

# The Digital Transformation of Diagnostic Imaging: A Narrative Review on Cloud-Based Platforms, Artificial Intelligence Integration, and Global Networks in Modern Teleradiology

Mohammed Ali Zaiad Alasiri<sup>1</sup>, Abdullah Muslat Dohim Alboqami<sup>2</sup>, Nawal Owayyish Rajaallah Alaslani<sup>3</sup>, Anood Hassan Almowalad<sup>4</sup>, Naif Yahya F Al Samah<sup>5</sup>, Ahmed Saeed Alghamdi<sup>6</sup>, Waleed Shaee Albaqami<sup>7</sup>, Fatmeh Ali Alhatmi<sup>8</sup>, Ibrahim Salem Al Gaeir<sup>9</sup>, Hasan Yousof Marghalani<sup>10</sup>, Basmah Kareem Aljedaani<sup>11</sup>, Fuad Hamdan Alsahafe<sup>12</sup>, Ksa, Al-Tala'a<sup>13</sup>, Khaled Mabrok Altayari<sup>14</sup>

<sup>1</sup>. Ksa, Al-Thager Hospital, Jeddah.

<sup>2</sup>. Ksa, Al-Thager Hospital, Jeddah.

<sup>3</sup>. Ksa, Al-Thager Hospital, Jeddah.

<sup>4</sup>. Ksa, King Abdulaziz Hospital, Jeddah.

<sup>5</sup>. Ksa, Al-Thager Hospital, Jeddah.

<sup>6</sup>. Ksa, Al-Thager Hospital, Jeddah.

<sup>7</sup>. Ksa, Al-Thager Hospital, Jeddah.

<sup>8</sup>. Ksa, Al-Thager Hospital, Jeddah.

<sup>9</sup>. Ksa, Al-Thager Hospital, Jeddah.

<sup>10</sup>. Ksa, Al-Thager Hospital, Jeddah.

<sup>11</sup>. Ksa, Al-Thager Hospital, Jeddah.

<sup>12</sup>. Primary Healthcare Center, Khulais Governorate, Makkah Al-Mukarramah Ministry Of Health/Makkah Health Cluster

<sup>13</sup>. Ksa, Al-Tala'a Primary Healthcare Center, Khulais Governorate, Makkah Al-Mukarramah

<sup>14</sup>. Ministry Of Health/Makkah Health Cluster

## Abstract

**Background:** Teleradiology has evolved from a niche solution for after-hours coverage to a foundational component of modern radiology practice, accelerated by technological innovation and globalized healthcare demands. The convergence of cloud computing, artificial intelligence (AI), and sophisticated data networks is fundamentally reshaping how medical images are stored, analyzed, and interpreted across geographical and institutional boundaries.

**Aim:** This narrative review aims to critically synthesize contemporary evidence (2010-2024) on the technological, operational, and professional trends transforming teleradiology.

**Methods:** A comprehensive literature search was conducted across PubMed, IEEE Xplore, Scopus, and the Journal of Digital Imaging archives.

**Results:** The transition from on-premise Virtual Private Networks (VPNs) to scalable, vendor-neutral cloud platforms enables unprecedented flexibility, disaster recovery, and multi-institutional collaboration. These trends facilitate the emergence of global radiology reading networks, 24/7 subspecialty coverage, and integrated diagnostic hubs. However, critical challenges persist regarding data sovereignty, cybersecurity resilience, inconsistent regulatory frameworks, liability attribution in AI-assisted reads, and the potential erosion of the traditional radiologist-patient-clinician triad.

**Conclusion:** Teleradiology is undergoing a profound paradigm shift from a simple image transmission service to a complex, AI-enhanced, cloud-hosted ecosystem. Future success requires robust international data governance frameworks, standardized AI validation protocols, and a redefinition of radiologist roles within distributed diagnostic networks to ensure these technological advancements translate into equitable, accurate, and secure patient care.

**Keywords:** cloud-based teleradiology, artificial intelligence in radiology, diagnostic imaging networks, radiology workflow optimization, telemedicine regulation

## Introduction

The discipline of radiology has been inextricably linked with technological advancement since its inception. Teleradiology, the electronic transmission of radiographic images from one location to

another for interpretation and consultation, represents a pivotal chapter in this ongoing evolution. Initially conceptualized in the late 20th century as a solution for providing after-hours emergency coverage to rural or underserved hospitals, teleradiology has matured into a sophisticated, integral component of contemporary diagnostic imaging services (Bashshur et al., 2016). Its growth has been catalyzed by a confluence of factors: persistent shortages of subspecialist radiologists in certain regions, the economic pressures of maintaining 24/7 in-house coverage, the increasing complexity of cross-sectional imaging, and, most significantly, a series of disruptive technological innovations (Lundberg et al., 2010).

