

Nursing Management of Patients With Bowel Perforation: Assessment, Early Recognition, and Perioperative Care

Abdulla Shallan Al Roman¹, Abdulrahman Saad Alfawaz², Hatim Ibrahim alhatim³, Mubarak Mesfer Al Oraym⁴, Tamany Saeif Alruwaili⁵, Mohammed Abdulhadi Muslih Aljohani⁶, Abrar Abdulaziz Mohammedali Alhejaili⁷, Wafa Mansour Maqbul Alharbi⁸, Nourah Mawadh Rubaian Alreshidi⁹, Najat Jafari Mohammed Khudair¹⁰, Tahani Taher Mujamami¹¹, Naif Awad Khalaf Alrashidy¹², Abdulrahim Faihan Bani Al-Rashidi¹³

¹ Al-Aflaj Hospital

² Al-Aflaj Hospital

³ Al-Aflaj Hospital

⁴ Al-Aflaj Hospital

⁵ Erada Mental Health Complex, Sakaka

⁶ Health gathering in Al-Madinah

⁷ Health gathering in Al-Madinah

⁸ Madinah Health cluster

¹¹ King Faisal Hospital

¹² Al-Ghazala Hospital

¹³ Al Ghazala Health Centerz

Abstract:

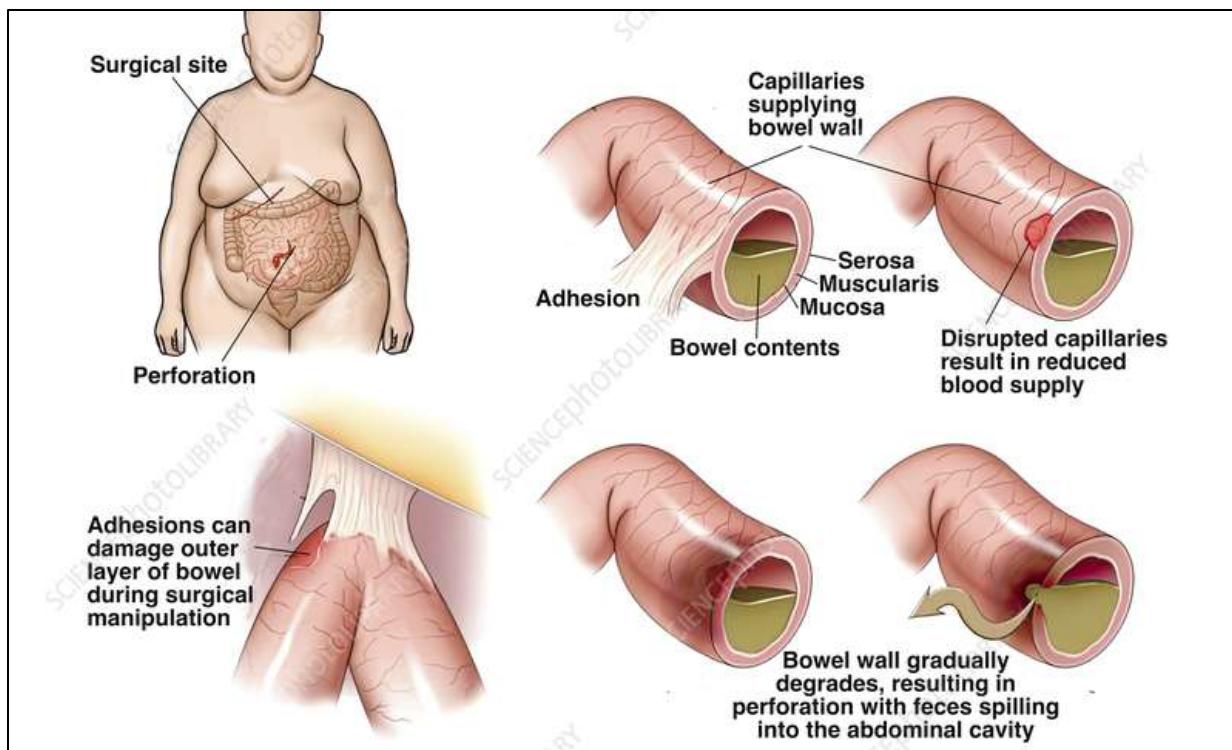
Background: Bowel perforation is a critical surgical emergency characterized by full-thickness disruption of the gastrointestinal wall, leading to peritoneal contamination, systemic inflammation, and potential multiorgan failure. Early recognition and timely intervention are essential to reduce morbidity and mortality.

Aim: To review the nursing management of patients with bowel perforation, emphasizing assessment, early recognition, and perioperative care strategies.

Methods: This comprehensive review synthesizes current evidence on etiology, epidemiology, pathophysiology, clinical assessment, diagnostic evaluation, and management approaches. It highlights nursing roles in early detection, stabilization, and postoperative care through multidisciplinary collaboration.

Results: Bowel perforation arises from diverse causes, including inflammatory conditions, obstruction, trauma, neoplasia, and iatrogenic injury. Clinical presentation varies from localized pain to diffuse peritonitis and septic shock. Diagnostic confirmation relies on imaging, particularly CT, supported by laboratory markers. Management prioritizes rapid resuscitation, broad-spectrum antibiotics, and timely surgical source control. Nonoperative strategies are reserved for stable patients with contained perforations. Postoperative care focuses on infection control, nutritional support, pain management, and complication prevention. Nursing vigilance in monitoring vital signs, abdominal changes, and early warning signs significantly improves outcomes.

Conclusion: Effective management of bowel perforation requires prompt recognition, aggressive stabilization, and coordinated multidisciplinary care. Nurses play a pivotal role in early detection, perioperative support, and patient education, reducing complications and enhancing recovery.


Keywords: Bowel perforation, nursing management, peritonitis, surgical emergency, early recognition, multidisciplinary care.

Introduction:

Bowel perforation constitutes a critical surgical emergency and a major threat to patient survival, distinguished by its capacity to evolve rapidly from localized abdominal pathology into diffuse peritonitis, systemic inflammatory dysregulation, and multiorgan failure. Although the term “bowel perforation” is often used generically, it encompasses a broad spectrum of clinical entities that vary markedly in anatomical

location, mechanism, microbial burden, and physiologic consequences. Presentations may range from subtle, minimally symptomatic microperforations—such as contained perforated diverticulitis or small iatrogenic injuries discovered incidentally—to catastrophic free perforations that produce immediate feculent peritonitis and fulminant septic shock, as may occur with gastric, small bowel, or colonic rupture. This clinical variability can obscure early recognition, making bowel perforation a diagnosis that demands both vigilance and an organized approach to assessment. From a physiologic perspective, the gastrointestinal tract is designed to function as a closed system that contains gas, acidic secretions, digestive enzymes, and a dense microbial population. The integrity of the bowel wall is therefore essential for maintaining compartmentalization between the intraluminal environment and the normally sterile peritoneal cavity. When this barrier is violated, even in small amounts, intraluminal contents can escape into surrounding tissues. The consequences of this leakage depend on the size of the defect, the location of perforation, and the nature of the leaked material. A small leak of intraluminal gas may produce limited symptoms and be temporarily contained by adjacent structures, while leakage of bile, gastric acid, pancreatic enzymes, or feculent colonic contents can provoke intense inflammatory reactions and widespread bacterial contamination. In severe cases, this results in generalized peritonitis, rapid fluid shifts into the peritoneal cavity, worsening hypovolemia, and progression toward septic shock. Thus, bowel perforation is not merely a structural defect; it is a trigger for a systemic cascade that can compromise perfusion, oxygen delivery, and organ function within hours [1].

Clinically, bowel perforation is defined as a full-thickness disruption of the bowel wall and may arise through diverse etiologic pathways. Inflammation and infection represent common mechanisms, as seen with appendicitis, diverticulitis, inflammatory bowel disease, or perforated peptic ulcer disease. Obstruction can lead to perforation when intraluminal pressure rises beyond the bowel wall's perfusion capacity, resulting in ischemia and necrosis; this may occur in malignancy-related obstruction, volvulus, hernias, or severe constipation with stercoral colitis. Trauma—both blunt and penetrating—can directly disrupt bowel integrity or cause delayed perforation through ischemic injury. Ischemia from mesenteric vascular occlusion or low-flow states can culminate in transmural necrosis and perforation, particularly in older adults with atherosclerotic disease or critically ill patients with compromised perfusion. Neoplasia can weaken the bowel wall, invade through layers, or obstruct, thereby precipitating perforation. Finally, iatrogenic injury is an important and increasingly recognized cause, occurring during endoscopy, abdominal surgery, feeding tube placement, or other invasive procedures, where early detection may significantly improve outcomes. Because outcomes are highly dependent on time to diagnosis and intervention, patients who present with abdominal pain, distension, fever, tachycardia, vomiting, or an abrupt decline in physiologic status must be evaluated promptly for bowel perforation when the clinical context suggests it. Delayed recognition substantially increases the risk of diffuse infection, peritoneal inflammation, bacteremia, sepsis, and death. Importantly, early clinical findings may be nonspecific, particularly in older adults, immunosuppressed patients, and those receiving analgesics or corticosteroids, in whom classic signs of peritonitis may be muted. Nursing assessment is therefore crucial, as nurses are frequently the first to recognize escalating pain, increasing abdominal rigidity, deterioration in vital signs, reduced urine output, new confusion, or increasing oxygen requirements—changes that may reflect evolving peritoneal contamination and systemic inflammatory response [1].

Fig. 1: Bowel Perforation.

Advances in diagnostic evaluation have improved the ability to detect bowel perforation with greater speed and accuracy. Cross-sectional imaging, especially computed tomography, has become central to modern diagnosis because it can identify free intraperitoneal air, localized extraluminal gas, free fluid, bowel wall thickening, inflammatory changes, and the likely site and cause of perforation. Even so, diagnosis remains fundamentally clinical, and imaging should not delay resuscitation when a patient appears unstable or demonstrates features of peritonitis. Management typically requires an integrated, multidisciplinary approach that prioritizes early hemodynamic stabilization, broad-spectrum antimicrobial therapy, and urgent surgical consultation. Resuscitation often includes intravenous fluids, correction of electrolyte and acid-base disturbances, pain control, and supportive measures such as oxygen therapy. Antibiotics are initiated early to reduce microbial load and limit progression to sepsis. Surgical teams determine whether urgent operative exploration is required, which is often the case in hemodynamically unstable patients, those with generalized peritonitis, persistent tachycardia, or signs of systemic toxicity. While carefully selected cases—particularly contained microperforations—may be managed nonoperatively under close monitoring, this strategy is appropriate only when patients are clinically stable and have imaging findings consistent with localized disease. Even with timely and appropriate treatment, bowel perforation carries substantial morbidity and mortality. Postrepair complications such as adhesions, intra-abdominal abscess, anastomotic leak, and fistula formation can prolong hospitalization, increase the need for repeat interventions, and contribute to long-term functional impairment.^[1] The clinical burden of bowel perforation therefore extends beyond the acute event, affecting recovery trajectories, nutritional status, and quality of life. Despite improvements in surgical technique and critical care, bowel perforation remains a high-stakes condition, underscoring the importance of rapid recognition, decisive early management, and coordinated multidisciplinary care in optimizing patient outcomes [1].

