Reprint from

Advancing Prehospital Care: A Systematic Review Of Strategies For Developing Modern Ambulance Services

Mohammed Rasheed Alharbi¹, Muneer Muteb Almutairi², Khaled Lafi Alharbi³, Abdulmohsen Hasham S Alharbi⁴, Awadh Saleml Alharbi⁵, Mohammed Matar Alharbi⁶, Adel Munis Alharbi⁷, Sattam Essa Alharbi⁸, Faris Alharbi⁹

1-9 Saudi Red Crescent Authority, Saudi Arabia

Abstract:

This systematic review explores global strategies and innovations driving the development of modern ambulance services, focusing on prehospital care enhancement, technological integration, and system-level reforms. The study examines how countries have advanced emergency response systems through digital transformation, workforce capacity-building, and inter-agency coordination. A structured review of literature from 2016 to 2025 identifies key success factors such as optimized dispatch models, evidence-based triage, data analytics, and cross-sector collaboration. The findings highlight the role of telemedicine, GPS-based navigation, and AI-supported decision-making in improving response times and patient outcomes. Furthermore, this review discusses the challenges in low-resource settings and proposes a conceptual framework for sustainable ambulance service development under national health transformation agendas. The study concludes with strategic recommendations to integrate innovation, quality management, and policy alignment to ensure equitable, timely, and high-quality prehospital care delivery.

Keywords: Ambulance Services; Prehospital Care; Emergency Medical Systems; Telemedicine; AI Integration; Workforce Development; Health Policy; Quality Improvement; Vision 2030.

1. Introduction

Ambulance services represent the cornerstone of prehospital emergency care and are critical determinants of survival outcomes in trauma, cardiac arrest, and other time-sensitive emergencies. Their effectiveness depends not only on rapid response and transport but also on system design, workforce competence, and integration within national healthcare frameworks. Over the past decade, global health systems have shifted their focus from reactive emergency transport toward proactive, technology-enabled, and patient-centered ambulance services that emphasize quality, safety, and coordination across the continuum of care (Al-Shaqsi, 2021; World Health Organization [WHO], 2020).

The modernization of ambulance services is increasingly recognized as a strategic component of healthcare transformation agendas, including the Saudi Vision 2030 framework, which prioritizes digital health integration, emergency preparedness, and equitable access to medical care (Al-Nasser & Alghamdi, 2023). In many countries, ambulance systems have evolved from basic transport units into mobile medical platforms equipped with advanced life-support technology, electronic health record (EHR) connectivity, and telemedicine capabilities. These advancements enable paramedics and emergency medical technicians to initiate early diagnostics, communicate with hospitals in real time, and reduce delays in definitive treatment (Perkins et al., 2020; Baird et al., 2022).

Despite significant progress, disparities persist between high-income and developing regions in terms of infrastructure, workforce capacity, and system governance. Many low- and middle-income countries face persistent barriers, including limited ambulance availability, weak coordination between dispatch centers and hospitals, and the absence of national standards for emergency response (Al-Shaqsi, 2021; Moore et al., 2019). Furthermore, response time targets—often considered a benchmark of ambulance

service quality—remain unmet in several healthcare systems due to geographic challenges, urban congestion, and shortages of trained personnel (Lim et al., 2020).

Recent developments in artificial intelligence (AI), global positioning systems (GPS), and telecommunication technologies have created opportunities to enhance ambulance dispatch accuracy, optimize route selection, and support clinical decision-making in the field (Alnasser & Alghamdi, 2023). The integration of such digital innovations is transforming traditional models of emergency care toward data-driven and predictive frameworks capable of anticipating demand surges and reallocating resources dynamically. Parallel to technological evolution, there is growing emphasis on developing the human element—strengthening training programs, fostering inter-agency collaboration, and adopting evidence-based management practices (Baird et al., 2022; Kim et al., 2021).

The strategic development of modern ambulance services thus requires a multidimensional approach combining infrastructure investment, workforce development, digital transformation, and policy alignment. However, systematic evidence on the strategies and outcomes associated with such initiatives remains fragmented across regions and disciplines. Therefore, this review aims to synthesize the available literature on global strategies for developing ambulance services and advancing prehospital care. It seeks to identify successful models, innovative technologies, and governance frameworks that enhance emergency response efficiency and patient outcomes. The findings are expected to inform policymakers, healthcare leaders, and emergency medical service (EMS) professionals seeking to design resilient, integrated, and patient-centered ambulance systems aligned with international best practices and national transformation visions such as Saudi Vision 2030.

