

The Impact Of Real-Time Genomic Epidemiology On The Containment Of Nosocomial Outbreaks: A Systematic Review Of Infection Control Outcomes And Medical Laboratory Integration

Yahya Mohammed Ali Sahli¹, Mohammed Sultan Sultan Hakami², Mohammed Hassan Ahmed Sahli³, Mohammed Ali Ahmed Sahli⁴, Naif Hamoud Jebril Qussairy⁵, Mansour Mohammed Abdullah Sumayli⁶, Fatimah Makki Mohammed Alawami⁷, Adeeb Mansour Jaber Okayri⁸, Esraa Shaker Alawi Al Hawashim⁹, Khalid Abdullah M Algazlan¹⁰, Mohannad Ali Mohammed Alhomaid¹¹

¹Technician-Public Health , Disease Vector Control Center □ Disease Vector Control and Zoonotic Diseases Department , Branch of the Ministry of Health , Samtah , Jazan □ Saudi Arabia

²Technician-Public Health , Disease Vector Control Center □ Disease Vector Control and Zoonotic Diseases Department , Branch of the Ministry of Health , Samtah , Jazan □ Saudi Arabia

³Technician-Public Health , Disease Vector Control Center □ Disease Vector Control and Zoonotic Diseases Department , Branch of the Ministry of Health , Samtah , Jazan □ Saudi Arabia

⁴Technician-Public Health , Disease Vector Control Center □ Disease Vector Control and Zoonotic Diseases Department , Branch of the Ministry of Health , Samtah , Jazan □ Saudi Arabia

⁵Epidemiology Technician , Malaria Center-harob , Ministry of Health , Jazan , Saudi Arabia

⁶Technician-Public Health , Disease Vector Control Center □ Disease Vector Control and Zoonotic Diseases Department , Branch of the Ministry of Health , Samtah , Jazan □ Saudi Arabia

⁷Infection Control Specialist , Prince Mohammed bin Fahad Hospital of Blood Disorders , Qatif , Saudi Arabia

⁸Public Health, Jazan Health Community Northern, Sector, Jazan, Saudi Arabia

⁹Laboratory Specialist, Maternity And Children's Hospital – Dammam, Eastern Health Cluster, Eastern Dammam, Saudi Arabia

¹⁰Laboratory Technologist, Al-Rass General Hospital, Qassim Health Cluster, Al-Rass, Saudi Arabia

¹¹Laboratory Technician, Al-Rass General Hospital, Qassim Health Cluster, Al-Rass, Saudi Arabia

Abstract

Background

Healthcare-associated infections (HAIs) represent a persistent and formidable challenge to global health security, significantly contributing to patient morbidity, mortality, and the escalation of healthcare costs. As antimicrobial resistance (AMR) accelerates, the precision of outbreak detection methodologies becomes paramount. Traditional epidemiological surveillance, reliant on temporal-spatial clustering and phenotypic typing methods such as pulsed-field gel electrophoresis (PFGE), often lacks the discriminatory power necessary to distinguish true transmission events from sporadic cases in real-time. This resolution gap frequently leads to delayed interventions, uncontained transmission, and the misallocation of infection prevention resources. Whole-genome sequencing (WGS) has emerged as a transformative technology, offering single-nucleotide resolution that can definitively link or exonerate pathogen isolates. This systematic review evaluates the efficacy, economic viability, and operational integration of real-time genomic epidemiology in the containment of nosocomial outbreaks.

Methods

A comprehensive review of the literature from 2015 to 2025 was conducted, targeting studies that implemented prospective or real-time WGS surveillance in hospital settings. The review prioritized data focusing on high-consequence pathogens, including methicillin-resistant *Staphylococcus aureus* (MRSA), vancomycin-resistant Enterococci (VRE), *Clostridioides difficile*, multidrug-resistant Gram-negative bacilli, and SARS-CoV-2. Outcomes of interest included outbreak detection rates, cessation of transmission following intervention, turnaround times (TAT), economic return on investment (ROI), and the elucidation of cryptic transmission pathways. Risk of bias was assessed utilizing the ROBINS-I and ROBINS-E tools to evaluate non-randomized intervention studies, ensuring a rigorous synthesis of the available evidence.

Results

The synthesis of data indicates a paradigm shift in infection control efficacy. Prospective WGS surveillance demonstrated a superior capacity to detect outbreaks compared to standard of care (SoC), with studies such as the Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT) revealing that traditional methods miss a substantial proportion of transmission events. WGS surveillance was associated with a 95.6% cessation of transmission in intervened outbreaks and demonstrated a 3.2-fold return on investment through averted infections and the reduction of unnecessary bed closures. The technology proved particularly adept at identifying "cryptic" transmission routes—such as those mediated by asymptomatic carriers or environmental reservoirs—that defy conventional epidemiological logic. Furthermore, WGS provided critical "rule-out" capabilities, differentiating between relapse and reinfection in *C. difficile* cases and preventing futile investigations into temporally clustered but genetically unrelated infections. However, the review also identified significant barriers to widespread adoption, including the high costs of bioinformatic infrastructure, the need for specialized workforce training, and the logistical challenges of integrating genomic data into routine clinical microbiology workflows.

Conclusions

Real-time genomic epidemiology is not merely a refinement of existing tools but a fundamental restructuring of nosocomial surveillance. By transitioning from reactive investigation to prospective monitoring, healthcare institutions can achieve significant clinical and economic benefits. The successful integration of this technology requires a coordinated effort to standardize bioinformatic pipelines, enhance laboratory capacity, and foster regional data-sharing networks. As sequencing costs decline and automation improves, WGS is poised to become the new standard of care for infection prevention, offering a robust defense against the spreading threat of hospital-acquired pathogens.

