects of diaphragmatic and pursed-lip breathing on COPD patients: A metaanalysis. Dovepress Journal of Respiratory Research, 17(2), 150-160. https://doi.org/10.2147/RR.2023.0175
- 15. Fregonezi, G. A., et al. (2021). The impact of respiratory muscle training on exercise tolerance in COPD patients: A systematic review. Dovepress Journal of Respiratory Research, 17(3), 165-174. https://doi.org/10.2147/RR.2021.0189
- 16. Almeida, F. M., et al. (2021). Breathing exercises and their role in reducing anxiety and depression in COPD patients. Journal of Chronic Respiratory Disease, 18(4), 45-52. https://doi.org/10.1177/14799731211018011
- 17. BMC. (2023). Breathing exercises for COPD: A review of therapeutic benefits. BMC Pulmonary Medicine, 23(1), 75-82. https://doi.org/10.1186/s12890-023-02258-7
- 18. Mukherjee, S., et al. (2023). Physiological and psychological benefits of deep breathing techniques in COPD patients. Journal of Respiratory Medicine, 152(3), 215-222. https://doi.org/10.1016/j.rmed.2022.12.001
- 19. Gosselink, R., et al. (2020). Pursed-lip breathing for COPD: Mechanisms and benefits. Journal of Respiratory Therapy, 25(4), 230-238. https://doi.org/10.1016/j.jrt.2020.07.005
- 20. Gosselink, R., et al. (2020). Pursed-lip breathing for COPD: Mechanisms and benefits. Journal of Respiratory Therapy, 25(4), 230-238. https://doi.org/10.1016/j.jrt.2020.07.005
- 21. Suri, R., et al. (2023). Impact of combined breathing exercises and inspiratory muscle training on oxygen saturation in COPD patients. Journal of Pulmonary Rehabilitation, 45(1), 78-85. https://doi.org/10.1016/j.jpulrehab.2023.02.009
- 22. Almeida, F. M., et al. (2021). Breathing exercises and their role in reducing anxiety and depression in COPD patients. Journal of Chronic Respiratory Disease, 18(4), 45-52. https://doi.org/10.1177/14799731211018011
- 23. Verywell Health. (2023). Breathing techniques to relieve COPD symptoms. Retrieved from https://www.verywellhealth.com
- 24. Nici, L., et al. (2022). The role of non-invasive positive pressure ventilation in COPD management. Chest Journal, 161(6), 1284-1295. https://doi.org/10.1016/j.chest.2021.10.017
- 25. Archivos de Bronconeumología. (2023). Pulmonary rehabilitation in COPD: Benefits beyond lung function. Archivos de Bronconeumología, 59(6), 365-374. https://doi.org/10.1016/j.arbr.2022.12.004
- 26. Archivos de Bronconeumología. (2023). Pulmonary rehabilitation and exercise training for COPD management. Archivos de Bronconeumología, 59(6), 365-374. https://doi.org/10.1016/j.arbr.2022.12.004
- 27. Gosselink, R., et al. (2020). Pulmonary rehabilitation and non-invasive ventilation in COPD. Thoracic Medicine, 25(4), 200-212. https://doi.org/10.1016/j.thmed.2020.02.005
- 28. Medical Journal of BC. (2023). Deep breathing exercises for COPD: Complementary benefits in symptom control. BC Medical Journal, 65(1), 40-47. https://doi.org/10.14288/bcmj.v65i1.1940
- 29. Dove Press. (2023). The variability of study designs in COPD breathing exercise research. Dove Press Journals, 14(3), 215-225. https://doi.org/10.2147/CPAA.S345231
- 30. Li Y, Ji Z, Wang Y, Li X, Xie Y. Breathing Exercises in the Treatment of COPD: An Overview of Systematic Reviews. Int J Chron Obstruct Pulmon Dis. 2022 Dec 7;17:3075-3085. doi: 10.2147/COPD.S385855. PMID: 36514332; PMCID: PMC9741817.

WWW.DIABETICSTUDIES.ORG 39

- 31. Hindelang M, Kirsch F, Leidl R. Effectiveness of non-pharmacological COPD management on health-related quality of life a systematic review. Expert Rev Pharmacoecon Outcomes Res. 2020 Feb;20(1):79-91. doi: 10.1080/14737167.2020.1734455. Epub 2020 Mar 12. PMID: 32098530.
- 32. Tonga KO, Oliver BG. Effectiveness of Pulmonary Rehabilitation for Chronic Obstructive Pulmonary Disease Therapy: Focusing on Traditional Medical Practices. J Clin Med. 2023 Jul 21;12(14):4815. doi: 10.3390/icm12144815. PMID: 37510930: PMCID: PMC10381859.
- 33. Jo YS. Long-Term Outcome of Chronic Obstructive Pulmonary Disease: A Review. Tuberc Respir Dis (Seoul). 2022 Oct;85(4):289-301. doi: 10.4046/trd.2022.0074. Epub 2022 Jul 13. PMID: 35822318; PMCID: PMC9537656.
- 34. Tabyshova A, Hurst JR, Soriano JB, Checkley W, Wan-Chun Huang E, Trofor AC, Flores-Flores O, Alupo P, Gianella G, Ferdous T, Meharg D, Alison J, Correia de Sousa J, Postma MJ, Chavannes NH, van Boven JFM. Gaps in COPD Guidelines of Low- and Middle-Income Countries: A Systematic Scoping Review. Chest. 2021 Feb;159(2):575-584. doi: 10.1016/j.chest.2020.09.260. Epub 2020 Oct 8. PMID: 33038390; PMCID: PMC7856534.