Etiology

The etiology of bowel perforation is diverse and closely linked to anatomic location, because the stomach and small bowel differ from the large bowel in luminal contents, microbial burden, vascular supply, and exposure to specific disease processes. Categorizing perforations by site is therefore clinically useful: it helps clinicians anticipate the most likely underlying cause, the expected degree of contamination, and the pace at which a patient may deteriorate. Nevertheless, several major etiologic categories—including neoplasms, foreign bodies, obstruction, trauma, and iatrogenic injury—can affect any segment of the gastrointestinal tract, making a comprehensive and context-driven diagnostic approach essential. From a nursing perspective, understanding common causes by region supports early recognition of high-risk

presentations and improves the accuracy of focused history-taking, particularly when patients have atypical symptoms or impaired ability to communicate [1][2].

Stomach and Small Bowel

In the stomach and proximal small bowel, peptic ulcer disease remains a classic and clinically important cause of perforation, typically resulting from erosion through the full thickness of the gastric or duodenal wall. This process may be accelerated by factors that impair mucosal defenses or healing, such as nonsteroidal anti-inflammatory drug exposure, *Helicobacter pylori* infection, corticosteroid therapy, smoking, and physiologic stress. Neoplasms can also lead to perforation by weakening tissue integrity through invasive growth, necrosis, or obstruction-associated pressure injury. Infectious or inflammatory processes may perforate via localized tissue destruction; for example, infection or abscess formation adjacent to the bowel wall can erode into the lumen and subsequently rupture outward into the peritoneal cavity. Several small bowel-specific conditions are also notable. Meckel diverticulum can perforate due to inflammation, ulceration from ectopic gastric mucosa, or obstruction-related ischemia. Hernias, particularly when incarcerated or strangulated, may compromise blood flow to entrapped bowel segments, causing ischemia, necrosis, and subsequent perforation if not promptly relieved. Volvulus and mechanical obstruction similarly predispose to perforation by increasing intraluminal pressure and impairing perfusion, especially when obstruction is closed-loop. Mesenteric ischemia represents a particularly dangerous etiology because necrosis can progress rapidly and may be accompanied by disproportionate pain and early systemic toxicity; delayed recognition often leads to extensive contamination and severe sepsis [1][2]. Inflammatory bowel disease and colitis can involve the small bowel and result in transmural inflammation, ulceration, and perforation, particularly in severe flares or when disease is complicated by toxic dilation or superimposed infection. Foreign body ingestion can cause direct mechanical penetration or pressure necrosis, with higher risk when the object is sharp or elongated or when there is underlying stricture. Medication- or radiation-induced injury may predispose to ulceration and perforation by damaging mucosa and impairing regenerative capacity; this mechanism is particularly relevant in patients with prior abdominal or pelvic radiotherapy or those receiving agents that compromise mucosal integrity. Finally, iatrogenic perforation is an important cause in the stomach and small bowel, occurring during endoscopy, dilation procedures, feeding tube placement, or postoperative complications. Trauma—blunt or penetrating—can perforate by direct disruption, delayed ischemia, or unnoticed serosal injury that progresses over time [2].

Large Bowel

In the large bowel, the etiologic distribution shifts, reflecting the colon's distinct pathology and its significantly higher microbial load, which tends to produce more severe infectious consequences when perforation occurs. Diverticulitis is among the most frequent causes, often beginning with localized inflammation or microperforation that may evolve into abscess formation and, in severe cases, free perforation with feculent peritonitis. Neoplasms are another major contributor, particularly when tumors obstruct the lumen and create upstream distension; rising pressure and compromised perfusion can lead to ischemia and perforation, sometimes at the cecum as a vulnerable point in distal obstruction. Appendicitis may produce localized perforation that ranges from contained phlegmon to generalized peritonitis, depending on the duration of inflammation and host response. As in the small bowel, localized or disseminated infection with abscess can erode through bowel layers and rupture. Inflammatory bowel disease and colitis in the colon may predispose to perforation through severe transmural inflammation or toxic megacolon, particularly when inflammation is fulminant or complicated by infection. Foreign bodies can lodge in areas of narrowing and cause pressure necrosis or penetration, and volvulus—especially sigmoid volvulus—can produce rapid distension and vascular compromise, progressing to necrosis and perforation if not decompressed. Iatrogenic injury is also prominent in colonic perforation, most often associated with colonoscopy, polypectomy, or therapeutic endoscopic interventions, as well as postoperative anastomotic failure. Medication-related injury, including effects of steroids or agents associated with mucosal fragility, and radiation-related injury can likewise weaken colonic tissue. Finally, blunt or penetrating abdominal trauma can injure the colon directly or indirectly through mesenteric disruption, resulting in delayed perforation.[2] Overall, bowel perforation etiologies must be interpreted through the lens of location, patient risk factors, and precipitating events such as recent procedures, trauma, or changes in bowel habits. This etiologic framework supports earlier suspicion, faster escalation of

diagnostic imaging, and timely activation of surgical and critical care pathways when perforation is likely [1][2].

Epidemiology

The epidemiology of bowel perforation is highly heterogeneous, reflecting substantial variation in causative mechanisms across the lifespan and across anatomic sites of the gastrointestinal tract. Understanding these patterns is clinically valuable because epidemiologic context often guides the probability of specific diagnoses, informs initial diagnostic priorities, and shapes anticipatory management—particularly in time-critical presentations where delayed recognition significantly increases morbidity and mortality. Age is one of the strongest determinants of etiologic distribution, with neonatal perforations dominated by ischemic-inflammatory processes, pediatric perforations frequently linked to appendiceal pathology or trauma, and adult perforations more commonly associated with inflammatory disease, neoplasia, and iatrogenic injury. In premature infants, necrotizing enterocolitis is the leading cause of bowel perforation.[3][4] This reflects the unique vulnerability of the neonatal intestinal barrier and microcirculation, particularly in preterm physiology where immature immune defense, altered gut colonization, and compromised perfusion predispose to mucosal injury that can progress rapidly to transmural necrosis. Epidemiologically, this association is important because perforation in this population often presents with systemic instability and requires urgent escalation of care, including surgical consultation and intensive supportive management. The neonatal pattern contrasts sharply with later childhood, where the epidemiology shifts away from necrotizing inflammatory processes toward discrete surgical diseases. Among children and adolescents, appendicitis is the most frequent etiology of bowel perforation, and the likelihood of perforation increases when diagnosis is delayed, symptoms are atypical, or access to care is limited.[5] Within pediatric trauma populations, bowel perforation is also a clinically relevant concern, with an incidence reported at approximately 10% to 12%. [5] This figure underscores the importance of maintaining high suspicion after blunt abdominal trauma in children, especially because initial signs can be subtle and perforation may be delayed due to evolving ischemia or progressive tissue compromise.

Beyond age-specific “signature” etiologies, several causes contribute across demographic groups. Foreign body ingestion is a notable example, accounting for perforation in approximately 1% to 5.6% of cases.[6] Although many ingested foreign bodies pass without complication, perforation risk rises with sharp objects, elongated items, magnets, or objects that become impacted at areas of physiologic narrowing or prior pathology such as strictures. Colorectal cancer is another cross-cutting etiology with clear epidemiologic relevance; perforation is reported in 3% to 10% of patients with colorectal malignancy.[6] Perforation in this setting may occur directly through tumor necrosis and invasion or indirectly through obstruction leading to upstream distension, ischemia, and rupture—an epidemiologic pattern that has particular implications for older adults presenting with abdominal distension, constipation, weight loss, or anemia. Iatrogenic injury also features prominently in epidemiologic discussions because it reflects modifiable risk. Perforation rates after colonoscopy have been reported to range widely from 0.01% to 6.7%, a variability that likely reflects differences in patient risk, procedure indication, therapeutic versus diagnostic interventions, and reporting standards.[6] From a systems and nursing perspective, these data highlight the importance of post-procedure monitoring, early recognition of abdominal pain or tachycardia after endoscopy, and prompt escalation when perforation is suspected. In adults, the etiologic profile shifts toward inflammatory, neoplastic, and procedure-related mechanisms. Acute diverticulitis is among the most common drivers of colonic perforation, yet the epidemiology distinguishes between free and contained perforation. Approximately 1% to 2% of patients with acute diverticulitis develop free perforation, a particularly dangerous event associated with generalized peritonitis and higher mortality. In contrast, up to 30% may present with contained perforation and abscess formation, which can sometimes be managed with antibiotics and percutaneous drainage when patients remain hemodynamically stable.[7] Upper gastrointestinal perforations follow different epidemiologic patterns. Perforated peptic ulcer disease occurs in approximately 2% to 10% of ulcer cases, with about 60% involving the duodenum and 40% involving the stomach.[8] These proportions are clinically meaningful because duodenal perforation may present with abrupt epigastric pain and free air, while gastric perforation may be associated with differing risk factors and malignancy considerations.

Colonoscopy-related perforation in adults is also reported, with estimates around 0.9% to 2% in patients undergoing colonoscopy in some reports.[9] Although these rates may vary across cohorts and

procedure types, the epidemiologic message is consistent: iatrogenic perforation remains an important and preventable contributor to adult bowel perforation burden. Finally, inflammatory bowel disease carries a significant perforation risk that depends on disease type and severity. Perforation rates may reach up to 20% in severe ulcerative colitis, reflecting fulminant inflammation and the potential for toxic megacolon, whereas Crohn disease is associated with lower reported rates of approximately 1% to 3%, often related to transmural disease, strictures, and fistulizing complications.[10][11] Collectively, these epidemiologic patterns reinforce that bowel perforation is not a single epidemiologic entity but a syndrome whose frequency and causes are shaped by age, anatomy, disease burden, and healthcare exposure—factors that should inform rapid clinical reasoning and early diagnostic action [10][11].