Introduction

The Persistent Burden of Nosocomial Infections

Healthcare-associated infections (HAIs) constitute one of the most pressing patient safety issues in modern medicine. Despite decades of focus on hygiene protocols and infection control bundles, the burden remains staggeringly high. The World Health Organization (WHO) reports that HAIs affect hundreds of millions of patients worldwide each year, complicating the delivery of care and undermining health outcomes. In high-income countries, approximately seven out of every 100 patients in acute-care hospitals acquire at least one HAI during their hospital stay; in low- and middle-income countries, this figure rises to 15 per 100 patients. These infections are not benign complications; they are significant drivers of mortality. On average, one in every ten affected patients will die from their HAI, with risks significantly elevated in intensive care units (ICUs) and neonatal wards [1].

The economic toll of these infections is equally profound. In the United States alone, the direct costs associated with HAIs are estimated to range between \$35 billion and \$45 billion annually [2]. These costs arise from prolonged hospital stays, the need for expensive high-potency antimicrobials, additional diagnostic testing, and the operational strain of ward closures and isolation procedures. Furthermore, the rising tide of antimicrobial resistance (AMR) exacerbates this crisis. The WHO notes that mortality among patients infected by resistant pathogens is two to three times higher than those infected by susceptible variants [3]. As pathogens such as carbapenem-resistant Enterobacteriales (CRE) and *Acinetobacter baumannii* become more prevalent, the window for effective treatment narrows, making the prevention of transmission the only viable strategy for preserving patient life.

The Limitations of Conventional Epidemiology

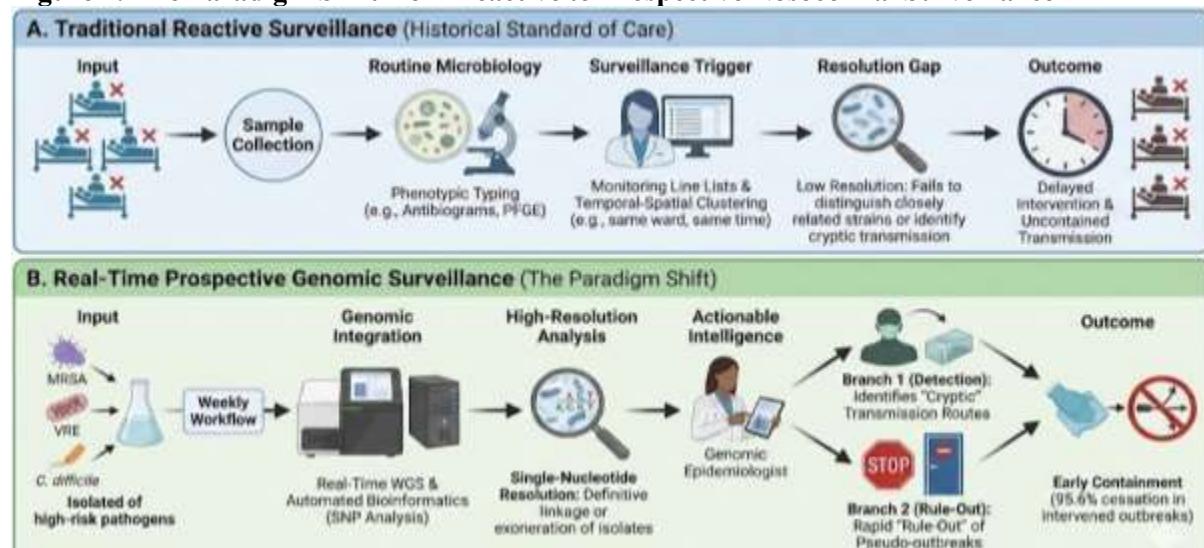
Historically, hospital infection control has relied on a "reactive" model of surveillance. Infection Preventionists (IPs) monitor "line lists" of positive cultures, looking for statistical anomalies—such as an unexpected spike in *Klebsiella pneumoniae* cases in a specific unit over a short period. When a cluster is suspected, investigations rely on temporal-spatial associations: were these patients in the same ward at the same time? Did they share a nurse? Did they undergo the same procedure?

While this approach is foundational, it suffers from severe limitations in sensitivity and specificity. Conventional phenotypic typing methods, such as antibiograms (comparing antibiotic resistance patterns), are crude tools for establishing relatedness. Two bacterial isolates may share the same resistance profile yet be genetically distinct, leading to false assumptions of an outbreak (false positive).

Conversely, highly related strains may exhibit different resistance phenotypes due to the gain or loss of mobile genetic elements, causing investigators to miss genuine transmission events (false negative) [4]. Pulsed-field gel electrophoresis (PFGE), long considered the "gold standard" of molecular typing, represented a significant improvement over simple phenotyping. By cutting bacterial DNA into large fragments and visualizing the banding patterns, PFGE provided a "fingerprint" of the organism. However, PFGE lacks the resolution to distinguish between closely related strains in a clonal population. In a hospital setting where a specific clone of MRSA (e.g., ST22) might be endemic, PFGE often fails to differentiate between sporadic background cases and a new, active chain of transmission [4]. Additionally, PFGE is labor-intensive, technically demanding, and difficult to standardize across different laboratories, hindering the comparison of data between institutions.

The Genomic Revolution: From "Chapters" to "Words"

The advent of Whole Genome Sequencing (WGS) has introduced a level of resolution previously unattainable in clinical microbiology. If PFGE is analogous to comparing the number of chapters in a book to see if they are the same, WGS is comparable to reading every single word on every page [4]. This technology determines the precise order of nucleotide bases (A, C, G, T) across the entire bacterial genome, allowing for the detection of Single Nucleotide Polymorphisms (SNPs).


This granularity is game-changing. By identifying SNP differences, WGS can determine relatedness with exquisite precision. A difference of 0–5 SNPs between two isolates might indicate direct transmission, while a difference of 50 SNPs would rule it out, even if the isolates look identical by PFGE [5]. This capability enables the reconstruction of transmission trees with high fidelity, identifying not just that transmission occurred, but who transmitted to whom, and potentially how.