The current transformation of teleradiology moves beyond its original premise of basic connectivity. We are witnessing a paradigm shift from a model focused on simple image transmission—using point-to-point connections or virtual private networks (VPNs)—to one characterized by integrated diagnostic ecosystems. This new paradigm is built upon three interconnected technological pillars: cloud computing infrastructure, advanced artificial intelligence (AI) algorithms, and high-fidelity, secure global data networks (Pesapane et al., 2018). Cloud technology has liberated image data from the confines of institutional firewalls and proprietary Picture Archiving and Communication Systems (PACS), enabling vendor-neutral archiving, universal access, and scalable computing power. Simultaneously, AI, particularly deep learning, is no longer a futuristic concept but a clinical reality, augmenting the radiologist's workflow from image reconstruction and noise reduction to detection, quantification, and even preliminary reporting (Langlotz et al., 2019; Lamb et al., 2022).

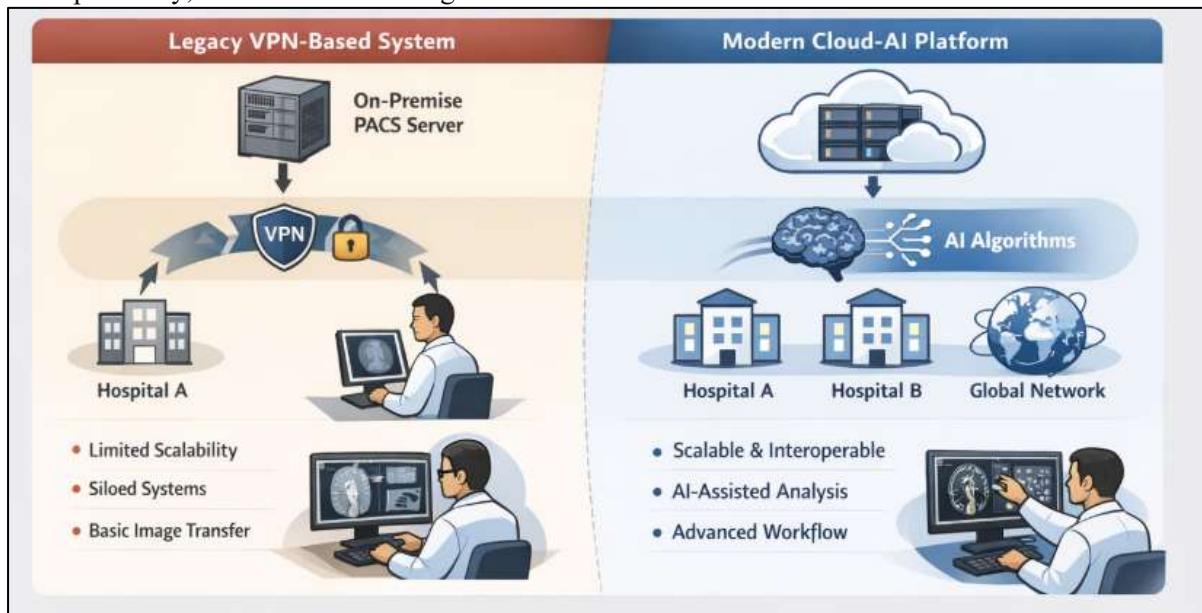
This narrative review argues that the convergence of these trends is not merely enhancing existing teleradiology practice but is fundamentally redefining the radiologist's role, the economics of imaging services, and the very geography of expertise. It creates opportunities for global subspecialty networks, real-time collaborative tumor boards, and democratized access to high-level diagnostic interpretation. However, it also introduces profound challenges related to data security and sovereignty, professional liability in AI-augmented workflows, regulatory heterogeneity across jurisdictions, and the potential disruption of traditional hospital-based radiology departments (Herington et al., 2023).

### **The Ascendancy of Cloud-Native Architecture**

The infrastructure underlying teleradiology has undergone a revolutionary shift, moving from client-server models to elastic, service-oriented cloud architectures. This transition is the bedrock upon which modern remote radiology services are built.