Pathophysiology

Bowel perforation is defined by a full-thickness disruption of the gastrointestinal wall that converts the digestive tract from a contained, compartmentalized system into an open source of chemical and microbial contamination. Once integrity is lost, luminal contents—including gas, enteric fluid, bile, food particles, and, in distal perforations, fecal material—can spill into the peritoneal cavity (see Image. Abdomen With Free Air, Radiograph). The bowel is physiologically designed to confine these substances within the lumen, where acids, enzymes, and dense microbial communities participate in digestion without injuring sterile tissues. Perforation therefore represents not only a mechanical breach but also the beginning of an inflammatory and infectious cascade whose magnitude is determined by the location of the rupture, the nature and volume of leaked material, the virulence and density of bacterial flora, the host immune response, and—critically—the rapidity with which diagnosis and source control are achieved. Clinically, this explains why small, quickly recognized perforations may remain localized with relatively limited systemic impact, whereas large or unrecognized perforations can escalate rapidly into diffuse peritonitis, severe sepsis, and septic shock. The immediate local consequences of perforation are driven by the irritant properties of leaked contents. In proximal gastrointestinal perforations, gastric acid, bile, and pancreatic enzymes can cause intense chemical peritonitis even before bacterial contamination becomes dominant. In contrast, distal small bowel and colonic perforations introduce progressively higher bacterial loads, including gram-negative organisms and anaerobes, making infectious peritonitis and endotoxin-mediated systemic inflammation more prominent. Small perforations or microperforations may produce minimal leakage and can be partially contained by the omentum and adjacent bowel loops, limiting spread and producing localized peritonitis. This containment mechanism is an important physiologic defense: the omentum can adhere to inflamed areas, “walling off” contamination and reducing immediate diffuse peritoneal involvement. However, containment is time-dependent and imperfect. Continued leakage, rising intraluminal pressure, or delayed diagnosis can overwhelm local defenses, allowing contamination to spread throughout the peritoneal cavity [8][9][10][11].

The clinical presentation described in bowel perforation—pain that can be sudden or gradual but typically worsens over time—emerges from the progressive stimulation of the peritoneum and the amplification of inflammation.[12] Early pain may be localized near the perforation site, especially if contamination is initially contained. As inflammation extends to involve broader peritoneal surfaces, pain becomes more diffuse and severe. Patients frequently develop abdominal distension due to ileus, bowel wall edema, and accumulation of peritoneal fluid, while muscular rigidity and guarding reflect reflex contraction of the abdominal wall in response to peritoneal irritation—classic features of evolving peritonitis.[12] Over time, physiologic stress responses intensify: tachycardia may develop from pain, hypovolemia, and systemic inflammation; fever may occur as cytokine release increases; and hypotension may appear as third spacing and vasodilation progress. At a mechanistic level, bowel perforation is multifactorial and closely linked to the underlying insult that weakens or disrupts the bowel wall. Inflammatory conditions—such as diverticulitis, appendicitis, and inflammatory bowel disease—can drive transmural inflammation, ulceration, microvascular injury, and necrosis, progressively eroding structural integrity until rupture occurs. Ischemic injury is another powerful pathway. When mucosal and muscular layers are deprived of adequate blood flow, tissue becomes vulnerable to necrosis, loss of barrier function, and eventual perforation. Ischemia may occur abruptly, as in mesenteric arterial occlusion, or more gradually in low-flow states where vasoconstriction and hypoperfusion reduce splanchnic circulation. Importantly, ischemia and inflammation frequently reinforce one another: inflammation can compromise perfusion through edema and microthrombi, while ischemia can intensify inflammation through tissue breakdown and bacterial translocation [11][12].

Obstruction represents a distinct but common physiologic pathway to perforation. When luminal blockage occurs—due to malignancy, volvulus, hernia, stricture, or fecal impaction—gas and secretions accumulate proximal to the obstruction, increasing intraluminal pressure and bowel distension. As pressure rises, venous outflow becomes impaired first, leading to edema and further compromise of perfusion; if obstruction persists, arterial inflow is diminished, resulting in ischemic necrosis. Once the intramural blood supply is sufficiently compromised, the bowel wall loses its tensile strength, and perforation can occur, sometimes at predictable “weak points” such as the cecum in distal large bowel obstruction. Trauma and iatrogenic injuries operate through more direct mechanisms: blunt trauma can cause contusion, mesenteric disruption, or delayed ischemia that culminates in perforation, while penetrating trauma produces immediate full-thickness injury. Iatrogenic perforation may occur during endoscopy, dilation, surgical manipulation, or anastomotic failure, and its clinical course often depends on whether the injury is recognized immediately or only after contamination has progressed. Chronic or subacute insults may predispose the bowel to focal weakening that ultimately results in perforation. Medications such as nonsteroidal anti-inflammatory drugs and steroids can impair mucosal defenses, promote ulceration, and delay tissue repair, while radiation enteritis can cause chronic inflammation, fibrosis, microvascular damage, and fragile tissue prone to breakdown. Foreign bodies may produce pressure necrosis or mechanical penetration, particularly if sharp or if they become lodged at areas of narrowing. These mechanisms often create small perforations initially, but the physiologic consequences can still become severe if leakage persists or if bacterial contamination expands unchecked. Once perforation occurs, peritoneal contamination triggers a cascade of inflammatory and systemic responses. Early on, localized peritonitis may predominate, but ongoing leakage permits bacterial proliferation and toxin release, amplifying cytokine-driven inflammation and increasing capillary permeability. Fluid shifts into the peritoneal cavity contribute to intravascular volume depletion, worsening hypotension and reducing organ perfusion. If untreated, the inflammatory response may progress to systemic inflammatory response syndrome, bacteremia, and multiorgan dysfunction, particularly when gram-negative endotoxins and anaerobic byproducts intensify immune activation. Even after surgical repair or successful nonoperative control, the peritoneum and bowel may sustain inflammatory injury that predisposes to long-term sequelae. These include adhesive disease from fibrin deposition and healing, intra-abdominal abscess formation due to residual contamination, anastomotic leaks where tissue perfusion is impaired, and fistula formation when chronic inflammation creates abnormal tracts between bowel and adjacent structures. Thus, the pathophysiology of bowel perforation is not confined to the moment of rupture; it is an evolving process in which local contamination and systemic inflammation interact, making early recognition, rapid resuscitation, and definitive source control central to preventing progression to life-threatening complications [11][12].

History and Physical

A meticulous history and focused physical examination are central to the early recognition of bowel perforation, particularly because the clinical presentation may be variable and, in some patients, deceptively subtle. Bowel perforation represents a time-sensitive diagnosis in which delays in evaluation can permit progression from localized contamination to diffuse peritonitis, systemic inflammatory response, and septic shock. Historical factors often provide the first critical clues, helping clinicians distinguish perforation from less emergent causes of abdominal pain and guiding the urgency of imaging, laboratory evaluation, and surgical consultation. Most patients with bowel perforation present with acute abdominal pain, yet the onset and tempo of pain frequently reflect the underlying etiology and anatomic site. Suddenly, severe pain is classically described in perforated peptic ulcer disease, traumatic perforation, or abrupt ischemic events, where rapid spillage of air and irritating contents triggers immediate peritoneal inflammation. In contrast, perforation associated with diverticulitis or inflammatory bowel disease may develop more gradually, beginning with localized discomfort that becomes progressively worse as inflammation evolves and leakage increases. Clinicians should also recognize the phenomenon of a brief “pain-free interval” followed by worsening pain. This pattern can occur when an inflamed or distended segment decompresses at the moment of perforation, producing transient relief before the inevitable escalation of peritoneal irritation and inflammatory response. Although the pain is commonly diffuse and persistent, it may initially localize to the region of pathology—such as the right lower quadrant in appendiceal disease or the left lower quadrant in diverticulitis—before spreading as generalized peritonitis develops and contamination becomes widespread. Associated symptoms further strengthen suspicion for

perforation and help clarify severity. Patients frequently report abdominal distension and bloating, which may result from ileus, bowel dilation, or peritoneal fluid accumulation. Nausea, vomiting, anorexia, fever, and obstipation are common, reflecting both gastrointestinal dysfunction and systemic inflammation. Importantly, the clinical context may be as diagnostic as the symptom profile. Lower chest or upper abdominal pain after episodes consistent with ulcer disease, particularly in patients with risk factors such as nonsteroidal anti-inflammatory drug use, should raise concern for gastroduodenal perforation. Similarly, abdominal pain occurring soon after instrumentation—such as colonoscopy, endoscopy, or abdominal surgery—requires urgent consideration of iatrogenic perforation, especially if pain is out of proportion to expected post-procedure discomfort or is accompanied by tachycardia, fever, or increasing abdominal distension [12][13].

A comprehensive medical, surgical, and social history is essential because many etiologies of perforation are identifiable through risk factor assessment. Prior episodes of bowel obstruction, known hernias, previous abdominal surgery, or a history of volvulus increase the likelihood of obstruction-related ischemia and rupture. Known or suspected malignancy, particularly colorectal cancer, can predispose to perforation through tumor necrosis or obstructive pressure injury. A history of foreign body ingestion or insertion—whether accidental, psychiatric, or related to substance use—should be sought, as it may be underreported without careful, nonjudgmental questioning. Trauma history is equally important, including blunt mechanisms such as motor vehicle collisions and falls, as well as penetrating injuries. Medication review is particularly high-yield: nonsteroidal anti-inflammatory drugs can promote ulceration, corticosteroids can impair healing and blunt inflammatory signs, and chemotherapy can compromise mucosal integrity and immune defense, collectively increasing perforation risk and potentially masking classic peritoneal findings. On physical examination, patients with bowel perforation often appear visibly ill, though clinicians must remain aware that early presentations may show minimal abnormalities, particularly in contained perforations or in patients with impaired inflammatory responses.[13] Vital signs commonly reveal tachycardia and tachypnea, sometimes accompanied by fever, and may progress toward hypotension as peritoneal contamination drives third spacing, systemic inflammation, and early shock physiology.[13] The abdominal examination typically shows progressive distension. Palpation frequently elicits diffuse tenderness, which can be difficult to localize because free air and luminal contents can spread widely across the peritoneal cavity. Even gentle percussion, light palpation, or subtle movement—such as jostling the stretcher—may provoke pain due to peritoneal irritation, a feature that can help distinguish peritonitis from more superficial abdominal wall tenderness [13].

As inflammation advances, classic signs of diffuse peritonitis emerge. Involuntary guarding reflects reflex muscular contraction in response to peritoneal irritation, while rigidity indicates more severe and generalized inflammation. Rebound tenderness may be present, though its elicitation should be performed cautiously and only when necessary, as it can increase patient discomfort without adding substantial diagnostic value when other peritoneal signs are clear. Bowel sounds are often diminished or absent, consistent with paralytic ileus driven by peritoneal inflammation. In contrast, in localized or contained perforations, physical findings may be confined to one quadrant, and the clinical picture may resemble complicated diverticulitis or appendicitis with localized peritoneal irritation. Adjunct bedside examinations can provide additional clues. A digital rectal examination may reveal heme-positive stool in malignancy-associated disease or, in rare circumstances, feculent material suggesting distal colonic pathology. However, findings may be nonspecific and should be interpreted in the broader clinical context. Crucially, clinicians must maintain a high index of suspicion in elderly, immunocompromised, or critically ill patients, who may not exhibit overt peritoneal signs despite significant pathology. These patients may present primarily with altered mental status, unexplained tachycardia, subtle abdominal distension, or sepsis without prominent pain, making careful serial examinations and early imaging essential. Ultimately, the history and physical examination in suspected bowel perforation are not one-time events but an ongoing process of reassessment, as changes in pain character, abdominal rigidity, hemodynamics, and mental status can signal rapid progression and the need for urgent escalation of care [13].