The Paradigm Shift: Prospective Surveillance

The true innovation discussed in this review is not the technology of WGS itself, which has been available for research for years, but its application in "real-time" or "prospective" surveillance. Traditionally, WGS was a retrospective tool, used months after an outbreak had subsided to write an academic paper confirming what had happened. This "autopsy" approach provides no clinical benefit to the patients involved in the outbreak [6].

Prospective genomic epidemiology flips this model. By sequencing defined high-risk pathogens (e.g., VRE, MRSA, CRE, *C. difficile*) immediately upon isolation in the clinical laboratory—typically on a weekly basis—hospitals can detect clusters in their embryonic phase. This approach, exemplified by systems like the Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT) at the University of Pittsburgh Medical Center (UPMC), allows for the detection of "cryptic" outbreaks—transmission events that have no obvious epidemiological link, such as those spanning different wards or separated by long intervals of time [6].

Figure 1: The Paradigm Shift from Reactive to Prospective Nosocomial Surveillance

Objectives and Scope

This systematic review aims to rigorously evaluate the impact of this transition from reactive to prospective genomic surveillance. It will address the following core questions:

1. **Clinical Efficacy:** Does the implementation of real-time WGS lead to a measurable reduction in the frequency, size, or duration of nosocomial outbreaks?
2. **Economic Justification:** Can the upfront costs of sequencing infrastructure be justified by downstream savings in infection treatment and operational efficiency?
3. **Pathogen Dynamics:** How does WGS alter our understanding of the transmission mechanics of specific high-priority pathogens like *C. difficile* and multidrug-resistant Gram-negatives?
4. **Operational Integration:** What are the real-world barriers—technical, logistical, and educational—to embedding high-complexity genomics into the daily workflow of a hospital microbiology laboratory?

Literature Review: Technical and Theoretical Foundations

The Technological Evolution of Surveillance

The history of bacterial typing is a progression toward increasing granularity. Early methods relied on phage typing and serotyping, which categorized bacteria based on their surface antigens or susceptibility to specific bacteriophages. While useful for broad surveillance (e.g., distinguishing *Salmonella* serotypes), these methods offered little value for hospital epidemiology, where outbreaks are often clonal [4].

Pulsed-Field Gel Electrophoresis (PFGE) became the standard in the 1990s, particularly with the establishment of PulseNet by the CDC. PFGE allowed for the national tracking of foodborne pathogens, preventing an estimated 270,000 illnesses annually. However, the limitation of PFGE—its reliance on large DNA fragments—meant that it often grouped genetically distinct organisms together. As sequencing costs plummeted following the Human Genome Project, the transition to WGS became inevitable. In 2013, the CDC began sequencing *Listeria monocytogenes*, and by 2019, PulseNet had transitioned entirely to WGS, signaling the maturity of the technology for public health use [4].

Sequencing Platforms: The Engines of Genomics

The feasibility of hospital-based WGS is underpinned by the availability of "benchtop" sequencers that fit within the physical and operational footprint of a clinical lab.

- **Illumina Sequencing (Short-Read):** Platforms like the MiSeq and NextSeq are the current workhorses of genomic epidemiology. They produce millions of short reads (typically 150–300 base pairs) with very high accuracy. This high fidelity is essential for calling SNPs confidently, which is the basis of outbreak definition [6].
- **Oxford Nanopore Technologies (Long-Read):** The MinION and GridION platforms offer a different advantage: long reads. While historically less accurate than Illumina (though rapidly improving), Nanopore sequencing can span repetitive regions of the genome that short reads cannot resolve. This is critical for assembling complete plasmids—circular DNA molecules that often carry antimicrobial resistance genes. In hospital outbreaks driven by plasmid transfer (e.g., a KPC plasmid moving between *Klebsiella* and *E. coli*), Nanopore sequencing can provide insights that short-read sequencing might miss [7].
- **Ion Torrent:** This platform measures changes in pH as nucleotides are incorporated. While cost-effective and fast, it has struggled with homopolymer errors (repeats of the same base, e.g., AAAAA), which can complicate the high-resolution comparisons needed for outbreak tracing [8].

Bioinformatic Approaches: Translating Data to Insight

The raw output of a sequencer—gigabytes of text files—is useless without bioinformatic analysis. Two primary analytical schools of thought dominate the literature:

1. **Single Nucleotide Polymorphism (SNP) Analysis:** This method aligns the reads from a clinical isolate to a reference genome and identifies every position where the base differs. It is the gold standard for resolution. However, it requires a high-quality reference genome and can be computationally intensive. Furthermore, the choice of reference genome can bias the results, and

"pipelines" can be difficult to standardize across different labs [9].

2. **Core Genome Multilocus Sequence Typing (cgMLST):** This is an expansion of traditional MLST. Instead of looking at 7 genes, cgMLST looks at the 2,000+ genes present in all members of a species (the "core genome"). It assigns an allele number to each gene. The result is a standardized "allelic profile" that is easily comparable between labs. A study comparing these methods found that cgMLST provided comparable results to SNP analysis in the vast majority of cases, making it a highly attractive option for routine clinical use due to its portability and standardization [10].

Economic Frameworks for Genomic Surveillance

The central economic question in genomic epidemiology is whether the cost of sequencing is offset by the "cost of non-events"—infections that never happened. Traditional accounting struggles with this counterfactual. Economic models have therefore been developed to estimate these savings.

- **Cost-Consequence Analysis:** This approach lists the costs (sequencing reagents, staff time) and the consequences (outbreaks detected, transmission routes identified) without aggregating them into a single metric.
- **Return on Investment (ROI):** More aggressive models attempt to assign a monetary value to an averted infection (e.g., \$15,000 for a *C. difficile* case) and calculate the net savings. Studies in Queensland, Australia, and the UK have utilized these models to project massive savings—\$30.9 million and £478 million respectively—arguing that WGS is not a cost center but a cost-saving intervention [2].

