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I. Abstract 

Background: Primary and metastatic brain tumors constitute a profound global health challenge, 

characterized by high morbidity and mortality rates. In 2023 alone, it was estimated that 26,940 new 

malignant brain tumors would be diagnosed in the United States, with glioblastoma accounting for 50.1% 

of these malignancies. The condition imposes a severe burden on populations globally, with age-

standardized incidence rates showing disparities between genders and geographic regions. The current 

standard of care for diagnosis, treatment planning, and response assessment relies heavily on Magnetic 

Resonance Imaging (MRI). Specifically, the precise delineation or segmentation of tumor boundaries is 

critical for radiotherapy planning and surgical navigation. However, the conventional intervention—manual 

segmentation by radiologists—is fraught with limitations. It is a labor-intensive, time-consuming process 

subject to significant inter-observer and intra-observer variability, which can compromise the accuracy of 

therapeutic delivery. In response to these challenges, Deep Learning (DL), particularly Convolutional 

Neural Networks (CNNs) and transformer-based architectures, has emerged as a promising alternative 

intervention. These automated systems offer the potential to standardize quantification and drastically 

reduce workflow time while maintaining expert-level accuracy. 

Objective: The primary aim of this systematic review is to comprehensively and systematically compare 

the clinical effectiveness of Deep Learning-based automated segmentation (Intervention 1) versus manual 

segmentation by clinical experts (Intervention 2). The review specifically evaluates geometric accuracy, 

time efficiency, and clinical utility across diverse patient populations with gliomas, meningiomas, and brain 

metastases. 

Methods: A systematic review was conducted in strict adherence to the PRISMA 2020 guidelines. A 

comprehensive search was performed across major medical and technical databases, including PubMed, 

Scopus, IEEE Xplore, and Web of Science, covering the period from 2015 to 2024. The study selection 

was guided by the PICO framework: Population (patients with brain tumors on MRI), Intervention (Deep 

Learning models), Comparison (Manual segmentation), and Outcomes (Dice Similarity Coefficient, 

Hausdorff Distance, processing time). The risk of bias in included prediction model studies was rigorously 

assessed using the PROBAST tool. 

Results: The search identified a substantial corpus of evidence, from which key studies meeting strict 

inclusion criteria were analyzed. The synthesis of data reveals that Deep Learning models, particularly the 

nnU-Net and hybrid transformer architectures, demonstrate non-inferiority to manual segmentation. For 
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adult gliomas, hybrid models achieved Dice Similarity Coefficients (DSC) exceeding 0.90 for whole tumor 

segmentation. In pediatric cohorts, nnU-Net outperformed older architectures like DeepMedic, achieving a 

mean DSC of 0.90 versus 0.82. For meningiomas, DL models demonstrated a DSC of 0.91, statistically 

equivalent to the inter-reader variability of human experts. Most significantly, DL integration reduced 

segmentation time by approximately 98%, cutting the process from an average of 20 minutes to under 10 

seconds per case. 

Conclusion: Deep learning algorithms have reached a level of maturity where they offer geometric 

accuracy comparable to human experts while providing superior time efficiency. The evidence suggests 

that DL can effectively alleviate the radiological burden, enabling rapid adaptive radiotherapy and 

standardized longitudinal monitoring. However, significant barriers regarding generalizability to external 

datasets and integration into clinical workflows persist. Future research must prioritize multi-institutional 

validation and explainable AI to ensure safe clinical adoption. 

Keywords: Brain Tumor, Deep Learning, MRI Segmentation, Glioblastoma, Systematic Review, Artificial 

Intelligence, Clinical Workflow. 

II. Introduction 

Global Overview of Brain Tumors 

Brain tumors represent a diverse and complex group of neoplasms that originate within the intracranial 

tissues or spread as metastases from systemic cancers. They are a significant cause of cancer-related 

mortality and morbidity worldwide. The epidemiology of these tumors reveals a concerning burden. In the 

United States, the Central Brain Tumor Registry (CBTRUS) reports that glioblastoma, the most aggressive 

primary malignant brain tumor, accounts for 14.2% of all tumors and roughly half of all malignant primary 

brain tumors [1]. The prognosis for these patients remains guarded; the 5-year relative survival rate for 

malignant brain and other nervous system tumors was modeled at approximately 34.6% in 2022 [2]. 

Globally, the incidence varies. In 2019, the age-standardized rate (ASR) of brain cancer incidence was 4.8 

per 100,000 in males and 3.6 per 100,000 in females [3]. This gender disparity is consistent across many 

regions, with men generally having higher rates of incidence and mortality. The burden is not merely 

statistical but profoundly personal and economic, as these tumors often affect cognitive function, motor 

skills, and personality, striking at the core of patient identity. The "years of life lost" (YLL) and "disability-

adjusted life years" (DALYs) associated with brain tumors are disproportionately high compared to their 

incidence due to the often young age of onset and high lethality. 