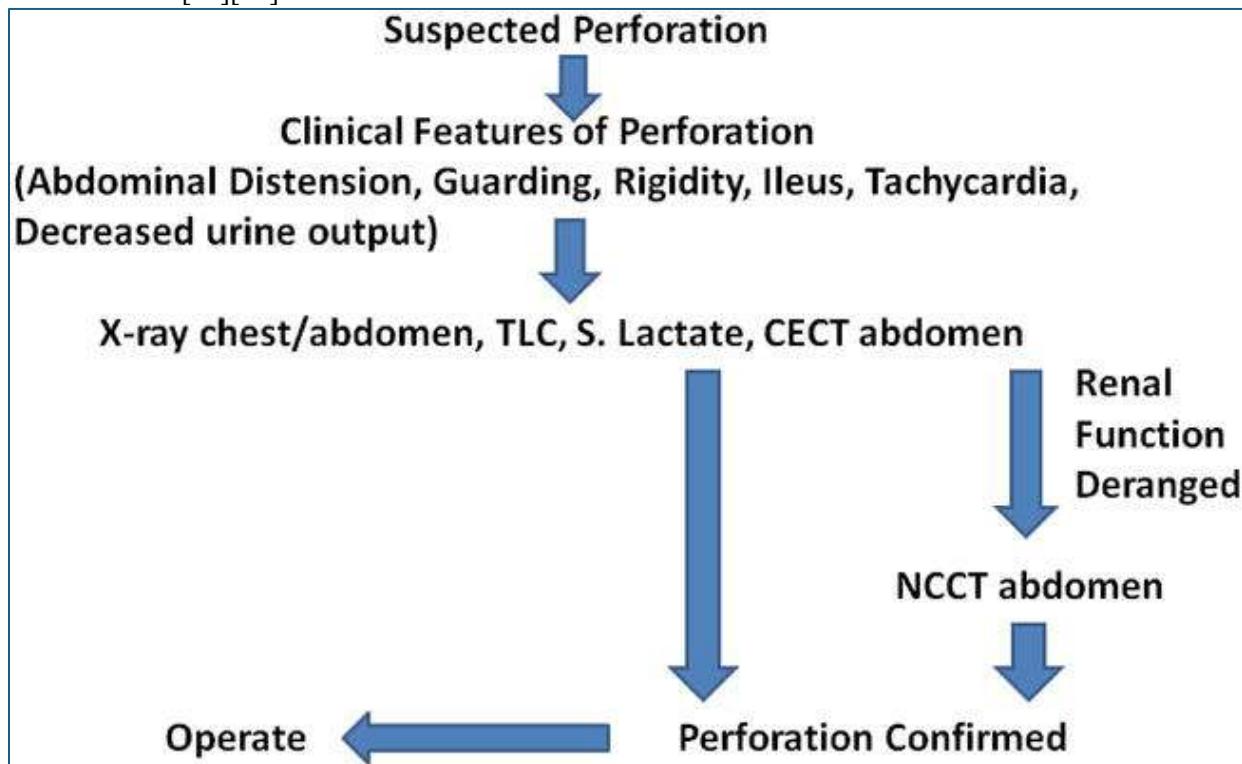
Evaluation

The evaluation of suspected bowel perforation is a high-stakes, time-sensitive process that requires synthesizing clinical suspicion with laboratory markers of systemic stress and imaging findings that confirm the diagnosis and define the underlying cause. Because bowel perforation can progress rapidly from localized inflammation to diffuse peritonitis and septic shock, the diagnostic strategy must proceed in

parallel with resuscitative measures when patients appear unstable. In practice, evaluation serves two simultaneous purposes: first, to establish whether perforation is present and localize its source; and second, to characterize physiologic severity, including the degree of systemic inflammatory response, hypoperfusion, and organ dysfunction. This dual focus is particularly important because management decisions—nonoperative observation, percutaneous intervention, or urgent surgical exploration—depend not only on the presence of perforation but also on the patient's hemodynamic status and the extent of contamination. Laboratory testing is nonspecific in bowel perforation, yet it remains clinically valuable for gauging disease severity, identifying evolving sepsis, and suggesting potential etiologies. A complete blood count often demonstrates leukocytosis with a left shift, supporting an acute inflammatory or infectious process. However, clinicians must interpret the white blood cell count in context, as severe sepsis, advanced age, and immunosuppression may yield normal counts or even leukopenia, which can paradoxically indicate a more ominous host response. Inflammatory biomarkers such as C-reactive protein and procalcitonin can provide supportive evidence of systemic inflammation and may strengthen concern for bacterial infection or sepsis when markedly elevated. While these markers do not confirm perforation, they contribute to risk stratification and can be helpful for trending response to therapy when used alongside clinical improvement and imaging findings [14].

Fig. 2: Bowel perforation imaging.

Basic metabolic testing is equally important because electrolyte and acid–base disturbances are common and clinically meaningful. Vomiting and gastric losses may produce hypokalemia and metabolic alkalosis, whereas tissue hypoperfusion and shock physiology are more likely to generate metabolic acidosis. Renal function tests assist in identifying dehydration, pre-renal azotemia, or established acute kidney injury, which may complicate contrast imaging decisions and influence perioperative risk. Among laboratory values, serum lactate has particular importance because it reflects tissue hypoperfusion and impaired oxygen utilization; elevated lactate may indicate systemic shock or, in some cases, evolving mesenteric ischemia that precipitated the perforation. Serial lactate measurements can help determine whether resuscitation is restoring perfusion or whether ongoing contamination and inflammatory vasodilation are driving deterioration. In patients with suspected sepsis, blood cultures should be obtained before antibiotics when feasible, not to delay care, but to improve the chance of identifying causative organisms and tailoring antimicrobial therapy. In select clinical contexts, additional tests may clarify diagnostic uncertainty. For example, serum amylase or lipase may be helpful when pancreatitis is strongly suspected, as pancreatitis can mimic perforation with severe abdominal pain, systemic inflammation, and ileus. Although pancreatitis does not exclude perforation—and in rare cases may coexist—marked enzyme elevations may redirect the diagnostic emphasis while imaging confirms the anatomic diagnosis. Imaging is central to confirming bowel perforation and guiding definitive management, with modality selection influenced by patient stability and resource availability. Plain radiography can provide rapid, bedside-accessible clues. An upright chest radiograph or a left lateral decubitus abdominal film may demonstrate free intraperitoneal air beneath the diaphragm, a classic finding observed in approximately 50% to 70% of perforations. The presence of free air is highly suggestive but not universal; small perforations, contained


perforations, and retroperitoneal perforations may not produce obvious diaphragmatic free air. Additional radiographic signs may include the Rigler sign, in which both sides of the bowel wall become visible due to surrounding intraperitoneal gas. Abdominal radiographs can also show indirect evidence such as dilated bowel loops, air–fluid levels suggestive of obstruction or ileus, and, in retroperitoneal perforation, loss of psoas margins or abnormal retroperitoneal gas patterns. Despite these utilities, plain films lack sensitivity and anatomic detail, so normal radiographs do not meaningfully exclude perforation when clinical suspicion is high [14].

Computed tomography with oral and intravenous contrast is widely regarded as the diagnostic gold standard because it can detect small volumes of extraluminal air, identify extraluminal contrast leakage, demonstrate peritoneal fluid collections, and pinpoint the perforation site and underlying etiology—such as diverticulitis, malignancy, ischemia, inflammatory bowel disease, or iatrogenic injury. CT also characterizes the extent of contamination and can identify complications like abscess, phlegmon, or bowel necrosis, which materially influence the urgency and type of intervention. In patients with localized abscess and clinical stability, CT findings may guide percutaneous drainage and support a nonoperative or temporizing strategy under close monitoring. Conversely, diffuse free air with large-volume fluid, generalized peritonitis, or signs of ischemia on CT strongly support urgent operative management. In the uncommon scenario where perforation remains strongly suspected yet imaging is equivocal—particularly when clinical deterioration continues—diagnostic laparoscopy may be necessary for definitive evaluation and potential therapeutic intervention. Ultimately, evaluation of bowel perforation is a synthesis exercise: laboratory results help quantify systemic impact and physiologic reserve, while imaging establishes diagnosis, location, etiology, and complication burden. This integrated approach ensures that treatment decisions are not made on imaging alone or on laboratory abnormalities in isolation, but rather on a comprehensive assessment of anatomy, contamination, and the patient’s evolving clinical trajectory [13][14].

Treatment / Management

Effective management of bowel perforation hinges on rapid recognition, immediate stabilization, early antimicrobial therapy, and timely source control, most often through surgical intervention. Because perforation can rapidly progress from localized contamination to diffuse peritonitis and septic shock, management is best approached as a coordinated emergency pathway rather than a sequential checklist. The primary goals are to restore and maintain perfusion, limit bacterial proliferation and toxin production, prevent progression to multiorgan dysfunction, and achieve definitive control of the perforation and any associated contamination or abscess. Initial management begins with hemodynamic stabilization and should be instituted as soon as perforation is suspected, even before imaging confirmation in unstable patients. Large-bore intravenous access is essential to facilitate rapid fluid administration, blood sampling, and medication delivery. Aggressive IV crystalloid resuscitation is typically initiated to counteract intravascular depletion caused by third spacing into the peritoneal cavity and systemic inflammatory vasodilation. Supplemental oxygen should be administered to optimize tissue oxygen delivery, and patients with escalating respiratory distress, altered mental status, or refractory shock may require early airway management and ventilatory support. In individuals presenting with sepsis or septic shock, early vasopressor therapy may be necessary when hypotension persists despite adequate fluid resuscitation. In contemporary practice, vasopressors are deployed to restore mean arterial pressure and organ perfusion, recognizing that persistent hypotension accelerates ischemic injury and worsens outcomes. Antibiotic therapy is a time-critical intervention and should be administered promptly after cultures are obtained when feasible, without delaying treatment. Broad-spectrum antibiotics must provide coverage for gram-negative organisms and anaerobes, reflecting the microbial profile of gastrointestinal contamination. Common empiric choices include piperacillin-tazobactam, a carbapenem, or a third-generation cephalosporin combined with metronidazole, with regimen selection guided by local resistance patterns, prior colonization, immunocompromised status, and whether the perforation is proximal or distal. Antifungal therapy may be considered in selected high-risk patients, such as those with profound immunosuppression, prolonged hospitalization, prior broad-spectrum antibiotic exposure, or complicated intra-abdominal infection, where fungal involvement may contribute to persistent sepsis. Alongside antimicrobials, pain control should be addressed using a multimodal analgesic strategy that balances comfort with the need to avoid masking clinical deterioration. Patients are typically maintained nil per os to reduce further gastrointestinal burden and to prepare for potential operative intervention. Nasogastric

decompression can be valuable in cases of ileus or obstruction by reducing distension and aspiration risk; however, when gastric or duodenal perforation is strongly suspected, placement may be deferred until controlled conditions in the operating room to reduce the risk of enlarging an injury or exacerbating contamination [13][14].