Methods

Search Strategy and Data Sources

This review synthesizes findings from a targeted collection of high-impact studies and reports published between 2015 and 2025. The selection focused on peer-reviewed articles from major infectious disease and microbiology journals (e.g., Clinical Infectious Diseases, Journal of Clinical Microbiology, The Lancet Infectious Diseases, Microbial Genomics) as well as grey literature from authoritative public health bodies (WHO, ECDC, CDC). Keywords utilized in the identification of relevant literature included "whole genome sequencing," "nosocomial outbreak," "real-time genomic surveillance," "infection control," "cost-benefit analysis," and "hospital epidemiology."

Inclusion and Exclusion Criteria

To ensure the relevance and quality of the review, the following criteria were applied:

- **Inclusion:**
 - Studies reporting on the implementation of WGS for pathogen surveillance in healthcare settings (hospitals, long-term care).
 - Research comparing WGS outcomes (detection rates, cost, time) with standard of care (SoC) methods like PFGE or phenotypic clustering.
 - Economic evaluations and budget impact models of genomic surveillance.
 - Studies addressing the operational integration of WGS into clinical laboratory workflows.
 - Focus on key nosocomial pathogens: *S. aureus* (MRSA), *Enterococcus* spp. (VRE), *Enterobacterales* (ESBL/CRE), *Acinetobacter*, *Pseudomonas*, *C. difficile*, and SARS-CoV-2.
- **Exclusion:**
 - Studies focused solely on foodborne outbreaks without a healthcare component.
 - Purely technical benchmarking of sequencing platforms without clinical or epidemiological context.
 - Case reports of single isolate characterization lacking transmission analysis.

Risk of Bias Assessment

Evaluating the strength of evidence in this field presents challenges, as Randomized Controlled Trials (RCTs) are rare due to the ethical complexity of withholding potential outbreak detection tools from a control group. Consequently, most included studies are observational cohorts, quasi-experimental (before-and-after), or modeling studies.

- **ROBINS-I (Risk Of Bias In Non-randomized Studies - of Interventions):** This tool was considered for evaluating studies where WGS was introduced as an intervention. Key domains of bias assessed included confounding (e.g., simultaneous improvements in hand hygiene compliance), selection bias (sequencing only selected "interesting" clusters), and classification of interventions [11].
- **ROBINS-E (Risk Of Bias In Non-randomized Studies - of Exposures):** Used for observational studies assessing the association between genomic surveillance and outbreak outcomes [12].
- **Bias in Economic Models:** Economic evaluations were scrutinized for the validity of their assumptions regarding the cost of infection and the attribution of "averted" cases. A common source of bias identified was the assumption that all detected transmissions would be successfully interrupted by IPC interventions, which may overestimate the benefit [13].

Results

1. Efficacy of Real-Time WGS in Outbreak Detection and Containment

The transition to prospective WGS surveillance consistently correlates with a dramatic increase in the sensitivity of outbreak detection. The most robust evidence for this comes from the Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT) study conducted at UPMC Presbyterian Hospital. This prospective investigation represents one of the largest real-world applications of the technology to date.

- **Study Design:** From November 2021 to October 2023, the hospital performed weekly WGS on all healthcare-associated isolates of key pathogens.
- **Findings:** The study sequenced 3,921 bacterial isolates. Of these, 476 (12.1%) were found to cluster into 172 distinct outbreaks involving 2 to 16 patients each.
- **Impact:** Crucially, the study demonstrated that standard IPC methods would have missed the majority of these clusters. When IPC interventions were applied based on real-time genomic signals, 95.6% of the outbreaks showed no further transmission. This statistic powerfully validates the core hypothesis of genomic epidemiology: early detection coupled with targeted intervention stops the chain of transmission [6].

The Detection of "Cryptic" Transmission

One of the most profound findings across multiple studies is the ability of WGS to reveal transmission pathways that are invisible to traditional epidemiology.

- **Non-Ward Based Transmission:** Traditional surveillance looks for clusters within a specific unit (e.g., the ICU). WGS frequently links patients who never resided on the same ward, pointing to other vectors of transmission. These can include shared mobile equipment (e.g., ultrasound machines, EKG carts), roving staff members (e.g., physiotherapists, radiologists), or procedure rooms (e.g., bronchoscopy suites) [6].
- **The "Clean" Ward Fallacy:** In several investigations, WGS identified transmission chains involving patients who had no direct contact, implicating asymptomatic reservoirs. For instance, in *K. pneumoniae* outbreaks, WGS has shown that the "index case" is often not the first symptomatic patient, but a colonized patient admitted weeks earlier who acted as a silent superspreader [14].

Negative Predictive Value: The Power of "Ruling Out"

Equally valuable is the capacity of WGS to prove that an outbreak is not happening.

- **Resource Stewardship:** Hospitals frequently encounter "pseudo-outbreaks"—temporal clusters of infections that appear related. For example, three cases of *S. marcescens* in a neonatal unit within a week might trigger a unit closure and deep clean. WGS can rapidly demonstrate that these isolates are genetically unrelated (e.g., separated by >100 SNPs), indicating independent acquisition rather than transmission. This allows the unit to remain open, avoiding significant operational disruption and cost. One study explicitly noted that WGS excluded nosocomial transmission in two instances of temporospatial linkage, validating existing control measures and maintaining clinical service [15].

2. Pathogen-Specific Insights

The utility of WGS varies by pathogen, revealing unique transmission dynamics for each organism.

Clostridioides difficile: Rewriting the Rulebook

C. difficile surveillance has been revolutionized by genomics. Traditional typing methods like ribotyping lack the discrimination to separate endemic strains.