### **From VPNs to Vendor-Neutral Archives (VNAs) and Cloud PACS**

The first generation of teleradiology relied on dedicated telephone lines, integrated services digital network (ISDN) connections, and, later, VPNs to create secure tunnels between a sending facility and a remote radiologist's workstation. This model was inherently point-to-point, complex to scale, and often locked into proprietary hardware and software (Santos et al., 2023). The advent of cloud-based Vendor-Neutral Archives (VNAs) and full Cloud PACS solutions has disrupted this paradigm. These platforms store imaging studies in standardized formats (primarily DICOM) within secure, geographically distributed data centers managed by third-party providers (Amazon Web Services, Google Cloud, Microsoft Azure). The advantages are multifold: scalability (storage and compute resources can be elastically provisioned), accessibility (studies can be accessed from any DICOM-compliant viewer via a web browser or thin client, with appropriate authentication), disaster recovery (inherent data redundancy), and cost transformation from capital expenditure (CapEx) to operational expenditure (OpEx) (He et al., 2023). For teleradiology groups, this means they can onboard new client hospitals without deploying physical infrastructure, and radiologists can work seamlessly from any location with robust internet connectivity (Kalyanpur et al., 2023).


### **Interoperability and Integration**

A core promise of the cloud is enhanced interoperability. Cloud platforms facilitate the aggregation of imaging data with other elements of the electronic health record (EHR), such as laboratory results, pathology reports, and prior clinical notes, into a unified diagnostic workspace. Application Programming Interfaces (APIs) allow for the integration of third-party analytics and AI tools directly into the reading workflow (Kohli et al., 2017). This moves teleradiology beyond a simple image review station towards a diagnostic intelligence platform, where contextual clinical data and computational aids are presented in concert with the images.

### **Security, Privacy, and Compliance**

The migration to the cloud intensifies concerns about data security, patient privacy, and regulatory compliance (e.g., HIPAA in the USA, GDPR in the EU). Reputable cloud providers invest in security measures—encryption both in transit and at rest, sophisticated identity and access management, and

continuous threat monitoring—that often exceed the capabilities of individual hospitals (Li et al., 2023; Majhi et al., 2022). However, the model introduces shared responsibility: while the cloud provider secures the infrastructure, the teleradiology service remains responsible for configuring access controls, auditing logs, and ensuring business associate agreements are in place. Furthermore, data sovereignty laws, which mandate that citizen data be stored within national borders, can complicate the use of global cloud data centers, requiring careful architectural planning (Jalali et al., 2019; Nifakos et al., 2021). Figure 1 represents a conceptual comparison between legacy VPN-based teleradiology systems and contemporary cloud-native, AI-integrated platforms, highlighting scalability, interoperability, and workflow intelligence.



**Figure 1.** Conceptual comparison between legacy VPN-based teleradiology systems and contemporary cloud-native, AI-integrated platforms, highlighting scalability, interoperability, and workflow intelligence.

#### The Integration of Artificial Intelligence into the Teleradiology Workflow

Artificial intelligence, specifically deep learning for computer vision, is transitioning from a research topic to a practical tool within the teleradiology environment, acting as a force multiplier for the remote radiologist.

#### AI as a Workflow Orchestrator

Before a radiologist even opens a study, AI can optimize the workflow. Algorithms can perform automated study prioritization (triage), flagging studies with potential critical findings like intracranial hemorrhage, pulmonary embolism, or pneumothorax for immediate review (Chilamkurthy et al., 2018). This is particularly valuable in high-volume nighttime teleradiology services. AI can also conduct prototyping and image quality control, ensuring the correct examination was performed and checking for artifacts that might degrade diagnostic accuracy.

#### AI as a Detection and Quantification Assistant

This is the most prominent application. AI models act as concurrent or pre-read assistants, highlighting regions of interest. In chest CT, algorithms can detect and segment lung nodules, measure their volume, and track growth across serial studies with superhuman consistency (Ardila et al., 2019). In neurology, tools can quantify brain volume loss, identify acute ischemic stroke, or segment meningiomas. In mammography, AI supports breast cancer detection, potentially reducing perceptual errors (McKinney et al., 2020). For the teleradiologist, especially one covering a broad range of subspecialties, these tools provide a valuable "second look," reducing cognitive fatigue and minimizing the risk of overlooking subtle findings.

#### AI-Enhanced Reporting and Communication

Natural Language Processing (NLP) is being integrated to assist with reporting. This includes structured report generation, where the radiologist's dictation is parsed into standardized data elements, and context-aware reporting, where the AI suggests relevant differential diagnoses based on the findings and patient demographics embedded in the study metadata (Cochon et al., 2018). Furthermore, AI can facilitate communication by automatically extracting key images and findings to generate concise

summaries for referring physicians, bridging the gap between the remote radiologist and the point of care.