Fig. 3: Diagnosis and management of perforation.

Nonoperative management is reserved for carefully selected patients and depends on stringent clinical criteria. Candidates are typically hemodynamically stable, have imaging consistent with contained perforation or microperforation, and demonstrate no signs of generalized peritonitis. These patients require inpatient admission for close monitoring, because clinical deterioration can occur rapidly if containment fails or abscess enlarges. Management includes continued bowel rest, IV fluids, broad-spectrum antibiotics, and frequent reassessment through serial abdominal examinations, repeated vital signs, and trending laboratory markers such as white blood cell count and lactate when clinically indicated. Improvement is suggested by stable hemodynamics, decreasing pain, normalization or downward trends in inflammatory markers, and a soft, nonperitoneal abdominal exam. If symptoms persist or worsen, repeat CT imaging with IV contrast after approximately 72 hours may be warranted to assess for progression, persistent leakage, or new abscess formation. Contained perforations are commonly associated with intra-abdominal abscesses; when abscesses are present and accessible, percutaneous drainage by interventional radiology can provide source control without immediate surgery. Drainage is typically most feasible when the abscess is at least 3 cm and a safe access trajectory exists, as smaller collections can be difficult to catheterize effectively.[14] Failure of nonoperative management, new peritoneal signs, rising lactate, persistent tachycardia, or any hemodynamic instability should prompt immediate escalation and surgical intervention, as delayed operative source control significantly increases morbidity and mortality. Surgical management is indicated for free perforation, diffuse peritonitis, sepsis with deterioration, or inability to control contamination through conservative measures.[15] Early surgical involvement is critical; consultation should occur at the time of suspicion rather than after all diagnostic steps are completed, because timely operative source control is among the strongest determinants of improved outcomes.[16] Operative strategy depends on patient stability, the underlying cause, and the extent of contamination. In stable patients with localized contamination and favorable anatomy, laparoscopy may be appropriate, offering diagnostic clarity and allowing repair with potentially reduced postoperative pain and earlier recovery. However, exploratory laparotomy remains the standard approach in unstable patients, those with

diffuse peritonitis, or in cases of diagnostic uncertainty, because it provides rapid exposure, thorough washout, and the ability to perform definitive repair or resection across multiple potential sites.[17]

Specific operative techniques are tailored to the lesion. Small defects may be treated with primary closure when tissue is viable and contamination is limited. In perforated peptic ulcer disease, an omental (Graham) patch repair is commonly used to reinforce closure and promote healing. When perforation results from ischemia, malignancy, or extensive inflammation, segmental resection is often necessary, with decisions about primary anastomosis versus diversion determined by hemodynamic stability, tissue perfusion, contamination severity, and the patient's physiologic reserve. In critically ill or septic patients, damage-control surgery may be required, prioritizing rapid control of contamination and stabilization over definitive reconstruction. This may involve resection without immediate anastomosis, diversion with ostomy creation, and temporary abdominal closure to allow ongoing resuscitation in the intensive care setting before planned reoperation. Postoperative and post-source-control care remains complex and must address both physiologic recovery and prevention of complications. Patients require continued monitoring for sepsis, ongoing fluid and electrolyte management, and appropriate antimicrobial stewardship based on culture results and clinical response. Early nutritional planning is essential because catabolism is profound in severe intra-abdominal infection; enteral feeding is pursued when feasible, while parenteral strategies may be needed when bowel function is delayed. Clinicians must remain vigilant for complications such as intra-abdominal abscess, anastomotic leak, wound infection, fistula formation, ileus, and progression to multiorgan dysfunction. A multidisciplinary approach involving surgery, critical care, infectious disease, interventional radiology, and nutrition teams improves coordination of source control, antimicrobial optimization, and supportive care. Across all phases, the overarching principle remains that delays in recognition and definitive intervention markedly worsen outcomes; therefore, early surgical involvement is warranted in any patient with concerning abdominal findings, hemodynamic instability, or signs of clinical deterioration suggestive of bowel perforation [13][14][15][16][17].

Differential Diagnosis

The differential diagnosis of bowel perforation is broad because the hallmark symptoms—acute abdominal pain, nausea or vomiting, abdominal distension, fever, leukocytosis, and signs of peritoneal irritation—are shared by many intra-abdominal, pelvic, and retroperitoneal disorders. Distinguishing bowel perforation from these alternatives is clinically essential because perforation frequently requires urgent source control and carries a high risk of sepsis if treatment is delayed. In practice, clinicians integrate the tempo of symptom onset, the pattern and location of pain, associated gastrointestinal or genitourinary features, risk factors such as recent instrumentation or inflammatory bowel disease, and confirmatory imaging—most often computed tomography—to separate perforation from other emergent and nonemergent causes. Acute biliary disorders, including cholecystitis, choledocholithiasis, and cholangitis, commonly present with right upper quadrant or epigastric pain, nausea, vomiting, and fever. These conditions may mimic perforated peptic ulcer or proximal bowel perforation, particularly when pain radiates to the shoulder or back. However, biliary disease often demonstrates a more localized right upper quadrant tenderness and may be supported by abnormal liver enzymes or bilirubin elevation; ultrasound is frequently diagnostic. Acute gastroenteritis can produce abdominal cramping, vomiting, diarrhea, and systemic symptoms, yet the presence of profuse diarrhea, recent exposure history, and the absence of peritoneal signs may favor infection confined to the lumen rather than perforation. Acute pancreatitis is a particularly important mimic because it can produce severe epigastric pain, ileus, fever, leukocytosis, and systemic inflammation; elevated lipase or amylase and characteristic CT findings support pancreatitis, although clinicians must remember that pancreatitis and perforation can occasionally coexist, and imaging remains decisive. Renal colic from kidney stones often presents with flank pain radiating to the groin, hematuria, and restlessness, contrasting with the stillness and guarding typical of peritonitis. Nonetheless, renal colic can be confused with perforation when abdominal pain predominates or when nausea and vomiting are prominent. Bacterial peritonitis—such as spontaneous bacterial peritonitis in patients with ascites—can resemble perforation with abdominal tenderness, fever, and leukocytosis, but it typically occurs in patients with chronic liver disease and ascites, and diagnosis is supported by diagnostic paracentesis rather than free air on imaging [16][17].

Lower abdominal surgical emergencies are also key considerations. Appendicitis may closely mimic localized perforation, particularly when perforation is contained and initially produces right lower quadrant tenderness; CT imaging clarifies whether there is appendiceal inflammation, perforation, or

abscess. Constipation can cause significant abdominal pain and distension and may be accompanied by nausea and decreased appetite, but it typically lacks systemic inflammatory features unless complicated by stercoral colitis or impending perforation. Crohn disease and ulcerative colitis can present with abdominal pain, fever, leukocytosis, and ileus during severe flares, and both can predispose to perforation; therefore, clinicians must distinguish uncomplicated flare from perforation using clinical trajectory and imaging, especially when there is sudden worsening pain, peritoneal signs, or rising lactate. Diverticulitis is similarly complex because it may represent either a mimic or the actual cause of perforation; patients may present with left lower quadrant pain and fever, and CT determines whether disease is uncomplicated, associated with abscess, or has progressed to free perforation. In reproductive-age patients, gynecologic pathology must be considered because pelvic conditions can mimic an acute abdomen. Endometriosis can cause cyclical pelvic pain and tenderness, sometimes severe, but typically lacks free air and systemic toxicity unless complicated by other pathology. Fallopian tube disorders, including torsion or rupture, may present abruptly with unilateral pelvic pain and peritoneal irritation. Ectopic pregnancy is a critical diagnosis not to miss, as rupture can produce hypotension and peritoneal signs; pregnancy testing is therefore essential in appropriate patients. Pelvic inflammatory disease may cause pelvic pain, fever, cervical motion tenderness, and leukocytosis; while it can cause significant discomfort and systemic symptoms, imaging helps differentiate pelvic infection from gastrointestinal perforation. Ultimately, because many of these conditions overlap clinically, bowel perforation should remain high on the differential when pain is severe or progressive, peritoneal signs are present, there is hemodynamic instability, or the patient has risk factors such as recent endoscopy, obstruction, inflammatory bowel disease, malignancy, or trauma—circumstances in which prompt CT imaging and surgical consultation are warranted [17].

Prognosis

The prognosis of bowel perforation is primarily determined by the patient's physiologic reserve and clinical status at the time perforation occurs, making the pre-perforation medical state one of the strongest predictors of outcome. Patients who are younger, nutritionally replete, and free of major chronic disease generally tolerate the inflammatory and hemodynamic stress of perforation more effectively, and they are more likely to recover without long-term functional decline. Conversely, individuals with significant comorbidities—such as advanced cardiovascular disease, chronic kidney disease, chronic liver disease, diabetes, malignancy, immunosuppression, or frailty—often have reduced compensatory capacity and are therefore more vulnerable to rapid progression toward sepsis, shock, and multiorgan dysfunction. In this context, bowel perforation acts as a physiologic “stress test,” and patients with limited baseline reserve are less able to withstand the acute volume shifts, inflammatory mediator surge, and metabolic demands that accompany peritoneal contamination. Although baseline health is highly influential, prognosis is also shaped by modifiable factors related to recognition and treatment. Time to diagnosis and time to definitive source control (surgical repair, resection, or effective drainage) are strongly associated with outcomes, because ongoing leakage and bacterial proliferation amplify systemic inflammation and increase the probability of septic shock. The degree of peritoneal contamination also matters: contained microperforations with localized inflammation or abscess generally carry a better prognosis than free perforations causing diffuse feculent peritonitis. Similarly, the underlying etiology influences both acute and long-term outlook. For example, perforations due to benign inflammatory causes may have favorable outcomes when treated promptly, whereas perforations associated with malignancy, mesenteric ischemia, or severe steroid- or radiation-related tissue injury may be complicated by impaired healing, recurrent contamination, or limited surgical options. Postoperative risk is further influenced by the need for extensive resection, the feasibility of safe anastomosis, the requirement for diversion, and the likelihood of complications such as intra-abdominal abscess, anastomotic leak, fistula formation, prolonged ileus, or wound infection [17].