- **Relapse vs. Reinfection:** A persistent clinical dilemma is whether a recurrent *C. diff* episode is a relapse of the original infection (treatment failure) or a new infection (reinfection). WGS can definitively answer this. If the second isolate is 0-2 SNPs from the first, it is a relapse; if it is >10 SNPs, it is a reinfection. This distinction is vital for evaluating treatment efficacy and hospital performance metrics [16].
- **The Role of Asymptomatic Carriers:** A landmark study in Clinical Infectious Diseases utilized WGS to show that symptomatic cases account for a minority of transmission events. The study found that most new *C. diff* cases could not be genetically linked to a prior symptomatic patient, suggesting that the primary reservoir of transmission is asymptomatic colonized patients, whom hospitals rarely screen for [17]. This finding challenges the efficacy of current isolation policies that focus solely on symptomatic diarrhea.

MRSA and VRE: Uncovering the Hidden Epidemic

For Gram-positive pathogens, WGS provides the resolution needed to dissect endemicity.

- **VRE (Vancomycin-Resistant Enterococci):** A retrospective analysis of *E. faecium* isolates identified 16 putative transmission clusters. Strikingly, 14 of these 16 clusters had been missed by traditional surveillance methods [18]. This suggests that VRE transmission is far more common than routine metrics imply, often bubbling under the surface until a vulnerable patient develops a bloodstream infection.
- **MRSA:** In outbreak investigations, WGS is critical for differentiating between "hospital strains" (like the omnipresent ST22 in the UK) and community-acquired strains introduced by new admissions. It also allows for the rapid identification of hypervirulent factors, such as the Panton-Valentine leukocidin (PVL) toxin, which requires more aggressive management [19]. Multi-center studies have shown that standardized WGS pipelines can effectively track MRSA clones across different hospitals, paving the way for national surveillance networks [20].

Multidrug-Resistant Gram-Negatives: The Plasmid Problem

The most complex challenge in hospital epidemiology is the spread of resistance plasmids among Gram-negative bacteria.

- **Plasmid Outbreaks:** Conventional surveillance tracks species (e.g., *K. pneumoniae*). However, resistance genes (like blaKPC or blaNDM) reside on mobile plasmids that can jump between species. An "outbreak" might consist of a *Klebsiella*, an *E. coli*, and a *Citrobacter* all carrying the exact same plasmid. Phenotypic methods miss this entirely. WGS, particularly when combined with long-read sequencing, can reconstruct these plasmid transmission networks, revealing that what looks like sporadic infections is actually a coherent "plasmid outbreak" driven by environmental contamination or a colonized patient [4].
- **Case Study:** In a study of Carbapenem-Resistant *Acinetobacter baumannii* (CRAB), WGS identified three distinct clonal lineages circulating simultaneously. This granularity allowed IPC teams to tailor interventions: one lineage was linked to patient transfer from a specific facility, while another was entrenched in the ICU environment, requiring terminal cleaning [21].

SARS-CoV-2: Airborne Evidence

During the COVID-19 pandemic, WGS became a primary tool for hospital safety.

- **Staff vs. Patient Transmission:** WGS allowed hospitals to determine if healthcare workers (HCWs) were acquiring COVID-19 from patients (indicating PPE failure) or from each other (indicating breakroom/social failure). Studies consistently showed that staff-to-staff transmission in non-clinical areas was a major driver, leading to policy changes regarding masking in breakrooms [22].
- **Airborne Confirmation:** In Hong Kong, WGS combined with air sampling in negative pressure wards provided definitive evidence of airborne dispersal of SARS-CoV-2, influencing global ventilation standards for isolation rooms [23].

3. Economic Impact and Return on Investment

The perception of WGS as an expensive "luxury" is contradicted by the data. When the total cost of infection is considered, real-time WGS emerges as a highly efficient intervention.

Table 1: Economic Impact of WGS Surveillance vs. Standard of Care

Metric	Standard of Care (SoC)	WGS Surveillance	Impact / Savings	Reference
Outbreak Detection Rate	Low (Reactive)	High (Prospective)	3.2-fold Return on Investment (ROI)	[24]
Cost of Investigation	High (Labor intensive)	Low (Automated)	~\$230,000 saved over 6 months	[25]
Intervention Timing	Late (after cluster identified)	Early (at 2-3 cases)	650 deaths averted (modelled)	[13]
Net Financial Impact	Baseline HAI costs	Net Savings	\$695,706 (single center, 2 years)	[24]
National Projection	N/A	Broad Implementation	£478m (UK) / \$3.2bn (USA) savings	[2]

- **Direct Cost Savings:** The UPMC study provides the most concrete data, reporting a net saving of \$695,706 over two years. This calculation is based on the averted costs of treating infections (\$1,011,146 gross savings) minus the cost of the sequencing program (\$315,440) [24].
- **Indirect Cost Savings:** A significant driver of savings is the avoidance of bed blocking. When a suspected outbreak occurs, beds are often closed to admissions. By rapidly ruling out transmission, WGS allows these beds to remain open. One study estimated the value of these "avoided isolation days" at over €300,000 in a single hospital setting [26].
- **Global Modeling:** A systematic review of economic evaluations supports these local findings on a macro scale. Models applied to the NHS in England and the US healthcare system suggest that routine WGS surveillance could save hundreds of millions annually by reducing the endemic burden of HAIs through better containment [2].

4. Integration into Medical Laboratory Workflows

The Turnaround Time (TAT) Challenge

For WGS to be "real-time," it must deliver results within a clinically actionable window.

- **Historical Context:** A Minnesota Department of Health study from 2015-2017 noted that the median TAT for WGS was 12 days longer than PFGE (12 days vs. 1 day) [27]. In an outbreak, 12 days is an eternity.
- **Modern Workflows:** Recent advancements have compressed this timeline significantly. Optimized workflows using benchtop sequencers (e.g., Illumina MiSeq) and automated library preparation can achieve sample-to-answer times of 48–72 hours. Some centers report an average TAT of 10 days from collection to report, which, while slower than ideal, is still sufficient to interrupt ongoing transmission chains [5].
- **Future Speed:** Emerging technologies like Nanopore sequencing allow for "streaming" analysis, where data is analyzed as the sequencing runs. This has the potential to reduce TAT to under 24 hours, though it requires distinct bioinformatic pipelines [7].