### Validation, Liability, and the Human-AI Partnership

Critical questions remain. The performance of AI algorithms is highly dependent on the training data, and real-world generalizability can be problematic. Robust, independent clinical validation in diverse practice settings is essential before reliance (Park & Han, 2018). The liability framework is undefined: who is responsible if an AI misses a critical finding that a radiologist also misses? Is it the radiologist, the AI vendor, or the teleradiology group that integrated the tool? Establishing a "human-in-the-loop" paradigm where the AI is an assistant and the radiologist maintains final diagnostic authority is the prevailing ethical and legal stance, but this requires radiologists to develop new skills in AI oversight and understanding algorithmic limitations (Geis et al., 2019).

**Table 1: The Evolving Teleradiology Technology Stack: From Legacy to Cloud-AI Integration**

| Component                 | Legacy/First-Generation Model (Pre-2010s)                                 | Contemporary Cloud-AI Integrated Model (2020s)                                                     | Impact on Teleradiology Service                                                                                 |
|---------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| <b>Infrastructure</b>     | On-premise servers, point-to-point VPNs, proprietary PACS.                | Cloud-hosted VNA/Cloud PACS (AWS, Azure, GCP), web-based access.                                   | Enables rapid scaling, reduces IT overhead, facilitates universal access, and improves disaster recovery.       |
| <b>Data Access</b>        | Client-server; requires specific workstation software and VPN connection. | Zero-footprint web viewers; DICOM streaming via HTTPS; mobile-responsive.                          | Allows radiologists to work from any location; simplifies deployment for client hospitals.                      |
| <b>Workflow</b>           | Manual study distribution; basic worklists.                               | AI-driven triage & prioritization; integrated clinical data (EHR via APIs).                        | Improves turnaround time for critical cases; provides clinical context for more accurate reads.                 |
| <b>Interpretation Aid</b> | Limited CAD (e.g., for mammography); standalone tools.                    | Embedded AI algorithms for detection, segmentation, and quantification across multiple modalities. | Acts as a concurrent reader, reduces perceptual errors, and enables advanced analytics (e.g., tumor volumetry). |
| <b>Reporting</b>          | Dictation/transcription; free-text reports.                               | Structured reporting templates, NLP-assisted draft generation, and automated key image selection.  | Enhances report consistency, facilitates data mining, and improves communication with referrers.                |
| <b>Collaboration</b>      | Phone calls, emailed images.                                              | Integrated secure messaging, cloud-based collaborative review sessions, and virtual tumor boards.  | Fosters subspecialty consultation and second opinions within the platform, strengthening the diagnostic chain.  |

### Service Delivery Models and the Globalization of Radiology Expertise

The technological enablers of cloud and AI are giving rise to new organizational and economic models for delivering radiology services, challenging traditional geographic and institutional boundaries.

#### The Consolidation of Nighthawk and Subspecialty Networks

The classic "nighthawk" model, providing after-hours preliminary reads, is being transformed. Large teleradiology firms now offer 24/7 final interpretations, leveraging time-zone differences to create follow-the-sun reading networks that maximize radiologist productivity and provide consistent daytime coverage to clients worldwide (Agrawal, 2022). More significantly, subspecialty teleradiology networks are emerging. A small community hospital can now access world-class expertise in pediatric

neuroradiology, musculoskeletal oncology, or cardiac MRI on-demand via a cloud platform. This democratizes access to sub-specialization, potentially improving diagnostic accuracy for complex cases (Nobel et al., 2022).

### **The Integrated Diagnostic Hub**

A more advanced model is the creation of centralized "reading hubs." These are facilities where radiologists, supported by AI tools and data analysts, provide interpretation services for a network of multiple hospitals, often owned by the same health system or in a strategic partnership. The hub consolidates expertise, standardizes protocols and reports, and achieves economies of scale. It represents a shift from radiology as a hospital department to radiology as a managed service (Larson et al., 2020; Recht et al., 2020).

### **Globalization and Cross-Border Radiology**

Cloud platforms effortlessly cross political borders, enabling true global radiology services. A hospital in Asia can subcontract overnight reads to a group in North America, while a European clinic can seek a subspecialty second opinion from an expert in Australia. This raises complex questions: Which country's medical licensure and malpractice liability laws apply? How is quality assurance standardized across different training and practice cultures? How are reimbursement and billing handled internationally? While technology enables this model, a consistent regulatory and legal framework is largely absent, creating a patchwork of bilateral agreements and ad-hoc solutions (Hanna et al., 2020; Ranschaert et al., 2015).