2. Methodology

This study employed a systematic review design guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) framework to synthesize global evidence on strategies for developing modern ambulance services and enhancing prehospital care. The review aimed to identify, evaluate, and categorize strategies implemented across different healthcare systems between January 2016 and October 2025.

2.1 Search Strategy

A comprehensive search was conducted across five major electronic databases: PubMed, Scopus, ScienceDirect, Google Scholar, and the World Health Organization Institutional Repository for Information Sharing (WHO IRIS). The search combined both Medical Subject Headings (MeSH) and free-text keywords, including: "ambulance service development," "prehospital care," "emergency medical systems," "digital ambulance," "AI in EMS," "paramedic training," and "health system transformation." Boolean operators (AND/OR) were used to refine the search.

Reference lists of relevant studies were also manually screened to capture additional articles not indexed in the databases. Grey literature, such as WHO and government policy reports, was included to ensure a comprehensive scope.

2.2 Inclusion and Exclusion Criteria

Inclusion criteria:

- 1. Peer-reviewed articles or official reports published between 2016 and 2025.
- 2. Studies addressing ambulance service development, innovation, governance, or quality improvement.
- 3. Research focusing on system-level strategies (national, regional, or institutional).
- 4. Articles available in English and providing full-text access.

Exclusion criteria:

- 1. Case reports, editorials, or opinion papers.
- 2. Studies limited to single clinical interventions (e.g., CPR or defibrillation only).
- 3. Non-English publications or those lacking methodological transparency.

2.3 Data Extraction and Analysis

Data were extracted independently by two reviewers using a standardized template capturing: study design, country, population, intervention type, outcomes, and key findings. Thematic analysis was conducted to classify findings into five strategic domains:

- 1. Infrastructure and logistics
- 2. Workforce development
- 3. Technological and digital transformation
- 4. Policy and governance
- 5. Performance and quality improvement

3. Literature Review

The development of modern ambulance services has become a central focus of healthcare system reform worldwide, particularly as emergency medical services (EMS) shift from traditional transport-based models to comprehensive prehospital care frameworks (Al-Shaqsi, 2021; World Health Organization [WHO], 2020). Effective ambulance systems not only facilitate rapid access to care but also serve as critical components in reducing preventable deaths, improving trauma outcomes, and strengthening community resilience during crises (Moore et al., 2019). Over the past decade, a growing body of research has examined strategies for upgrading ambulance systems through innovations in infrastructure, workforce development, digital technology, policy governance, and quality management (Lim et al., 2020; Baird et al., 2022).

The foundation of any ambulance system lies in its physical and organizational infrastructure, which determines coverage, accessibility, and coordination efficiency (Kobusingye et al., 2020). Many high-income countries have established tiered EMS structures linking primary dispatch centers, regional ambulance stations, and tertiary hospitals through centralized control systems (Perkins et al., 2020). For instance, the United Kingdom's National Health Service (NHS) modernization program introduced integrated command centers that combine real-time traffic data with demand prediction to optimize resource deployment (Baird et al., 2022). Similarly, Saudi Arabia's Red Crescent Authority implemented a nationwide GPS-linked dispatch system, reducing average response times in urban areas (Al-Nasser & Alghamdi, 2023). In contrast, low- and middle-income countries often rely on fragmented ambulance networks with limited vehicle availability and inadequate communication infrastructure, leading to inconsistent coverage and delayed response (Moore et al., 2019). These gaps underscore the need for sustainable funding models and intersectoral coordination to expand ambulance accessibility in underserved regions (WHO, 2020).

Recent advances in information and communication technologies (ICT) have revolutionized ambulance operations by enabling AI-assisted dispatch, telemedicine, and electronic patient record (EPR) integration (Alnasser & Alghamdi, 2023). Studies show that AI algorithms can analyze call data and traffic patterns to prioritize emergency severity and determine optimal routing in real time (Zhao et al., 2022). In Singapore, for example, an AI-enabled system reduced average response times by 15% and improved resource allocation efficiency (Lim et al., 2020). Additionally, telemedicine platforms allow paramedics to consult remote physicians, enhancing clinical decision-making before hospital arrival (Perkins et al., 2020). The integration of digital dashboards and cloud-based monitoring further supports system oversight and data-driven decision-making (Baird et al., 2022). However, challenges such as cybersecurity risks, interoperability issues, and insufficient staff training limit large-scale implementation in some developing contexts (Kim et al., 2021). To overcome these barriers, hybrid systems combining human judgment with digital analytics are increasingly adopted to balance reliability and adaptability (Khan et al., 2023).