Barriers to Implementation

Despite the clear benefits, the integration of WGS into routine clinical microbiology faces substantial hurdles.

1. **The "Bioinformatics Bottleneck":** The primary barrier is not the sequencing hardware ("wet lab") but the data analysis ("dry lab"). Clinical laboratories typically lack staff with the computational

skills to manage linux-based pipelines, perform genome assembly, and interpret phylogenetic trees. There is a critical shortage of "Clinical Bioinformaticians" [28].

2. **Infrastructure Costs:** While sequencing costs per sample have dropped (<\$100), the infrastructure required to store and secure terabytes of genomic data is significant. Hospitals must invest in secure servers, cloud storage, and robust LIMS (Laboratory Information Management System) integration [15].
3. **Standardization Deficit:** Unlike standard antibiotic susceptibility testing (AST), which has CLSI or EUCAST breakpoints, there are no universal standards for defining a "genomic outbreak." Is a cluster defined by 5 SNPs? 10 SNPs? 15 alleles? These thresholds vary by species and even by study, complicating inter-laboratory comparison [2].

Discussion

The "Invisible" Prevention Paradox

A recurring theme in the evaluation of preventative technologies is the "prevention paradox." When genomic surveillance works perfectly, it results in a non-event: an outbreak is stopped at patient #2, and the potential outbreak of 20 patients never occurs. This success is invisible to traditional hospital metrics, which track infection rates but not "averted infections." This underscores the importance of the statistical modeling and counterfactual analyses highlighted in the results section [6]. Hospitals must shift their mindset to value these "negative" metrics—the absence of clusters—as indicators of success.

Operational Shift: From Microbiology to Data Science

The adoption of WGS necessitates a cultural and operational transformation within the pathology department. Microbiology is evolving from a discipline of phenotype—observing growth on agar plates, staining, and biochemical reactions—to a discipline of genotype and data science. This shift requires a new workforce model. The role of the Genomic Epidemiologist is emerging as a critical bridge. This professional sits at the intersection of the laboratory and the infection control team, translating the complex phylogenetic data produced by the sequencer into actionable bed-management decisions (e.g., "Screen Ward 4 for VRE," "Isolate Patient A and Patient B together") [29].

One Health and Cross-Border Surveillance

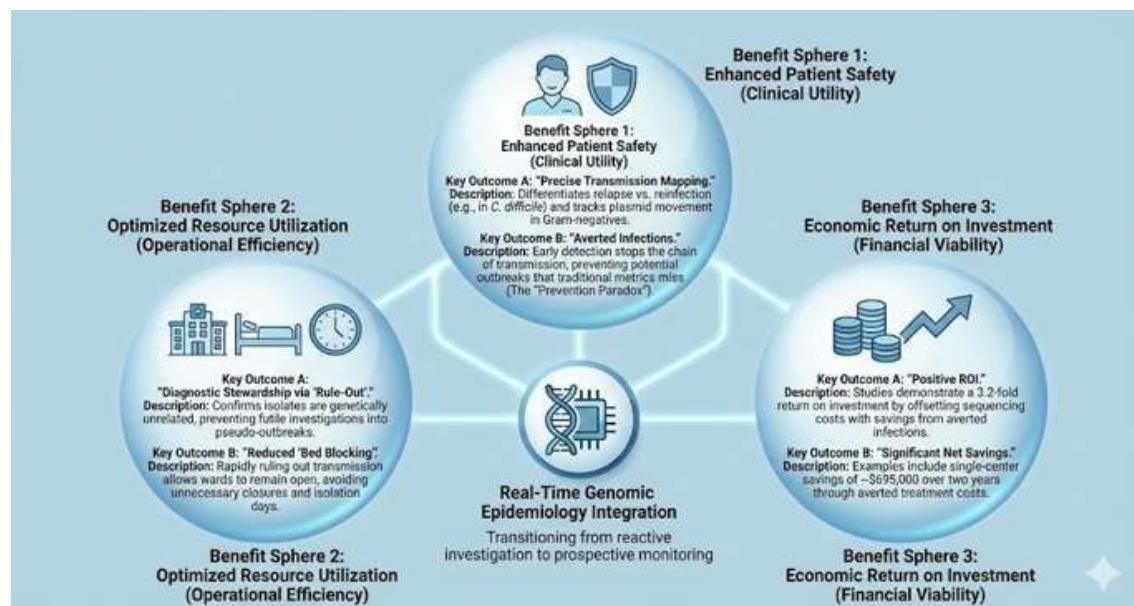
Nosocomial outbreaks do not exist in isolation. Patients move constantly between acute care hospitals, long-term care facilities (LTCFs), and the community. A single hospital's WGS data is a puzzle piece; the full picture requires regional data sharing.

- **Regional Networks:** The literature strongly supports the development of regional and national surveillance networks. For example, the identification of a specific carbapenemase-producing organism in one hospital should trigger alerts in receiving LTCFs. The European Centre for Disease Prevention and Control (ECDC) has pioneered this approach with foodborne pathogens, a model that is increasingly being applied to AMR organisms [30].
- **Global Surveillance:** Programs in Singapore and Hong Kong have demonstrated how centralized public health laboratories can support hospital networks by acting as the genomic hub, reducing the burden on individual hospital labs to maintain expensive sequencing infrastructure [31].

Diagnostic Stewardship: The Value of "Rule-Out"

While the focus is often on detection, the ability of WGS to rule out transmission is a powerful tool for resource stewardship. In the post-COVID era, hospital capacity is often stretched to the breaking point. The ability to confidently keep a bay or ward open despite a cluster of phenotypically similar cases—because WGS proves they are unrelated—is invaluable. This "Diagnostic Stewardship" allows limited IPC resources (staff time, isolation rooms, cleaning crews) to be concentrated solely on genuine transmission events, maximizing their impact [15].