### **Persistent Challenges and Critical Considerations for Sustainable Practice**

The promises of cloud-based, AI-enhanced teleradiology are tempered by significant and unresolved challenges that must be addressed for sustainable growth.

### **Regulatory and Legal Fragmentation**

The regulatory landscape is a major impediment. Requirements for radiologist licensure, credentialing at client hospitals, malpractice insurance coverage, and adherence to local quality standards vary dramatically by state and country. The lack of reciprocity or streamlined processes for teleradiology licensure creates administrative burdens (Rosenkrantz et al., 2020). Liability in AI-assisted reads is a legal gray area. Furthermore, billing compliance is fraught with complexity, with payer rules differing on whether the professional component can be billed separately from the technical component when services are rendered remotely and across state lines.

### **Data Governance and Cybersecurity Threats**

While cloud providers offer robust security, the attack surface expands. Teleradiology platforms are high-value targets for ransomware attacks, as encrypted imaging data can cripple hospital operations. Ensuring end-to-end encryption, rigorous access controls, and comprehensive audit trails is non-negotiable (Kruse et al., 2017). Data governance policies must clearly define data ownership, permissible uses (e.g., for AI training), and protocols for data deletion.

### **Professional Identity and the Erosion of the Clinical Triad**

A subtle but profound risk is the alienation of the radiologist from the clinical team. The traditional model fostered consultation and collaboration. Remote interpretation, especially when outsourced to a geographically and institutionally disconnected third party, can reduce the radiologist to a transactional image processor. This undermines the radiologist's role as a consultant physician and can lead to poorer communication of critical results and less effective participation in multidisciplinary care (Henwood et al., 2016; Rubin et al., 2020). Technology must be deployed to bridge, not widen, this gap through integrated communication tools and virtual participation in clinical meetings.

### **Economic Pressures and Workforce Implications**

The efficiency gains from AI and global networks could be used to exacerbate radiologist burnout through expectations of ever-increasing productivity (measured in studies per hour) rather than to create capacity for more complex consultation and patient-facing activities. There is also concern that the commoditization of imaging interpretation could depress professional fees and impact the financial viability of traditional radiology practices, particularly in rural areas (Wallace, 2022).

**Table 2: Critical Challenges in Modern Teleradiology and Proposed Mitigation Strategies**

| Challenge Domain   | Specific Issues                                                       | Potential Consequences                             | Proposed Mitigation Strategies                        |
|--------------------|-----------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|
| Regulatory & Legal | Multi-state/national licensure requirements; inconsistent malpractice | Service restriction; legal exposure for providers; | Advocacy for interstate/license compacts; development |

|                                                       |                                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                    |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | laws; unclear AI liability; complex billing compliance.                                                                                                          | administrative burden stifling growth; payment denials.                                                                                         | of standardized teleradiology service agreements; clear contractual allocation of AI-related liability; investment in dedicated billing compliance expertise.                                                      |
| <b>Data Security &amp; Governance</b>                 | Risk of ransomware/cyber-attacks; data sovereignty conflicts; ambiguous policies for secondary data use (AI training).                                           | Catastrophic service disruption; regulatory fines and loss of trust; legal challenges over data location; ethical breaches in data utilization. | Implementation of zero-trust security architectures; use of sovereign cloud regions; transparent patient data use policies and, where required, explicit consent for AI training.                                  |
| <b>Quality Assurance &amp; Professional Standards</b> | Difficulty standardizing QA across global networks; ensuring consistent subspecialty training levels; verifying AI algorithm performance in diverse populations. | Diagnostic variability; potential for lower quality in unregulated markets; algorithmic bias leading to disparities in care.                    | Establishment of international teleradiology accreditation standards (e.g., by ACR, ESR); mandatory radiologist credential verification; rigorous, ongoing local validation of AI tools.                           |
| <b>Professional Integration &amp; Communication</b>   | Radiologist isolation from referring clinicians; breakdown in critical results communication; perception of radiology as a commoditized service.                 | Suboptimal patient care due to lack of clinical context; delayed treatment for urgent findings; de-professionalization of radiology.            | Mandatory embedded communication tools (chat, video) within platforms; protocols for direct radiologist-clinician contact for complex cases; fostering virtual participation in tumor boards.                      |
| <b>Workforce &amp; Economics</b>                      | Burnout from "reading widget" productivity pressures; potential devaluation of professional fees; impact on local radiology job markets.                         | Radiologist attrition, errors; financial unsustainability of hospital-based practices; reduced access to local expertise.                       | Management focus on value (accuracy, consultation) over volume; fair pricing models that reflect cognitive labor + tech overhead; hybrid models that preserve local radiologists for procedural and clinical work. |

## Conclusion

Teleradiology stands at an inflection point. The trends of cloud migration and AI integration are not passing fashions but represent a fundamental and irreversible digitization of the diagnostic imaging value chain. The potential benefits for patient care are immense: faster access to expertise, reduced diagnostic error through cognitive support, and more personalized, quantitative imaging analytics. However, realizing this potential in an equitable, secure, and professionally sustainable manner requires deliberate and collaborative action.