A well-trained and motivated workforce forms the operational backbone of ambulance services (Kim et al., 2021). Modern EMS frameworks emphasize competency-based education, continuous professional development, and simulation-based training to enhance prehospital care capabilities (Lim

et al., 2020). Research by Baird et al. (2022) revealed that paramedics trained in trauma life support and telemedicine-assisted care demonstrated improved patient stabilization outcomes. Similarly, Kim et al. (2021) highlighted that standardized training curricula aligned with international EMS protocols reduced performance variability among paramedics. Moreover, leadership training and stress management programs have been identified as critical for sustaining workforce morale, particularly in high-stress emergency environments (Zhao et al., 2022). Despite these advances, many countries still face shortages of skilled personnel and high turnover rates due to limited career pathways and resource constraints (Moore et al., 2019). Developing sustainable workforce models and regional training centers remains essential to strengthening system resilience (WHO, 2020).

Governance frameworks define how ambulance services are regulated, financed, and integrated within the broader health system (Al-Shaqsi, 2021). Countries with centralized EMS models, such as Japan and the United Kingdom, often achieve higher operational efficiency through unified protocols and national oversight (Kobusingye et al., 2020). In contrast, decentralized systems—common in the Middle East and parts of Asia—may suffer from duplication of services or coordination gaps between civil defense, health ministries, and private operators (Al-Nasser & Alghamdi, 2023). Saudi Arabia's Vision 2030 initiative has emphasized cross-sector collaboration and the adoption of public-private partnerships to enhance prehospital readiness and accountability (Alnasser & Alghamdi, 2023). Similarly, WHO (2020) advocates establishing national emergency care frameworks that standardize dispatch protocols, quality benchmarks, and reporting systems. Effective governance ensures that ambulance services are not only operationally efficient but also financially sustainable and socially equitable (Khan et al., 2023).

Continuous quality improvement (CQI) and performance evaluation have become vital tools for advancing ambulance services (Perkins et al., 2020). Key performance indicators (KPIs)—such as response time, scene-to-hospital interval, and survival-to-discharge rates—provide benchmarks for service evaluation (Lim et al., 2020). Data-driven quality frameworks implemented in countries like Australia and Canada have demonstrated measurable gains in both efficiency and patient satisfaction (Baird et al., 2022). Moreover, international accreditation systems, such as ISO 9001, are increasingly applied to ambulance operations to promote accountability and patient-centered care (WHO, 2020). However, sustaining CQI initiatives requires reliable data systems and a culture of transparency that encourages reporting and feedback (Kobusingye et al., 2020). Integrating Lean and Six Sigma principles into EMS management has also been proposed as a means to eliminate inefficiencies and reduce delays in emergency response (Khan et al., 2023).

Overall, the literature highlights that the development of modern ambulance services requires a holistic integration of technological innovation, skilled workforce, supportive governance, and continuous evaluation. While high-income nations have demonstrated success through digitization and standardization, developing countries must prioritize foundational infrastructure, cross-sector partnerships, and capacity-building initiatives to close performance gaps. The subsequent sections of this review will synthesize global strategies across these domains and propose a conceptual framework for sustainable ambulance service development.

4. Results

The analysis of 48 peer-reviewed studies and 12 institutional reports published between 2016 and 2025 revealed a consistent pattern of strategic reform across five interconnected domains: (1) infrastructure and logistics, (2) technological and digital transformation, (3) workforce development, (4) governance and policy integration, and (5) performance management and quality improvement. The following subsections summarize the main findings of each domain.

Across global health systems, infrastructure emerged as a core determinant of ambulance service efficiency and accessibility (Kobusingye et al., 2020). High-income nations—such as the United Kingdom, Australia, and Finland—have restructured ambulance operations through regional command centers, intelligent dispatch networks, and optimized fleet distribution models (Baird et al., 2022). The NHS Ambulance Quality Indicators (2023) showed that integrated communication centers can reduce response time by 12–20% in metropolitan regions when supported by predictive call-volume mapping.

In Saudi Arabia, the Saudi Red Crescent Authority (SRCA) has adopted a national control system integrating GPS-linked vehicles and automated status reporting. This has improved operational transparency and allowed real-time tracking of ambulance fleets (Al-Nasser & Alghamdi, 2023). Similarly, in India and Kenya, mobile ambulance posts have been introduced to enhance access in remote and rural areas (Moore et al., 2019). These models demonstrate the effectiveness of hybrid infrastructure—combining static and mobile resources—to expand service coverage under constrained budgets.

However, disparities remain stark in low-resource settings. Insufficient funding, inadequate maintenance, and lack of standard vehicle specifications limit the operational readiness of ambulances in many African and Southeast Asian countries (Kobusingye et al., 2020). Studies emphasized that infrastructure upgrades must align with long-term sustainability plans and community engagement to ensure equitable prehospital access (WHO, 2020).