Conclusion


The evidence synthesized in this systematic review unequivocally supports the conclusion that real-time genomic epidemiology represents a superior standard of care for the management of nosocomial outbreaks. The transition from reactive, phenotypic surveillance to prospective, genomic surveillance offers a trifecta of benefits: enhanced patient safety through earlier detection, reduced operational

disruption through precise "rule-out" capabilities, and significant economic returns through averted infections and improved resource utilization.

Key Findings:

- **Superior Sensitivity:** Real-time WGS identifies outbreaks that are invisible to traditional methods, particularly those driven by asymptomatic colonization and complex transmission routes.
- **Economic Viability:** The technology pays for itself. The costs of implementation are outweighed by the savings generated from averted infections and reduced bed blocking.
- **Clinical Utility:** WGS provides actionable intelligence—distinguishing relapse from reinfection, identifying plasmid outbreaks, and guiding targeted interventions.
- **Implementation Framework:** Success depends on overcoming the "bioinformatics bottleneck" through the adoption of automated pipelines and the training of a hybrid clinical-computational workforce.

Figure 2: The Trifecta of Benefits: Clinical and Economic Impact of WGS Integration

Future Outlook:

As we look to the horizon, the future of hospital infection control lies in the automation and democratization of genomic surveillance. With the cost of sequencing continuing to fall and bioinformatic tools becoming more user-friendly ("push-button" analysis), WGS is poised to move from the domain of academic medical centers to community hospitals. To fully realize this potential, healthcare systems must prioritize data interoperability, fostering a connected ecosystem where genomic data flows as freely as patients, creating a "One Health" defense against the rising tide of healthcare-associated infections.

References

- [1] Drysdale, C., WHO launches first ever global report on infection prevention and control. World Health Organisation, (2022).
- [2] Fox, J.M., Saunders, N.J., and Jerwood, S.H., Economic and health impact modelling of a whole genome sequencing-led intervention strategy for bacterial healthcare-associated infections for England and for the USA. *Microbial Genomics*, 9(8). 001087 (2023).
- [3] Allegranzi, B., Nejad, S.B., and Pittet, D., The burden of healthcare-associated infection. *Hand hygiene: a handbook for medical professionals*. 1-7 (2017).
- [4] GLASS whole-genome sequencing for surveillance of antimicrobial resistance. 2020, World Health Organization.
- [5] Park, S.Y., Faraci, G., Ward, P.M., Emerson, J.F., and Lee, H.Y., High-precision and cost-

efficient sequencing for real-time COVID-19 surveillance. *Scientific reports*, 11(1). 13669 (2021).

[6] McGann, P., Bunin, J.L., Snesrud, E., Singh, S., Maybank, R., Ong, A.C., Kwak, Y.I., Seronello, S., Clifford, R.J., and Hinkle, M., Real time application of whole genome sequencing for outbreak investigation—what is an achievable turnaround time? *Diagnostic microbiology and infectious disease*, 85(3). 277-282 (2016).

[7] Davidson, A.L., Dressel, U., Norris, S., Canson, D.M., Glubb, D.M., Fortuno, C., Hollway, G.E., Parsons, M.T., Vidgen, M.E., and Holmes, O., The clinical utility and costs of whole-genome sequencing to detect cancer susceptibility variants—a multi-site prospective cohort study. *Genome medicine*, 15(1). 74 (2023).

[8] Bianconi, I., Aschbacher, R., and Pagani, E., Current uses and future perspectives of genomic technologies in clinical microbiology. *Antibiotics*, 12(11). 1580 (2023).

[9] Blanc, D.S., Magalhães, B., Koenig, I., Senn, L., and Grandbastien, B., Comparison of whole genome (wg-) and core genome (cg-) MLST (BioNumericsTM) versus SNP variant calling for epidemiological investigation of *Pseudomonas aeruginosa*. *Frontiers in microbiology*, 11. 1729 (2020).

[10] Gona, F., Comandatore, F., Battaglia, S., Piazza, A., Trovato, A., Lorenzin, G., Cichero, P., Biancardi, A., Nizzero, P., Moro, M., and Cirillo, D.M., Comparison of core-genome MLST, coreSNP and PFGE methods for *Klebsiella pneumoniae* cluster analysis. *Microb Genom*, 6(4) (2020).

[11] Sterne, J.A., Hernán, M.A., Reeves, B.C., Savović, J., Berkman, N.D., Viswanathan, M., Henry, D., Altman, D.G., Ansari, M.T., and Boutron, I., ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *bmj*, 355 (2016).

[12] Bero, L., Chartres, N., Diong, J., Fabbri, A., Ghersi, D., Lam, J., Lau, A., McDonald, S., Mintzes, B., and Sutton, P., The risk of bias in observational studies of exposures (ROBINS-E) tool: concerns arising from application to observational studies of exposures. *Systematic reviews*, 7(1). 242 (2018).

[13] Gordon, L.G., Elliott, T.M., Forde, B., Mitchell, B., Russo, P.L., Paterson, D.L., and Harris, P.N., Budget impact analysis of routinely using whole-genomic sequencing of six multidrug-resistant bacterial pathogens in Queensland, Australia. *BMJ open*, 11(2). e041968 (2021).

[14] Wang, Y., Luo, C., Du, P., Hu, J., Zhao, X., Mo, D., Du, X., Xu, X., Li, M., Lu, H., Zhou, Z., Cui, Z., and Zhou, H., Genomic Epidemiology of an Outbreak of *Klebsiella pneumoniae* ST471 Producing Extended-Spectrum β -Lactamases in a Neonatal Intensive Care Unit. *Infect Drug Resist*, 13. 1081-1090 (2020).