Long-term prognosis extends beyond survival of the index hospitalization. Some patients experience lasting sequelae including adhesive bowel obstruction, chronic abdominal pain, altered bowel function, stoma-related complications, or nutritional compromise—especially after extensive small bowel resection. Recovery trajectories are often slower in older adults and in those who required intensive care, vasopressor support, or prolonged mechanical ventilation. Therefore, prognosis should be framed not only in terms of mortality risk but also in terms of functional recovery, rehabilitation needs, and quality of life after discharge. Preventing recurrence and improving long-term outcomes depends on addressing the underlying cause of perforation. Management of etiologic drivers—such as definitive treatment of

diverticular disease, malignancy workup and oncologic management, control of inflammatory bowel disease activity, prevention of recurrent obstruction, and careful medication review to limit mucosal injury—remains central to reducing future episodes and improving overall prognosis.[18] In this sense, the immediate episode of perforation is both an acute emergency and an opportunity to implement targeted secondary prevention strategies that can meaningfully influence long-term outcomes [18].

Complications

Bowel perforation is associated with substantial morbidity and mortality because it creates a direct pathway for chemical and microbial contamination of the peritoneal cavity, triggering intense inflammation, capillary leak, and systemic physiologic decompensation. Complications can emerge immediately during the acute phase—often driven by peritonitis and sepsis—or develop later during the postoperative and recovery period as a consequence of tissue injury, healing responses, and the complexity of surgical management. Clinically, these complications are often conceptualized as early and late sequelae, though the boundary between them is not absolute, particularly when infection persists or when recovery is prolonged. Early complications are dominated by systemic inflammatory response and infectious burden. Once luminal contents enter the peritoneal cavity, bacterial proliferation and toxin release amplify cytokine-driven inflammation, leading to vasodilation, capillary permeability, and third spacing of fluids into the abdomen and interstitial space. Without prompt recognition and source control, this process can produce hemodynamic instability that progresses to tissue hypoperfusion, septic shock, and multiorgan system failure.[19] The cardiovascular consequences include persistent hypotension requiring escalating vasopressor support and, in some patients, sepsis-associated myocardial dysfunction that further compromises cardiac output. Hypoperfusion may rapidly precipitate end-organ injury, particularly acute kidney injury, which can evolve into acute renal failure requiring renal replacement therapy in severe cases. Renal dysfunction is both a complication and an amplifier of risk, because it limits medication clearance, increases susceptibility to electrolyte derangements, and complicates postoperative management [19].

Respiratory compromise is another major early complication. Severe sepsis can increase metabolic demand and drive tachypnea, while systemic inflammation and capillary leak may contribute to acute lung injury or acute respiratory distress syndrome. Patients may require high-flow oxygen, noninvasive ventilation, or endotracheal intubation with mechanical ventilation, particularly when shock, altered mental status, or refractory hypoxemia develops. Hematologic and coagulation abnormalities may also appear early. Disseminated intravascular coagulation can occur as inflammatory pathways activate coagulation and impair fibrinolysis, leading to microvascular thrombosis, platelet consumption, and bleeding risk. This contributes to organ dysfunction and increases perioperative hemorrhage risk, complicating both surgical source control and postoperative recovery. Infectious complications in the early period may present as diffuse peritonitis, localized intra-abdominal abscess formation, or systemic bacteremia, each of which substantially increases morbidity and prolongs hospitalization.[19] Diffuse peritonitis is particularly dangerous because it reflects widespread contamination and is often accompanied by profound physiologic derangement. Even after initial surgical intervention, residual contamination or inadequate drainage can allow abscesses to form, perpetuating fever, leukocytosis, and ongoing sepsis. These abscesses may require percutaneous drainage by interventional radiology or reoperation when source control is incomplete. Bacteremia can seed distant sites and contribute to secondary infections such as pneumonia, catheter-related bloodstream infections, or, in vulnerable patients, endocarditis [19].

Late complications often arise from the surgical repair itself and from the body's healing response to inflammation and peritoneal injury. One of the most frequent long-term sequelae is adhesion formation. The peritoneum responds to injury by generating fibrinous exudates; when these are not fully resorbed, they can mature into adhesions that tether bowel loops and create mechanical obstruction. Adhesive small bowel obstruction may present weeks to years after the initial event and can cause recurrent hospitalizations, chronic pain, and the need for repeat surgical intervention. Delayed wound healing is another common complication, especially in patients with malnutrition, diabetes, chronic steroid exposure, or ongoing infection. Poor wound healing increases the risk of wound dehiscence and surgical site infection, both of which prolong recovery and may necessitate advanced wound management or reoperation. Structural complications such as anastomotic leak and fistula formation represent some of the most clinically consequential late sequelae.[15] Anastomotic leak can occur when tissue perfusion is inadequate, contamination is severe, tension is present on the anastomosis, or systemic factors impair healing. Clinically, leaks may present with persistent tachycardia, fever, abdominal pain, ileus, or recurrent sepsis,

and they often require drainage, prolonged antibiotics, nutritional support, and sometimes reoperation with diversion. Fistulas—abnormal communications between bowel and skin or other organs—may develop when chronic inflammation, infection, or anastomotic breakdown creates a persistent tract. Enterocutaneous fistulas can result in fluid and electrolyte losses, malnutrition, and prolonged hospitalization, frequently requiring multidisciplinary care involving surgery, nutrition, wound specialists, and interventional radiology. Incisional and ventral hernias are also important late complications, particularly in patients who underwent emergency laparotomy, prolonged open abdomen management, or damage-control surgery with delayed closure.[15] The risk is amplified when fascial closure is delayed, when infection is present, or when abdominal wall integrity is compromised by repeated operations. Hernias can impair function, cause pain, predispose to incarceration, and often require elective surgical repair. Patients who undergo damage-control laparotomy with delayed closure are also at increased risk for fistulization, because exposed bowel and repeated handling can promote serosal injury and impaired healing.[15]

Finally, delayed or recurrent intra-abdominal abscesses and recurrent sepsis may present after apparent initial recovery, underscoring the need for vigilant surveillance. Persistent low-grade fever, unexplained leukocytosis, failure to regain bowel function, or continued abdominal tenderness should prompt reassessment and repeat imaging. Across both early and late timelines, complication risk is shaped by the timing of diagnosis and intervention, baseline comorbidities, the extent of peritoneal contamination, and the surgical strategy chosen. Early recognition, aggressive resuscitation, timely and definitive source control, and meticulous postoperative monitoring remain the most effective approaches to mitigating these complications and improving survival and long-term recovery.[19]

Postoperative and Rehabilitation Care

Postoperative and rehabilitation care after bowel perforation repair must be individualized because patients arrive at surgery with widely different physiologic reserves and degrees of peritoneal contamination, and they leave the operating room with variable reconstructions, drains, or diversions that shape recovery. The intensity of postoperative management is primarily determined by the severity of preoperative illness (particularly sepsis or septic shock), the extent of intraoperative contamination, the complexity of the repair or resection, and the burden of comorbid disease. Many patients require care in a high-acuity environment—either a specialized surgical ward with enhanced monitoring or the intensive care unit—especially when hypotension, vasopressor dependence, respiratory compromise, or organ dysfunction is present. Across all settings, postoperative priorities remain consistent: stabilization of hemodynamics, restoration of effective perfusion, monitoring of urine output and renal function, correction of electrolyte and acid–base disturbances, continued infection control, adequate analgesia, early nutritional support, and gradual mobilization with prevention of secondary complications.[20] Hemodynamic and critical care monitoring begins immediately in the postoperative period. Vital signs, mental status, peripheral perfusion, and urine output are tracked closely because subtle changes may signal recurrent sepsis, ongoing bleeding, inadequate volume status, or evolving organ dysfunction. In patients who required aggressive resuscitation preoperatively, continued fluid therapy may be needed to counteract capillary leak and third spacing. Some individuals remain vasopressor-dependent early after surgery; in such cases, invasive monitoring and ICU-level nursing facilitate frequent reassessment of perfusion goals and titration of vasoactive agents. Lactate trending can be useful when shock physiology has been present, as persistent elevation may indicate ongoing hypoperfusion or inadequate source control. Respiratory status requires equal attention. Pain, abdominal distension, systemic inflammation, and prolonged immobility can all impair ventilation, increasing the risk of atelectasis and hypoxemia; postoperative oxygenation targets and ventilatory strategies are therefore tailored to the patient’s pulmonary reserve and perioperative course [10].

Antibiotic therapy and infection control remain central after repair. Broad-spectrum intravenous antibiotics directed at gram-negative and anaerobic organisms are typically continued, with the duration informed by operative findings, the degree of contamination, and the patient’s clinical trajectory. A shorter course may be appropriate when contamination was minimal or when perforation was contained and definitively controlled, while diffuse peritonitis, necrotic tissue, or ongoing contamination often requires prolonged therapy and careful reassessment of adequacy. Culture results—when available from intraoperative specimens or preoperative blood cultures—support antimicrobial de-escalation to targeted therapy, limiting toxicity and resistance risk. Persistent fever, leukocytosis, rising inflammatory markers, or recurrent abdominal symptoms may indicate an intra-abdominal abscess, anastomotic leak, or unresolved infection. In such scenarios, repeat imaging and coordination with interventional radiology for percutaneous

drainage can be essential components of ongoing source control. Nutritional and gastrointestinal care are decisive for recovery, particularly because patients with bowel perforation often experience catabolic stress, ileus, and compromised intake. Return of bowel function is monitored clinically through the passage of flatus or stool, decreasing nasogastric output when decompression is used, and the gradual resolution of distension. Nasogastric decompression may be continued selectively to relieve ileus or obstruction and reduce aspiration risk, but it should be reassessed daily to avoid unnecessary discomfort and mucosal injury. Early nutritional support is encouraged whenever feasible, preferably through enteral feeding, because it helps preserve gut barrier function, supports immune competence, and enhances wound healing. When enteral nutrition is not tolerated or contraindicated due to prolonged ileus, high-output fistula, or hemodynamic instability, parenteral nutrition may be required to prevent severe malnutrition and facilitate recovery. Nutritional planning should also account for protein needs, micronutrient status, glycemic control, and—when substantial bowel resection has occurred—risk for malabsorption and fluid/electrolyte losses [20].