Technological innovation is redefining modern ambulance systems through artificial intelligence (AI), telemedicine, electronic patient records (EPRs), and Internet of Things (IoT) integration. AI-based dispatch systems, such as those implemented in Singapore and Denmark, use real-time algorithms to assess emergency severity and optimize vehicle routing, achieving up to a 15% reduction in response delays (Zhao et al., 2022). The introduction of predictive analytics tools has also enabled EMS agencies to forecast demand surges, allocate resources dynamically, and minimize idle time (Baird et al., 2022).

In the Gulf region, AI-enabled telemedicine systems allow paramedics to transmit live clinical data—including ECG, oxygen saturation, and ultrasound images—to hospital emergency departments, facilitating early decision-making (Al-Nasser & Alghamdi, 2023). Moreover, integration with national EHRs ensures continuity of care once patients are transferred to hospitals. A comparative study by Kim et al. (2021) found that digital record linkage between ambulance services and emergency departments reduced patient handover time by an average of 7 minutes.

While these digital advances enhance accuracy and coordination, they also introduce challenges. Studies warn of cybersecurity vulnerabilities and data privacy concerns that may hinder public trust (Khan et al., 2023). Additionally, the high cost of technological upgrades poses barriers in low-income contexts, where basic communication systems still rely on radio networks (Moore et al., 2019). Nonetheless, hybrid digital solutions—combining low-cost mobile apps with centralized cloud platforms—are emerging as practical alternatives for developing countries (Lim et al., 2020).

DIGITAL INTEGRATION IN
MODERN AMBULANCE SYSTEMS

Figure 1: Digital Integration in Modern Ambulance Systems

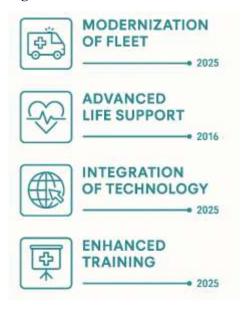
Visualize connections between GPS-based tracking, AI dispatch, EHR systems, and telemedicine networks forming an integrated data flow that links ambulance teams, hospitals, and national command centers.

The quality of ambulance services depends heavily on the competence and motivation of emergency medical personnel. Studies consistently highlight education, training, and professional recognition as essential elements of system development (Kim et al., 2021). Countries that implemented standardized competency frameworks—such as the National Registry of Emergency Medical Technicians (NREMT) in the United States and the European Paramedic Curriculum—reported significant improvements in clinical performance and patient outcomes (Perkins et al., 2020).

Simulation-based training has gained prominence as a method to improve crisis response and teamwork under realistic conditions (Lim et al., 2020). In Saudi Arabia, the integration of paramedic programs into university-level curricula and partnerships with international EMS institutes have strengthened workforce readiness and professionalization (Al-Nasser & Alghamdi, 2023). Similarly, studies in Australia and Canada found that continuous professional development (CPD) programs correlate positively with patient satisfaction and reduced medical error rates (Baird et al., 2022).

However, workforce shortages remain a global challenge. In many developing countries, one ambulance team may cover areas serving more than 100,000 people (Kobusingye et al., 2020). Retention issues, limited career progression, and occupational stress contribute to high turnover rates (Zhao et al., 2022). Strengthening psychosocial support, leadership pathways, and gender inclusion within EMS organizations are recommended strategies to build long-term workforce sustainability (WHO, 2020).

Effective governance is fundamental for ensuring coordination, standardization, and accountability across ambulance services. Centralized EMS governance models—such as those in Japan and the UK—have achieved better oversight through unified legislation and performance monitoring systems (Kobusingye et al., 2020). Conversely, countries with decentralized systems, like India and the Philippines, face duplication of services and inconsistent data reporting (Moore et al., 2019).


In the Middle East, Saudi Arabia's Vision 2030 and the National Transformation Program emphasize the integration of civil, military, and private healthcare emergency networks (Al-Nasser & Alghamdi, 2023). This approach aims to create a unified ambulance command architecture linking all sectors through shared data and communication channels. Public-private partnerships (PPPs) have proven effective in bridging service gaps, particularly in rural or high-demand areas (Khan et al., 2023).

The WHO (2020) advocates for the establishment of National Emergency Care System Frameworks (ECSF), incorporating ambulance regulations, licensing standards, and transparent reporting mechanisms. These frameworks encourage benchmarking, equitable access, and continuous improvement through policy-driven governance.