The future of teleradiology must be guided by principles that prioritize patient-centricity over pure efficiency. This means designing systems that ensure the remote radiologist is an integrated member of the care team, with seamless communication channels and access to holistic patient data. It necessitates a robust ethical and regulatory framework developed through international cooperation among

professional societies, legislators, and technology providers. This framework must clarify licensure, liability, data rights, and establish minimum quality standards for global practice.

Furthermore, the profession must proactively redefine the radiologist's role within this new ecosystem. The role will evolve from pure image interpreter to master of the diagnostic cockpit—orchestrating AI tools, synthesizing multimodal data, and communicating actionable insights. This requires new training in data science, AI literacy, and tele-consultation skills. Finally, economic models must evolve to reward diagnostic accuracy, clinical consultation, and improved patient outcomes, rather than merely incentivizing throughput.

In conclusion, the journey from dial-up image transmission to AI-augmented cloud platforms encapsulates the dynamic nature of modern medicine. By navigating the associated challenges with foresight, ethics, and a commitment to the core values of the profession, teleradiology can transcend its origins as a coverage solution. It can mature into the backbone of a more intelligent, accessible, and collaborative global radiology service, ultimately fulfilling the promise of technology to deliver better health outcomes for all.

## References

1. Agrawal, A. (2022). Emergency teleradiology-past, present, and, is there a future?. *Frontiers in radiology*, 2, 866643. <https://doi.org/10.3389/fradi.2022.866643>
2. Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., ... & Shetty, S. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. *Nature medicine*, 25(6), 954-961. <https://doi.org/10.1038/s41591-019-0447-x>
3. Bashshur, R. L., Krupinski, E. A., Thrall, J. H., & Bashshur, N. (2016). The empirical foundations of teleradiology and related applications: a review of the evidence. *Telemedicine and e-Health*, 22(11), 868-898. <https://doi.org/10.1089/tmj.2016.0149>
4. Chilamkurthy, S., Ghosh, R., Tanamala, S., Biviji, M., Campeau, N. G., Venugopal, V. K., ... & Warier, P. (2018). Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. *The Lancet*, 392(10162), 2388-2396. [https://doi.org/10.1016/S0140-6736\(18\)31645-3](https://doi.org/10.1016/S0140-6736(18)31645-3)
5. Cochon, L., Lacson, R., Wang, A., Kapoor, N., Ip, I. K., Desai, S., ... & Khorasani, R. (2018). Assessing information sources to elucidate diagnostic process errors in radiologic imaging—a human factors framework. *Journal of the American Medical Informatics Association*, 25(11), 1507-1515. <https://doi.org/10.1093/jamia/ocx103>
6. Geis, J. R., Brady, A. P., Wu, C. C., Spencer, J., Ranschaert, E., Jaremko, J. L., ... & Kohli, M. (2019). Ethics of artificial intelligence in radiology: summary of the joint European and North American multisociety statement. *Radiology*, 293(2), 436-440. <https://doi.org/10.1148/radiol.2019191586>
7. Hanna, T. N., Steenburg, S. D., Rosenkrantz, A. B., Pyatt Jr, R. S., Duszak Jr, R., & Friedberg, E. B. (2020). Emerging challenges and opportunities in the evolution of teleradiology. *American Journal of Roentgenology*, 215(6), 1411-1416. <https://doi.org/10.2214/AJR.20.23007>
8. He, X., Qi, G., Zhu, Z., Li, Y., Cong, B., & Bai, L. (2023). Medical image segmentation method based on multi-feature interaction and fusion over cloud computing. *Simulation Modelling Practice and Theory*, 126, 102769. <https://doi.org/10.1016/j.simpat.2023.102769>
9. Henwood, S., Booth, L., & Miller, P. K. (2016). Reflections on the role of consultant radiographers in the UK: the perceived impact on practice and factors that support and hinder the role. *Radiography*, 22(1), 44-49. <https://doi.org/10.1016/j.radi.2015.06.001>
10. Herington, J., McCradden, M. D., Creel, K., Boellaard, R., Jones, E. C., Jha, A. K., ... & Saboury, B. (2023). Ethical considerations for artificial intelligence in medical imaging: deployment and governance. *Journal of Nuclear Medicine*, 64(10), 1509-1515. <https://doi.org/10.2967/jnumed.123.266110>
11. Jalali, M. S., Razak, S., Gordon, W., Perakslis, E., & Madnick, S. (2019). Health care and cybersecurity: bibliometric analysis of the literature. *Journal of medical Internet research*, 21(2), e12644. <https://doi.org/10.2196/12644>
12. Kalyanpur, A., Nair, H. T., & Mathur, N. (2023). Teleradiology service is indispensable in the Indian healthcare sector. *International Journal of Health Technology and Innovation*, 2(02), 24-27. <https://doi.org/10.60142/ijhti.v2i02.04>
13. Kohli, M., Prevedello, L. M., Filice, R. W., & Geis, J. R. (2017). Implementing machine learning in radiology practice and research. *American journal of roentgenology*, 208(4), 754-760. <https://doi.org/10.2214/AJR.16.17224>
14. Kruse, C. S., Frederick, B., Jacobson, T., & Monticone, D. K. (2017). Cybersecurity in healthcare: A systematic review of modern threats and trends. *Technology and Health Care*, 25(1), 1-10.
15. Lamb, L. R., Lehman, C. D., Gastounioti, A., Conant, E. F., & Bahl, M. (2022). Artificial intelligence (AI) for screening mammography, from the AJR special series on AI applications. *American Journal of Roentgenology*, 219(3), 369-380. <https://doi.org/10.2214/AJR.21.27071>