Pain control and mobilization must be balanced carefully. A multimodal analgesic regimen is preferred to optimize comfort while minimizing opioid-related adverse effects such as ileus, sedation, and respiratory depression. Adjuncts may include acetaminophen, regional anesthesia techniques when appropriate, and non-opioid agents selected with attention to renal function and bleeding risk. Effective analgesia supports early mobilization, which is a cornerstone of rehabilitation and complication prevention. Mobilization plans typically begin with sitting upright and ambulation as tolerated, paired with incentive spirometry and pulmonary hygiene to reduce atelectasis and pneumonia risk. Venous thromboembolism prevention is addressed through early mobility combined with pharmacologic prophylaxis and mechanical measures as appropriate to bleeding risk. Monitoring for complications is continuous and requires structured surveillance. Daily examinations assess abdominal tenderness, distension, wound integrity, and signs of peritoneal irritation. Laboratory monitoring—including complete blood count, metabolic panel, and inflammatory markers such as C-reactive protein when used institutionally—helps track infection resolution and organ function. Clinical vigilance is crucial because anastomotic leak, intra-abdominal abscess, and recurrent sepsis may initially present with nonspecific signs such as persistent tachycardia, fever, worsening pain, ileus, or unexpected weakness. Repeat imaging is undertaken promptly when concern arises, as early detection enables drainage or re-intervention before catastrophic deterioration occurs. Wound and stoma care are integral components of postoperative rehabilitation. Incisions are monitored for infection, hematoma, seroma, or dehiscence, and dressings are managed to support healing while protecting surrounding skin. When a diverting ostomy has been created, structured education is essential and should begin early, ideally led by wound and ostomy care nursing. Patients and caregivers require training in appliance management, skin protection, recognition of ischemia or retraction, and strategies for hydration and electrolyte maintenance—particularly in ileostomy patients who may experience significant output [20].

Discharge planning begins early and is guided by functional readiness and clinical stability. Safe discharge generally requires hemodynamic stability without escalating support, adequate pain control on oral regimens, toleration of nutrition with evidence of returning bowel function, and no signs of ongoing infection. Follow-up plans address wound assessment, nutritional optimization, stoma management when applicable, and surveillance for long-term sequelae such as adhesions, recurrent obstruction, or incisional hernia. Patients with underlying drivers—malignancy, Crohn disease, chronic steroid exposure, or recurrent diverticular disease—often benefit from coordinated multidisciplinary follow-up with gastroenterology, oncology, primary care, nutrition services, and, when needed, rehabilitation specialists, ensuring that postoperative recovery is linked to prevention of recurrence and long-term health restoration [20].

Consultations

Consultation pathways for suspected or confirmed bowel perforation should be initiated early and coordinated deliberately, because outcomes depend on rapid diagnosis, timely source control, and continuity of care beyond the acute hospitalization. In the emergency department, immediate multidisciplinary involvement is often required to stabilize the patient, confirm the diagnosis, and expedite definitive management. Radiology consultation is central to early evaluation, particularly when computed tomography is needed to identify free intraperitoneal air, localize the site of perforation, define the underlying etiology, and determine whether an abscess or contained perforation might be amenable to percutaneous drainage. Close communication with radiology is especially important when the patient is

unstable, has renal impairment that complicates contrast use, or requires expedited interpretation to avoid delays in operative decision-making. Internal medicine or critical care consultation is frequently appropriate, particularly in older adults or patients with significant comorbidities, sepsis, or shock physiology. These teams assist with hemodynamic optimization, ventilatory support when necessary, management of electrolyte and acid–base disturbances, and coordination of sepsis-directed therapy. They also contribute to perioperative risk assessment and optimization, helping to stabilize conditions such as heart failure, chronic kidney disease, diabetes, or chronic liver disease that may worsen surgical risk and affect recovery. In settings where severe infection is present, infectious disease consultation may be valuable to refine antimicrobial regimens, determine appropriate duration of therapy based on source control and clinical response, and guide management of resistant organisms or suspected fungal involvement [20][21].

Most critically, early surgical consultation is essential and should be pursued as soon as bowel perforation is suspected, rather than delayed until imaging is completed, because timely operative source control remains the strongest modifiable determinant of survival in free perforation and diffuse peritonitis. Surgical teams evaluate the need for urgent exploration versus nonoperative management, plan the operative approach, and coordinate postoperative monitoring for complications such as anastomotic leak or intra-abdominal abscess. Long-term consultation planning should focus on the specialist teams responsible for addressing the underlying pathology that precipitated perforation and preventing recurrence. Gastroenterology is frequently involved for chronic disease management and surveillance in inflammatory bowel disease or recurrent diverticulitis, including optimization of anti-inflammatory therapy and follow-up colon evaluation where appropriate. Oncology consultation is indicated when perforation is related to malignancy or when cancer is discovered incidentally during evaluation or surgery, enabling staging, adjuvant planning, and longitudinal treatment. Primary care plays a vital role in coordinating chronic medication management, risk-factor modification, nutritional optimization, and post-discharge monitoring to support recovery and reduce future risk.[21]

Patient Education

Deterrence and patient education are foundational elements of care for individuals at risk for bowel perforation and for those recovering from perforation repair, because the condition is associated with substantial morbidity, the potential for rapid clinical deterioration, and a meaningful risk of recurrence or long-term sequelae. Effective education does not simply provide information; it builds patient capacity to recognize danger signs early, adhere to preventive therapies, and engage in structured follow-up that allows complications to be detected before they become catastrophic. Patient teaching should therefore be individualized according to the underlying cause of perforation, health literacy, cultural considerations, and the patient's functional and social supports, while also maintaining consistent core messages across the multidisciplinary team. Risk factor modification is the most direct deterrence strategy, particularly for patients with chronic gastrointestinal disease or medication exposures that weaken mucosal defenses and impair healing. Individuals with peptic ulcer disease should be counseled on the relationship between ulcer recurrence and perforation risk, emphasizing the importance of targeted prevention strategies such as *Helicobacter pylori* testing and eradication, adherence to acid suppression when indicated, and avoidance of behaviors that worsen mucosal injury. Patients with diverticular disease benefit from education regarding symptom monitoring and timely evaluation during suspected flares, because progression from localized inflammation to contained perforation or free perforation can occur when episodes are unrecognized or undertreated. For patients with Crohn disease or ulcerative colitis, adherence to maintenance therapy and regular follow-up are critical, as uncontrolled inflammation increases the likelihood of ulceration, stricturing, and perforation; education should explicitly address the dangers of discontinuing therapy during periods of symptom improvement and the need to report worsening pain, fever, or changes in bowel function promptly. Medication counseling is equally important. Chronic nonsteroidal anti-inflammatory drug use increases the risk of ulceration and mucosal injury, while corticosteroids and some immunosuppressive agents can impair wound healing and blunt typical inflammatory symptoms, potentially delaying diagnosis. Patients should be supported in exploring safer pain control alternatives with their clinicians and should be warned against unsupervised prolonged use of high-risk medications. Smoking cessation and moderation of alcohol use should be reinforced because both can impair healing, exacerbate gastrointestinal disease, and increase postoperative complications. Patients with malignancy, as well as bariatric and oncologic surgical populations, require special emphasis on nutritional optimization

and surveillance, since malnutrition, hypoalbuminemia, and micronutrient deficiencies increase the risk of anastomotic failure, delayed healing, and infection [5][11][17][21].

Education on early recognition and timely medical attention is essential because bowel perforation often transitions quickly from localized symptoms to systemic illness. Patients should be taught to treat certain symptoms as emergency warning signs rather than routine gastrointestinal discomfort. Sudden severe abdominal pain, rapidly worsening pain, fever or chills, persistent tachycardia or palpitations, increasing abdominal distension, inability to pass stool or gas, and repeated nausea or vomiting should prompt urgent evaluation, especially in patients with known risk factors or recent instrumentation such as colonoscopy, endoscopy, or abdominal surgery. Patients and caregivers should understand that delaying care can allow peritonitis and sepsis to develop, increasing the likelihood of intensive care admission and long-term complications. For higher-risk groups—older adults, immunocompromised patients, and those on chronic steroids—education should highlight that severe illness may occur even when fever is absent or pain is less dramatic, making “new confusion,” unusual weakness, or unexplained shortness of breath additional signals to seek care. Postoperative education requires structured teaching that begins before discharge and is reinforced with written instructions and clear return precautions. Wound care guidance should include how to keep the incision clean, how to recognize infection (increasing redness, warmth, purulent drainage, foul odor, or worsening pain), and when to seek evaluation for dehiscence or bleeding. If an ostomy has been created, patients and caregivers should receive hands-on training from wound and ostomy specialists regarding appliance changes, peristomal skin protection, hydration strategies, and recognition of concerning findings such as stoma discoloration, retraction, high-output dehydration, or obstruction symptoms. Dietary education should address gradual advancement as bowel function returns, the importance of adequate protein and caloric intake for healing, and specific recommendations when resections or ostomies alter absorption or fluid balance. Medication adherence must be emphasized, including completion of antibiotic courses when prescribed, correct use of acid suppression or anti-inflammatory therapies, and avoidance of high-risk medications unless specifically directed. Patients should also be encouraged to ambulate early, practice pulmonary hygiene when advised, maintain adequate hydration, and follow laboratory or imaging plans ordered to monitor recovery [12][15][21].

Lifestyle and long-term health maintenance education should frame recovery as a continuum rather than a single event. Patients should be supported in adopting sustainable nutrition patterns, maintaining activity levels appropriate to healing, and addressing modifiable health risks such as smoking and excess alcohol use. Those with chronic gastrointestinal conditions should be encouraged to maintain regular gastroenterology or surgical follow-up to monitor disease activity and intervene early in flares, strictures, or complications before perforation occurs. Importantly, follow-up care should be presented as a protective strategy: routine visits allow clinicians to detect incisional hernias, adhesional obstruction risk, fistula formation, or recurrent abscesses at earlier and more treatable stages. Deterrence and patient education are most effective when delivered through coordinated multidisciplinary support. Nurses, advanced practice clinicians, dietitians, pharmacists, and wound/ostomy specialists each reinforce complementary messages—medication safety, nutrition and hydration, symptom monitoring, and procedural care—creating consistency and reducing confusion. When education is delivered repeatedly, in understandable language, and tailored to patient needs, it empowers patients to participate actively in prevention and recovery, reduces avoidable readmissions, and ultimately mitigates long-term morbidity associated with bowel perforation [17][21].