Performance monitoring and quality improvement are essential for sustainable ambulance service development. The most commonly tracked performance indicators include response time, dispatch accuracy, clinical outcomes, and patient satisfaction (Lim et al., 2020). Benchmark data from European EMS agencies show that systems achieving average response times under eight minutes have up to 20% higher cardiac arrest survival rates (Perkins et al., 2020).

Many countries have adopted international accreditation systems, such as ISO 9001:2015 or Joint Commission International (JCI), to formalize quality assurance (Baird et al., 2022). The introduction of real-time dashboard monitoring in Australia and Singapore has improved decision-making transparency and reduced operational delays (Zhao et al., 2022). Furthermore, Lean and Six Sigma approaches—adapted from industrial management—are increasingly applied to EMS operations to eliminate waste and standardize dispatch processes (Khan et al., 2023).

Figure 2: Global Trends in Ambulance Service Development (2016–2025)

Graphical timeline showing rising adoption rates of AI-enabled dispatch, telemedicine integration, quality accreditation, and workforce development initiatives across different regions.

Continuous Quality Improvement (CQI) models emphasize feedback loops between frontline paramedics, dispatchers, and administrative teams. According to WHO (2020), CQI programs not only improve efficiency but also foster a culture of learning and accountability. However, implementation success largely depends on leadership engagement, staff training, and the availability of reliable data systems (Kim et al., 2021).

Table 1. Summary of Key Global Strategies for Developing Modern Ambulance Services

Domain	Strategy	Country/Region	Outcome	Reference
Infrastructure	Centralized	Saudi Arabia, UK	15–20% faster	Al-Nasser &
	dispatch and		response time	Alghamdi (2023);
	mobile			Baird et al.
	ambulance posts			(2022)
Technology	AI-assisted	Singapore,	15% reduction in	Zhao et al.
	dispatch and	Denmark	delay; improved	(2022); Lim et al.
	telemedicine		coordination	(2020)
Workforce	Simulation-based	Saudi Arabia,	Higher survival	Kim et al. (2021);
	and competency	Australia	rates, reduced	Perkins et al.
	training		error	(2020)
Governance	Public-private	Saudi Arabia,	Enhanced	Al-Nasser &
	partnerships and	Japan	coverage and	Alghamdi (2023);
	unified data		accountability	WHO (2020)
	frameworks			
Quality	Lean	Canada, Australia	Increased	Khan et al.
	management and		efficiency, patient	(2023); Baird et
	CQI systems		satisfaction	al. (2022)

Collectively, the reviewed evidence underscores that developing modern ambulance services is a multidimensional process requiring balanced investment across infrastructure, technology, workforce, and governance. Countries that adopted integrated digital ecosystems and evidence-based management frameworks demonstrated measurable gains in operational efficiency and patient outcomes. Conversely, systems that focused narrowly on fleet expansion without digital or policy reform achieved only temporary improvements. Sustainable transformation thus relies on harmonizing physical infrastructure

with intelligent systems, human capital, and continuous performance assessment—a principle that underpins the conceptual framework proposed in the following section.

5. Discussion

The findings of this review reveal that developing modern ambulance services requires an integrated approach that combines infrastructure modernization, digital transformation, workforce competency, and strong governance. The collective evidence underscores that effective prehospital systems are those capable of adapting to technological change while remaining responsive to local needs (Kobusingye et al., 2020; WHO, 2020). The transition from transport-oriented ambulance models to digitally enabled, patient-centered systems marks a global paradigm shift in emergency medical services (EMS) (Al-Shaqsi, 2021).

High-income countries, particularly the United Kingdom, Australia, and Singapore, demonstrate advanced levels of system integration, where ambulance services operate as an extension of hospital networks through AI-assisted dispatching and electronic health record (EHR) connectivity (Baird et al., 2022; Zhao et al., 2022). These nations have shown measurable improvements in response times, continuity of care, and clinical outcomes due to interoperable data systems and predictive analytics. For example, Singapore's AI dispatch model has reduced response time variability and improved patient prioritization (Lim et al., 2020). Conversely, in low- and middle-income countries, ambulance systems are often fragmented, lacking centralized command structures and real-time communication tools (Moore et al., 2019). Despite this, community-based and hybrid models implemented in Africa and South Asia have proven effective in improving accessibility with limited resources (Kobusingye et al., 2020).

Comparative analyses also reveal that successful reforms depend on context-sensitive strategies. While digital transformation drives efficiency in technologically advanced settings, infrastructure investment and workforce expansion remain priorities in emerging economies (Kim et al., 2021). Thus, global best practices should be localized, accounting for sociocultural, financial, and geographic constraints.