[15] Francis, R.V., Billam, H., Clarke, M., Yates, C., Tsoleridis, T., Berry, L., Mahida, N., Irving, W.L., Moore, C., and Holmes, N., The impact of real-time whole-genome sequencing in controlling healthcare-associated SARS-CoV-2 outbreaks. *The Journal of infectious diseases*, 225(1). 10-18 (2022).

[16] Janezic, S. and Rupnik, M., Development and implementation of whole genome sequencing-based typing schemes for *Clostridioides difficile*. *Frontiers in Public Health*, 7. 309 (2019).

[17] Kong, L.Y., Eyre, D.W., Corbeil, J., Raymond, F., Walker, A.S., Wilcox, M.H., Crook, D.W., Michaud, S., Toye, B., and Frost, E., *Clostridium difficile*: investigating transmission patterns between infected and colonized patients using whole genome sequencing. *Clinical Infectious Diseases*, 68(2). 204-209 (2019).

[18] Brodrick, H.J., Raven, K.E., Harrison, E.M., Blane, B., Reuter, S., Török, M.E., Parkhill, J., and Peacock, S.J., Whole-genome sequencing reveals transmission of vancomycin-resistant *Enterococcus faecium* in a healthcare network. *Genome medicine*, 8(1). 4 (2016).

[19] Gilchrist, C.A., Turner, S.D., Riley, M.F., Petri, W.A., Jr., and Hewlett, E.L., Whole-genome sequencing in outbreak analysis. *Clin Microbiol Rev*, 28(3). 541-63 (2015).

[20] Enström, J., Fröding, I., Giske, C.G., Ininbergs, K., Bai, X., Sandh, G., Tollström, U.-B., Ullberg, M., and Fang, H., USA300 methicillin-resistant *Staphylococcus aureus* in Stockholm, Sweden, from 2008 to 2016. *PLoS One*, 13(11). e0205761 (2018).

[21] Hwang, S.M., Cho, H.W., Kim, T.Y., Park, J.S., Jung, J., Song, K.-H., Lee, H., Kim, E.S., Kim, H.B., and Park, K.U., Whole-genome sequencing for investigating a health care-associated outbreak of carbapenem-resistant *Acinetobacter baumannii*. *Diagnostics*, 11(2). 201 (2021).

- [22] Francis, R.V., Billam, H., Clarke, M., Yates, C., Tsoleridis, T., Berry, L., Mahida, N., Irving, W.L., Moore, C., Holmes, N., Ball, J.K., Loose, M., and McClure, C.P., The Impact of Real-Time Whole-Genome Sequencing in Controlling Healthcare-Associated SARS-CoV-2 Outbreaks. *J Infect Dis*, 225(1). 10-18 (2022).
- [23] Wong, S.-C., Au, A.K.-W., Lo, J.Y.-C., Ho, P.-L., Hung, I.F.-N., To, K.K.-W., Yuen, K.-Y., and Cheng, V.C.-C., Evolution and control of COVID-19 epidemic in Hong Kong. *Viruses*, 14(11). 2519 (2022).
- [24] Gardy, J.L. and Loman, N.J., Towards a genomics-informed, real-time, global pathogen surveillance system. *Nature Reviews Genetics*, 19(1). 9-20 (2018).
- [25] Quainoo, S., Coolen, J.P., van Hium, S.A., Huynen, M.A., Melchers, W.J., van Schaik, W., and Wertheim, H.F., Whole-genome sequencing of bacterial pathogens: the future of nosocomial outbreak analysis. *Clinical microbiology reviews*, 30(4). 1015-1063 (2017).
- [26] Mellmann, A., Bletz, S., Böking, T., Kipp, F., Becker, K., Schultes, A., Prior, K., and Harmsen, D., Real-Time Genome Sequencing of Resistant Bacteria Provides Precision Infection Control in an Institutional Setting. *J Clin Microbiol*, 54(12). 2874-2881 (2016).
- [27] Rounds, J., Taylor, A., Eikmeier, D., Nichols, M., Lappi, V., Wirth, S., Boxrud, D., Smith, K., and Medus, C., Prospective *Salmonella Enteritidis* Surveillance and Outbreak Detection using Whole Genome Sequencing, Minnesota 2015-2017. *Epidemiology and Infection*, 148. 1-21 (2020).
- [28] Kozyreva, V.K., Truong, C.-L., Greninger, A.L., Crandall, J., Mukhopadhyay, R., and Chaturvedi, V., Validation and implementation of clinical laboratory improvements act-compliant whole-genome sequencing in the public health microbiology laboratory. *Journal of clinical microbiology*, 55(8). 2502-2520 (2017).
- [29] Sundermann, A.J., Chen, J., Miller, J.K., Martin, E.M., Snyder, G.M., Van Tyne, D., Marsh, J.W., Dubrawski, A., and Harrison, L.H., Whole-genome sequencing surveillance and machine learning for healthcare outbreak detection and investigation: a systematic review and summary. *Antimicrobial Stewardship & Healthcare Epidemiology*, 2(1). e91 (2022).
- [30] Revez, J., Espinosa, L., Albiger, B., Leitmeyer, K.C., Struelens, M.J., Points, E.N.M.F., and Group, E., Survey on the use of whole-genome sequencing for infectious diseases surveillance: rapid expansion of European national capacities, 2015–2016. *Frontiers in public health*, 5. 347 (2017).
- [31] Ong, S.W.X., Rao, P., Khong, W.X., Ong, V.Y.F., Sridatta, P.S.R., Thevasagayam, N.M., Ho, B.C.H., Ang, B.S.P., De, P.P., Ng, O.T., and Marimuthu, K., Genomic surveillance uncovers ongoing transmission of carbapenem-resistant *Acinetobacter baumannii* (CRAB) and identifies actionable routes of transmissions in an endemic setting. *Infect Control Hosp Epidemiol*, 44(3). 460-466 (2023).