16. Langlotz, C. P., Allen, B., Erickson, B. J., Kalpathy-Cramer, J., Bigelow, K., Cook, T. S., ... & Kandarpa, K. (2019). A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. *Radiology*, 291(3), 781-791. <https://doi.org/10.1148/radiol.2019190613>

17. Larson, D. B., Magnus, D. C., Lungren, M. P., Shah, N. H., & Langlotz, C. P. (2020). Ethics of using and sharing clinical imaging data for artificial intelligence: a proposed framework. *Radiology*, 295(3), 675-682. <https://doi.org/10.1148/radiol.2020192536>

18. Li, N., Xu, M., Li, Q., Liu, J., Bao, S., Li, Y., ... & Zheng, H. (2023). A review of security issues and solutions for precision health in Internet-of-Medical-Things systems. *Security and Safety*, 2, 2022010. <https://doi.org/10.1051/sands/2022010>

19. Lundberg, N., Wintell, M., & Lindsköld, L. (2010). The future progress of teleradiology—An empirical study in Sweden. *European journal of radiology*, 73(1), 10-19. <https://doi.org/10.1016/j.ejrad.2009.10.015>

20. Majhi, M., Pal, A. K., Pradhan, J., Islam, S. H., & Khan, M. K. (2022). Computational intelligence based secure three-party CBIR scheme for medical data for cloud-assisted healthcare applications. *Multimedia Tools and Applications*, 81(29), 41545-41577. <https://doi.org/10.1007/s11042-020-10483-7>

21. McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. *Nature*, 577(7788), 89-94. <https://doi.org/10.1038/s41586-019-1799-6>

22. Nifakos, S., Chandramouli, K., Nikolaou, C. K., Papachristou, P., Koch, S., Panaousis, E., & Bonacina, S. (2021). Influence of human factors on cyber security within healthcare organisations: A systematic review. *Sensors*, 21(15), 5119. <https://doi.org/10.3390/s21155119>

23. Nobel, J. M., van Geel, K., & Robben, S. G. (2022). Structured reporting in radiology: a systematic review to explore its potential. *European radiology*, 32(4), 2837-2854. <https://doi.org/10.1007/s00330-021-08327-5>

24. Park, S. H., & Han, K. (2018). Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. *Radiology*, 286(3), 800-809. <https://doi.org/10.1148/radiol.2017171920>

25. Pesapane, F., Codari, M., & Sardanelli, F. (2018). Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. *European radiology experimental*, 2(1), 35. <https://doi.org/10.1186/s41747-018-0061-6>

26. Ranschaert, E. R., Boland, G. W., Duerinckx, A. J., & Binkhuyzen, F. H. B. (2015). Comparison of European (ESR) and American (ACR) white papers on teleradiology: patient primacy is paramount. *Journal of the American College of Radiology*, 12(2), 174-182. <https://doi.org/10.1016/j.jacr.2014.09.027>