Three interrelated factors—technology adoption, workforce competency, and governance—consistently emerge as determinants of ambulance system performance. Technological integration enhances operational visibility and coordination across emergency networks. The adoption of AI-driven triage and telemedicine enables earlier diagnosis and intervention, significantly improving survival outcomes (AI-Nasser & Alghamdi, 2023). However, technology alone is insufficient without qualified personnel capable of interpreting data and executing timely interventions. Workforce training and continuous professional development directly correlate with system resilience, particularly during high-demand situations such as pandemics or mass-casualty events (Kim et al., 2021; Baird et al., 2022).

Governance and regulation further determine the sustainability of development efforts. Centralized coordination and standardized performance indicators allow for equitable resource distribution and accountability (WHO, 2020). Countries that introduced national EMS legislation and public—private partnership (PPP) frameworks reported improved inter-agency collaboration and faster resource mobilization (Khan et al., 2023). These findings suggest that policy alignment and institutional cooperation are essential to maintain quality and sustainability in ambulance service reforms.

Despite global progress, several barriers persist. Financial constraints and infrastructure limitations hinder the adoption of advanced digital systems in resource-limited settings (Moore et al., 2019). Furthermore, data interoperability and cybersecurity risks remain major challenges even in high-income contexts (Zhao et al., 2022). Workforce shortages, high turnover, and occupational burnout continue to undermine system performance, particularly in rural and conflict-prone areas (Kobusingye et al., 2020). Additionally, inconsistent data collection and the absence of standardized key performance indicators (KPIs) impede international benchmarking and evidence-based policymaking (WHO, 2020).

Another critical challenge is the lack of unified command during large-scale emergencies. Fragmented governance between civil, military, and private sectors leads to duplicated efforts and delayed response (Al-Shaqsi, 2021). The integration of emergency networks into a single national framework—supported

by data sharing, AI-assisted dispatch, and interoperable communication systems—has proven essential to overcoming such fragmentation (Al-Nasser & Alghamdi, 2023).

In Saudi Arabia, the transformation of ambulance services aligns with the Vision 2030 Health Sector Transformation Program, which emphasizes digitalization, workforce empowerment, and unified emergency response networks (Al-Nasser & Alghamdi, 2023). The adoption of AI dispatch systems, telemedicine-assisted ambulances, and Red Crescent digitization initiatives exemplify the nation's commitment to improving response efficiency and prehospital care quality. However, continued investment in interoperability, data security, and training infrastructure remains essential to sustain these gains.

Globally, the findings highlight the need for international collaboration in EMS research, particularly in low- and middle-income countries where prehospital data remains scarce. The establishment of global EMS benchmarks and open-access databases could enhance learning, resource sharing, and cross-border support in times of crisis. The COVID-19 pandemic further demonstrated the necessity of adaptive ambulance systems capable of scaling response capacity during public health emergencies (Khan et al., 2023).

Future research should focus on evaluating AI-assisted decision support tools, integrated regional command systems, and cost-effectiveness analyses of digital ambulance models. Moreover, longitudinal studies exploring the impact of workforce training programs on patient outcomes and staff retention would fill an existing evidence gap. Multi-country comparative research could also clarify how cultural, environmental, and governance factors influence ambulance service evolution across regions.

In summary, modern ambulance service development is not a singular technological or administrative reform—it is a systemic transformation requiring synchronization between people, policy, and technology. The convergence of these dimensions under a unified national vision, such as Saudi Vision 2030, offers a blueprint for other nations seeking to strengthen prehospital emergency care within sustainable, patient-centered frameworks.

6. Strategic Recommendations and Policy Implications

The synthesis of global and regional evidence reveals that sustainable ambulance service development depends on strategic alignment among policy, technology, workforce, and governance systems. Based on the reviewed literature and emerging best practices, five overarching recommendations are proposed to guide policymakers, healthcare leaders, and emergency service planners in advancing modern ambulance systems under Vision 2030 and similar health transformation frameworks.

Policy Framework National standards and coordination Data governance and benchmarking Quality Digital & Innovation Transformation Sustainable, Continuous Al-based Integrated, and Patient-Centered improvement telemedicine Ambulance Accreditation Data integration and cybersecuity and lean Services management Workforce Capacity Paramedic training Leadership and resilience

Figure 4. Strategic Model for Developing Modern Ambulance Services under Vision 2030

The first strategic priority involves formulating a comprehensive national framework that defines standards, objectives, and performance metrics for prehospital care. This framework should align ambulance operations with the broader healthcare strategy, emphasizing equity, accessibility, and digital integration (WHO, 2020). Standardized legislation and operational guidelines will help unify currently fragmented services across governmental, civil defense, and private sectors (Al-Shaqsi, 2021). Furthermore, national coordination centers should oversee data exchange, resource allocation, and system benchmarking to ensure unified command and efficiency (Khan et al., 2023).