Enhancing Healthcare Team Outcomes

Optimizing outcomes in bowel perforation depends on coordinated, interprofessional care that moves quickly from recognition to resuscitation, definitive source control, and longitudinal recovery planning. Because bowel perforation can deteriorate rapidly into diffuse peritonitis, septic shock, and multiorgan dysfunction, the healthcare team must function as an integrated system in which each discipline contributes specialized expertise while maintaining shared situational awareness. High-performing teams reduce time-to-antibiotics, expedite imaging, accelerate surgical decision-making, prevent avoidable complications, and improve patient-centered recovery trajectories through consistent communication and standardized workflows. Clinicians and surgeons carry primary responsibility for rapid diagnostic synthesis and treatment direction. In the acute setting, emergency clinicians must promptly evaluate abdominal pain in context, identify red flags such as peritoneal signs, persistent tachycardia, hypotension, rising lactate, or recent instrumentation, and activate early surgical consultation rather than waiting for complete diagnostic

confirmation. Surgeons must interpret imaging and operative risk in parallel, determining whether nonoperative observation, percutaneous drainage, urgent laparoscopy, or exploratory laparotomy is indicated. In unstable patients, early decision-making around operative source control is especially consequential, and surgeons must coordinate with anesthesia and critical care teams to balance resuscitation needs with the urgency of contamination control. Hospitalists and intensivists contribute substantially by managing shock physiology, ventilatory support, renal dysfunction, and metabolic derangements, ensuring that sepsis bundles are implemented and that perfusion targets are maintained during and after operative interventions. Advanced practice providers—including physician assistants and nurse practitioners—often serve as key operational links within this pathway. Their roles commonly include early identification of clinical deterioration, initiation of resuscitative measures such as intravenous fluids and broad-spectrum antibiotics, coordination of diagnostic testing, and facilitation of timely consultation. They also support continuity across transitions of care by communicating evolving findings, clarifying plans with the patient and family, and ensuring that critical steps—such as obtaining blood cultures, trending lactate when indicated, and reassessing abdominal findings—are completed without delay [19][20][21].

Nursing contributions are pivotal because bedside surveillance frequently determines how quickly deterioration is recognized. Nurses provide continuous assessment of vital signs, pain trajectories, abdominal distension, bowel sounds, urine output, mental status, and overall perfusion. Subtle patterns—such as escalating analgesic requirements, new restlessness, worsening tachycardia, decreased urine output, or increasing abdominal rigidity—may precede overt hypotension and can prompt rapid escalation to surgical or critical care teams. Nursing practice also drives prevention of secondary complications through early mobilization protocols, pulmonary hygiene, venous thromboembolism prophylaxis adherence, meticulous line and catheter care, wound monitoring, and patient education. After surgery, nursing teams often coordinate complex care needs, including nasogastric management, drain output monitoring, ostomy care teaching, and early recognition of anastomotic leak or intra-abdominal abscess through vigilant observation and prompt reporting. Pharmacists strengthen outcomes by optimizing antimicrobial therapy and medication safety in a physiologically unstable population. They assist with empiric antibiotic selection appropriate for gram-negative and anaerobic coverage, adjust dosing based on renal function and body weight, advise on de-escalation when culture data become available, and monitor for drug interactions or toxicity—especially in patients receiving vasopressors, nephrotoxic agents, or prolonged broad-spectrum regimens. Pharmacists also support multimodal analgesia planning to reduce opioid-related ileus and respiratory depression, and they contribute to electrolyte management strategies that reduce arrhythmia risk and support gastrointestinal recovery [19][21].

Effective communication and coordination are the mechanisms that transform multidisciplinary expertise into improved outcomes. Early, clear communication among emergency staff, surgery, anesthesia, ICU teams, radiology, and ancillary services reduces delays and prevents fragmented care. Structured handoffs should convey the working diagnosis, key vital sign trends, lactate and laboratory trajectories, imaging results, antimicrobial timing, and the current plan for source control. Collaboration with radiology ensures rapid imaging acquisition and interpretation, while interventional radiology involvement can expedite percutaneous abscess drainage when appropriate. Dietitians and nutrition support teams are essential for postoperative planning, particularly in patients with prolonged ileus, high-output ostomies, malnutrition, or extensive resections, where early nutritional optimization meaningfully influences wound healing and functional recovery. Wound and ostomy specialists enhance patient safety and reduce readmissions through targeted education and follow-up planning. Ultimately, healthcare team outcomes improve when institutions implement standardized pathways—such as sepsis bundles, early surgical consultation triggers, and postoperative surveillance protocols—while fostering a culture of shared accountability and rapid escalation. By integrating disciplined clinical reasoning, vigilant bedside monitoring, pharmacotherapeutic precision, and consistent interprofessional communication, teams can reduce morbidity, prevent complications, shorten time to definitive care, and support safer recovery for patients experiencing bowel perforation [21].

Conclusion:

Bowel perforation remains a high-risk condition with substantial morbidity and mortality, primarily driven by delays in diagnosis and intervention. The prognosis depends on patient comorbidities, the extent of contamination, and the timeliness of source control. Rapid recognition of clinical deterioration—such as escalating pain, abdominal rigidity, tachycardia, and systemic instability—is

essential to prevent progression to septic shock and multiorgan failure. Imaging, particularly CT, provides definitive diagnosis, but clinical judgment must guide urgent resuscitation without delay. Surgical intervention remains the cornerstone for free perforations and diffuse peritonitis, while nonoperative management is reserved for select stable cases under close monitoring. Postoperative care demands vigilant surveillance for complications such as abscess, anastomotic leak, and fistula formation, alongside nutritional optimization and infection control. Nurses are integral to this continuum, ensuring early detection, implementing preventive strategies, and delivering patient education to reduce recurrence and improve long-term outcomes. Ultimately, bowel perforation management exemplifies the need for rapid, coordinated, and multidisciplinary care pathways that prioritize patient safety and functional recovery.

References:

1. Long B, Robertson J, Koyfman A. Emergency Medicine Evaluation and Management of Small Bowel Obstruction: Evidence-Based Recommendations. *The Journal of emergency medicine*. 2019 Feb;56(2):166-176. doi: 10.1016/j.jemermed.2018.10.024.
2. Ugwu AU, Kerins N, Malik M. Traumatic small bowel perforation in a case of a perineal hernia. *Journal of surgical case reports*. 2018 Dec;2018(12):rjy330. doi: 10.1093/jscr/rjy330. Epub 2018 Dec 12.
3. Rich BS, Dolgin SE. Necrotizing Enterocolitis. *Pediatrics in review*. 2017 Dec;38(12):552-559. doi: 10.1542/pir.2017-0002.
4. Huang P, Luo N, Shi X, Yan J, Huang J, Chen Y, Du Z. Risk factor analysis and nomogram prediction model construction for NEC complicated by intestinal perforation. *BMC pediatrics*. 2024 Feb 27;24(1):143. doi: 10.1186/s12887-024-04640-2.
5. Arslan S, Okur MH, Arslan MS, Aydogdu B, Zeytun H, Basuguy E, Icer M, Goya C. Management of gastrointestinal perforation from blunt and penetrating abdominal trauma in children: analysis of 96 patients. *Pediatric surgery international*. 2016 Nov;32(11):1067-73.
6. Tan SS, Wang K, Pang W, Wu D, Peng C, Wang Z, Zhang D, Chen Y. Etiology and surgical management of pediatric acute colon perforation beyond the neonatal stage. *BMC surgery*. 2021 Apr 26;21(1):212. doi: 10.1186/s12893-021-01213-3.
7. Onur MR, Akpinar E, Karaosmanoglu AD, Isayev C, Karcaaltincaba M. Diverticulitis: a comprehensive review with usual and unusual complications. *Insights into imaging*. 2017 Feb;8(1):19-27. doi: 10.1007/s13244-016-0532-3.
8. Behrman SW. Management of complicated peptic ulcer disease. *Archives of surgery (Chicago, Ill. : 1960)*. 2005 Feb;140(2):201-8
9. Makkar R, Bo S. Colonoscopic perforation in inflammatory bowel disease. *Gastroenterology & hepatology*. 2013 Sep;9(9):573-83
10. Parray FQ, Wani ML, Malik AA, Wani SN, Bijli AH, Irshad I, Nayeem-Ul-Hassan. Ulcerative colitis: a challenge to surgeons. *International journal of preventive medicine*. 2012 Nov;3(11):749-63
11. Werbin N, Haddad R, Greenberg R, Karin E, Skornick Y. Free perforation in Crohn's disease. *The Israel Medical Association journal : IMAJ*. 2003 Mar;5(3):175-7
12. Dhadlie S, Mehanna D, McCourtney J. Pneumatosis intestinalis a trap for the unwary: Case series and literature review. *International journal of surgery case reports*. 2018;53():214-217. doi: 10.1016/j.ijscr.2018.10.079.
13. Foran AT, Nason GJ, Rohan P, Keane GM, Connolly S, Hegarty N, Galvin D, O'Malley KJ. Iatrogenic Bowel Injury at Exchange of Supra-Pubic Catheter. *Irish medical journal*. 2018 Apr 19;111(4):737
14. Cirocchi R, Duro F, Avenia S, Capitoli M, Tebala GD, Allegritti M, Cirillo B, Brachini G, Sapienza P, Binda GA, Mingoli A, Fedeli P, Nascimbeni R. Guidelines for the Treatment of Abdominal Abscesses in Acute Diverticulitis: An Umbrella Review. *Journal of clinical medicine*. 2023 Aug 25;12(17):. doi: 10.3390/jcm12175522.
15. Ruscelli P, Renzi C, Polistena A, Sanguinetti A, Avenia N, Popivanov G, Cirocchi R, Lancia M, Gioia S, Tabola R. Clinical signs of retroperitoneal abscess from colonic perforation: Two case reports and literature review. *Medicine*. 2018 Nov;97(45):e13176. doi: 10.1097/MD.00000000000013176.
16. Cappell MS. Universal lessons learned by a gastroenterologist from a deaf and mute patient: the importance of nonverbal communication and establishing patient rapport and trust. *American annals of the deaf*. 2009 Summer;154(3):274-6
17. Sullivan BJ, Kim GJ, Sara G. Treatment dilemma for survivors of rituximab-induced bowel perforation in the setting of post-transplant lymphoproliferative disorder. *BMJ case reports*. 2018 Dec 13;11(1):. doi: 10.1136/bcr-2018-226666.
18. Guzman-Pruneda FA, Husain SG, Jones CD, Beal EW, Porter E, Grove M, Moffatt-Bruce S, Schmidt CR. Compliance with preoperative care measures reduces surgical site infection after colorectal operation. *Journal of surgical oncology*. 2019 Mar;119(4):497-502. doi: 10.1002/jso.25346.

19. Peacock O, Yanni F, Kuryba A, Cromwell D, Lockwood S, Anderson I, Vohra RS, NELA Project Team. Failure to rescue patients after emergency laparotomy for large bowel perforation: analysis of the National Emergency Laparotomy Audit (NELA). *BJS open*. 2021 Jan 8:5(1):. doi: 10.1093/bjsopen/zraa060.
20. Li S, Cheng L, Li Y, Ning L, Yu Z, Wang P, Zhou X, Ren J. [Analysis of high risk factors for acute complex appendicitis in adults]. *Zhonghua wei chang wai ke za zhi = Chinese journal of gastrointestinal surgery*. 2018 Dec 25:21(12):1374-1379
21. Hsu TC, Huang TM, Yang YC. A surgeon's help with the management of bowel problems related to gynecology is truly needed - comparison of two periods spanning 24 years. *Taiwanese journal of obstetrics & gynecology*. 2012 Dec;51(4):612-5. doi: 10.1016/j.tjog.2012.09.017.