27. Recht, M. P., Dewey, M., Dreyer, K., Langlotz, C., Niessen, W., Prainsack, B., & Smith, J. J. (2020). Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. *European radiology*, 30(6), 3576-3584. <https://doi.org/10.1007/s00330-020-06672-5>

28. Rosenkrantz, A. B., Hughes, D. R., & Duszak Jr, R. (2020). Increasing subspecialization of the national radiologist workforce. *Journal of the American College of Radiology*, 17(6), 812-818. <https://doi.org/10.1016/j.jacr.2019.11.027>

29. Rubin, G. D., Ryerson, C. J., Haramati, L. B., Sverzellati, N., Kanne, J. P., Raoof, S., ... & Leung, A. N. (2020). The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner Society. *Radiology*, 296(1), 172-180. <https://doi.org/10.1148/radiol.2020201365>

30. Santos, Á. M., Del Cura Rodríguez, J. L., & Larrañaga, N. A. (2023). Teleradiology: good practice guide. *Radiología (English Edition)*, 65(2), 133-148. <https://doi.org/10.1016/j.rxeng.2022.11.005>

31. Wallace, S. (2022). Advancing the profession and avoiding the commoditization of anesthesiology. *Canadian Journal of Anesthesia/Journal canadien d'anesthésie*, 69(7), 815-817. <https://doi.org/10.1007/s12630-022-02239-1>

**التحول الرقمي للتصوير التخسيسي: مراجعة سردية حول المنصات السحابية، وتكامل الذكاء الاصطناعي، والشبكات العالمية في طب الإشعة عن بعد الحديث**

**الملخص**

**الخلفية:** تطور طب الإشعة عن بعد من حل متخصص للتقطية خارج ساعات العمل إلى مكون أساسي في ممارسة الإشعة الحديثة، مع تسارع هذا التطور بفضل الابتكارات التكنولوجية واحتياجات الرعاية الصحية العالمية. يعيد تقارب الحوسنة السحابية، والذكاء الاصطناعي(AI)، والشبكات

البيانات المتطورة تشكيل طريقة تغزير الصور الطبية وتقليلها وتقسيرها عبر الحدود الجغرافية والمؤسسية بشكل أساسي.

**الهدف:** تهدف هذه المراجعة السريعة إلى تجميع وتحليل نقدى للأدلة المعاصرة (2010-2024) حول الاتجاهات التكنولوجية والتثعيلية والمهنية

التي تحول طب الإشعة عن بعد.

**الطرق:** تم إجراء بحث أبي شامل عبر قواعد البيانات PubMed ، Scopus، IEEE Xplore، وآرشفات مجلة Journal of Digital Imaging.

**النتائج:** يتيح الانتقال من الشبكات الخاصة الافتراضية (VPNs) المحلية إلى منصات سحابية قابلة للتوسيع ومحاباة تجاه البائعين مرونة غير مسبوقة، واستعادة البيانات في حالات الكوارث، وتعاون متعدد المؤسسات. تسهل هذه الاتجاهات ظهور شبكات قراءة إشعاعية عالمية، وتنطوي فرصة متخصصة على مدار 7/24، ومرافق تشخيصية متكاملة. ومع ذلك، تظل تحديات حاسمة قائمة تتعلق بسيادة البيانات، ومبرونة الأمان السيبراني، والإطارات التنظيمية غير المتضمنة، وتحديد المسئولية في القراءات المساعدة بالذكاء الاصطناعي، وإمكانية تأكيل الثالث التقليدي بين الإشعاعي والمريض والطبيب المعالج.

**الخاتمة:** يخضع طب الإشعة عن بعد لتحول نموذجي عميق من خدمة نقل صور بسيطة إلى نظام بيئي معقد مستضاف على السحابة ومدعوم بالذكاء الاصطناعي. يتطلب النجاح المستقبلي إطارات حوكمة بيانات دولية قوية، وبروتوكولات توحيدية للتحقق من صحة الذكاء الاصطناعي، وإعادة تعريف أدوار الإشعاعيين داخل شبكات التشخيص الموزعة لضمان ترجمة هذه التقنيات التكنولوجية إلى رعاية مرضى عادلة ودقيقة وآمنة.

**الكلمات المفتاحية:** طب الإشعة عن بعد القائم على السحابة، الذكاء الاصطناعي في الإشعة، شبكات التصوير التشخيصي، تحسين سير عمل الإشعة، تنظيم الطب عن بعد.