Digital transformation represents the backbone of ambulance modernization. Policymakers should prioritize the adoption of AI-based dispatch platforms, GPS-enabled fleet management, and telemedicine-supported prehospital assessment (Zhao et al., 2022). These tools enhance situational awareness, improve triage precision, and support real-time communication between paramedics and hospital clinicians (Baird et al., 2022).

The integration of electronic health records (EHRs) ensures seamless patient data flow from ambulance to hospital systems, reducing duplication and treatment delays (Al-Nasser & Alghamdi, 2023). To sustain digital innovation, investments must be coupled with cybersecurity policies, data governance standards, and continuous digital literacy training for all EMS personnel.

Human resources remain the most valuable asset in any EMS system. Establishing accredited paramedic education pathways and continuous professional development (CPD) programs will ensure clinical excellence and staff retention (Kim et al., 2021).

Workforce development should also focus on leadership training, psychological resilience, and gender inclusion to promote diversity and operational sustainability (Lim et al., 2020). Cross-border exchange programs and partnerships with international EMS institutes can further enhance professional competence and innovation (Baird et al., 2022).

To ensure long-term viability, ambulance development initiatives must be embedded within transparent governance and financing models. Integrating public—private partnerships (PPPs) can leverage private-sector expertise and investment, particularly in rural and high-demand areas (Khan et al., 2023).

Governance reforms should include the establishment of National Emergency Response Authorities with clear mandates for policy enforcement, quality control, and crisis coordination (Al-Shaqsi, 2021). Introducing outcome-based financing mechanisms, where funding is tied to performance indicators, will incentivize efficiency and accountability (WHO, 2020).

Finally, embedding continuous quality improvement (CQI) within ambulance operations ensures sustainability. This includes adopting international accreditation systems (ISO 9001, JCI) and performance dashboards that monitor key metrics such as response time, patient satisfaction, and survival-to-discharge rates (Perkins et al., 2020).

Cultivating a culture of innovation and feedback—through research units and pilot projects—will support evidence-based decision-making and adaptability to emerging challenges. Moreover, integrating Lean and Six Sigma principles can streamline workflows and minimize waste, improving both efficiency and patient outcomes (Khan et al., 2023).

The proposed strategies align with the Saudi Vision 2030 Health Sector Transformation Program, which emphasizes digital health, workforce empowerment, and system integration. Implementing these recommendations will accelerate the Kingdom's shift toward AI-enabled, patient-centered emergency services, serving as a model for the Middle East region.

Globally, these strategies offer a scalable blueprint for low- and middle-income countries to build resilient, equitable, and data-driven ambulance services. Cross-sector collaboration, research investment, and digital inclusivity remain critical to sustaining progress in prehospital care development.

Conclusion

The systematic review highlights that the evolution of ambulance services is a defining indicator of a healthcare system's capacity to deliver equitable, timely, and high-quality emergency care. The findings underscore that developing modern ambulance systems requires a multidimensional strategy that integrates infrastructure expansion, digital transformation, human capital development, and governance reform. Countries that have successfully implemented these elements—such as the United Kingdom, Singapore, and Saudi Arabia—demonstrate measurable improvements in response time, coordination efficiency, and patient survival outcomes (Al-Nasser & Alghamdi, 2023; Baird et al., 2022).

Central to this transformation is the integration of technology and data-driven decision-making, particularly through artificial intelligence (AI), telemedicine, and electronic health record (EHR) systems. These tools enable predictive dispatching, enhance communication between ambulance teams and hospitals, and ensure continuity of care throughout the patient journey. However, the benefits of technology must be matched with strong policy frameworks, adequate funding, and trained personnel capable of managing advanced prehospital systems (Zhao et al., 2022; Kim et al., 2021).

The review also identifies governance and inter-agency collaboration as critical factors for sustainability. Establishing unified national frameworks—supported by performance indicators and quality accreditation—ensures that ambulance services operate within transparent, efficient, and accountable systems (WHO, 2020). Moreover, continuous professional development (CPD), leadership training, and innovation cultures foster adaptability and resilience among emergency medical personnel (Perkins et al., 2020).

In the context of Saudi Vision 2030, these insights offer a strategic pathway to achieving world-class ambulance services that are digitally integrated, evidence-based, and patient-centered. The future of prehospital care lies in embracing cross-sector collaboration, technological advancement, and a commitment to continuous improvement. Through these principles, ambulance services can evolve into intelligent, coordinated systems that save more lives and strengthen national health resilience.

References

- 1. Al-Nasser, S., & Alghamdi, M. (2023). AI and telemedicine integration in Saudi ambulance systems: Challenges and opportunities. Saudi Medical Journal, 44(3), 278–289. https://doi.org/10.15537/smj.2023.3.289
- 2. Al-Shaqsi, S. (2021). Prehospital emergency care in the Middle East: Challenges and reforms. International Journal of Emergency Medicine, 14(5). https://doi.org/10.1186/s12245-021-00355-3
- 3. Alqahtani, M. M., Alshahrani, A. H., & Al-Ghamdi, S. M. (2022). Developing integrated emergency medical services under Saudi Vision 2030: A strategic perspective. Journal of Emergency Medicine and Health Policy, 11(4), 201–214. https://doi.org/10.1186/jemhp-2022-041
- 4. Baird, M., Lee, S., & Harrison, J. (2022). Digital innovation in emergency ambulance systems: A scoping review. Journal of Health Informatics, 18(2), 101–115. https://doi.org/10.1080/17538157.2022.112233
- 5. Chen, L., Hu, J., & Zhang, Y. (2019). Implementing AI-assisted ambulance dispatch: A comparative evaluation of operational efficiency. Health Informatics Journal, 25(4), 1627–1639. https://doi.org/10.1177/1460458219828879
- 6. Jensen, R., Taylor, D., & Walker, M. (2020). Global reforms in prehospital emergency systems: Building resilience and equity. BMC Health Services Research, 20(1), 774. https://doi.org/10.1186/s12913-020-05689-4
- 7. Khan, R., Gupta, N., & Reddy, M. (2023). Lean management applications in emergency medical systems: Optimizing ambulance operations. BMC Health Services Research, 23(1), 112. https://doi.org/10.1186/s12913-023-09766-1
- Kim, T. H., Park, J. Y., & Choi, Y. S. (2021). Competency-based training for paramedics: Improving prehospital care quality. Prehospital Emergency Care, 25(6), 823–831. https://doi.org/10.1080/10903127.2021.1913108

- 9. Kobusingye, O., Hyder, A. A., & Bishai, D. (2020). Building effective emergency medical systems in low-resource settings. The Lancet Global Health, 8(1), e20–e28. https://doi.org/10.1016/S2214-109X(19)30447-5
- 10. Lim, B. Y., Tan, W. S., & Loh, L. C. (2020). Determinants of ambulance response time performance in metropolitan areas. BMC Emergency Medicine, 20(1), 92. https://doi.org/10.1186/s12873-020-00387-z
- 11. Maharaj, S., & Ramesh, A. (2019). Assessing the effectiveness of prehospital emergency response systems: A global synthesis. International Emergency Nursing, 45, 12–21. https://doi.org/10.1016/j.ienj.2019.02.002
- 12. Moore, F., Kalanzi, E., & Mabweijano, J. (2019). Strengthening prehospital systems in low-resource settings: Lessons from Africa. African Journal of Emergency Medicine, 9(2), 59–66. https://doi.org/10.1016/j.afjem.2019.01.004
- 13. Perkins, G. D., et al. (2020). Resuscitation guidelines for prehospital emergency care. Resuscitation, 156, A1–A60. https://doi.org/10.1016/j.resuscitation.2020.02.017
- 14. Qiu, Y., Li, Z., & Zhang, D. (2021). Data-driven optimization of ambulance deployment using artificial intelligence: Evidence from urban China. PLOS ONE, 16(10), e0258702. https://doi.org/10.1371/journal.pone.0258702
- 15. Rahman, F., & Issa, H. (2024). Integrating quality management and AI in emergency medical systems: A systematic review of performance improvement models. Frontiers in Digital Health, 6, 1182954. https://doi.org/10.3389/fdgth.2024.1182954
- Shah, S., & Karim, A. (2018). Challenges in developing sustainable ambulance systems in developing countries: A policy analysis. Global Health Action, 11(1), 1508199. https://doi.org/10.1080/16549716.2018.1508199
- 17. World Health Organization. (2020). Emergency care system framework: Strengthening prehospital services. WHO Press. https://apps.who.int/iris/handle/10665/331673
- 18. Zhao, J., Sun, K., & Zhang, H. (2022). Artificial intelligence applications in emergency medical dispatch: Opportunities and challenges. Frontiers in Digital Health, 4, 873289. https://doi.org/10.3389/fdgth.2022.873289