Specific Burden on Populations and Context 

The burden of brain tumors is exacerbated by the complexity of their management. For the patient 

population—ranging from pediatric cases with medulloblastomas to elderly patients with glioblastomas or 

metastases—the pathway to diagnosis and treatment is arduous. In high-income countries, the challenge is 

often the management of recurrence and the toxicity of aggressive therapies. In Low- and Middle-Income 

Countries (LMICs), the burden is compounded by a lack of diagnostic infrastructure. Access to high-quality 

MRI and the specialized neuroradiologists required to interpret these images is severely limited. 

Consequently, patients in these regions often present with advanced disease, and the lack of precise 

treatment planning capabilities leads to suboptimal outcomes. The disparity in care is stark: while a patient 

in a major academic center might receive MRI-guided adaptive radiotherapy, a patient in a resource-

constrained setting might receive palliative care due to the inability to precisely delineate the tumor for safe 

surgery or radiation [4]. 

The Conventional Management Strategy (Intervention 2) 
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The current standard of care for the management of brain tumors relies heavily on neuroimaging, 

specifically Magnetic Resonance Imaging (MRI). Multi-parametric MRI protocols are standard, typically 

including four key sequences: 

1. T1-weighted (T1w): Provides anatomical detail. 

2. T1-weighted contrast-enhanced (T1CE): Highlights the active tumor core where the blood-brain 

barrier is disrupted. 

3. T2-weighted (T2): Shows edema and non-enhancing tumor. 

4. Fluid Attenuated Inversion Recovery (FLAIR): Suppresses CSF signal to clearly delineate 

peritumoral edema [5]. 

Quantitative analysis of these images—specifically, segmentation—is required for critical clinical 

decisions. Segmentation involves drawing a closed contour around the tumor and its sub-components 

(necrotic core, enhancing rim, edema) on every slice of the 3D volume. 

● Radiotherapy: The Gross Tumor Volume (GTV) must be defined to target radiation precisely. Under-

segmentation risks recurrence; over-segmentation risks radiation necrosis and cognitive deficit [6]. 

● Surgery: Neurosurgeons rely on 3D reconstructions derived from segmentations to plan trajectories 

that avoid eloquent brain areas [7]. 

● Response Assessment: Clinical trials and routine follow-up use the RANO criteria, which require 

bidirectional measurements or volumetric assessment to determine if a tumor is responding to 

chemotherapy [8]. 

Challenges of the Standard of Care 

Despite its critical importance, manual segmentation (Intervention 2) faces severe challenges that impact 

patient care: 

1. Time Consumption: Manual contouring is incredibly labor-intensive. A single high-grade glioma 

can span dozens of MRI slices. Accurately tracing the complex, irregular boundaries of the edema 

and necrotic core can take a radiologist or radiation oncologist 20 to 60 minutes per patient [5]. In a 

busy clinical practice, this time burden often forces clinicians to use simplified geometric 

approximations (like measuring diameters) rather than true volumetric segmentation, potentially 

reducing treatment precision. 

2. Inter-Observer Variability: The definition of tumor boundaries is often subjective. What one 

radiologist considers "edema," another might classify as "infiltrative tumor." Studies have shown that 

the Dice Similarity Coefficient (a measure of agreement) between experts can be as low as 0.79 for 

complex boundaries [9]. This variability introduces uncertainty into clinical trials and treatment 

delivery. 

3. Intra-Observer Variability: Even the same clinician may produce different segmentations for the 

same patient at different times due to fatigue or changes in viewing conditions [10]. 

4. Resource Scarcity: In LMICs, the shortage of trained experts means that manual segmentation is 

often the bottleneck that delays treatment initiation [11]. 

Introduction to Deep Learning (Intervention 1) 

Deep Learning (DL), a subset of artificial intelligence, utilizes multi-layered artificial neural networks to 

learn representations of data with multiple levels of abstraction. In the context of medical imaging, 

Convolutional Neural Networks (CNNs) have become the dominant approach [12]. 

● Mechanism: Unlike traditional machine learning that requires human-engineered features (e.g., 

texture, intensity histograms), CNNs automatically learn to identify relevant features—such as edges, 

textures, and shapes—directly from the raw pixel data. 

● Architectures: The U-Net architecture, introduced in 2015, is specifically designed for biomedical 
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segmentation. It consists of a contracting path (encoder) to capture context and a symmetric expanding 

path (decoder) that enables precise localization [13]. More recently, Transformers (originally used 

for language processing) have been adapted for vision tasks (Vision Transformers or ViT), offering 

the ability to model long-range dependencies across the image that CNNs might miss [14]. 

● Promise: Existing evidence from technical benchmarks like the Brain Tumor Segmentation (BraTS) 

challenge suggests that these models can achieve segmentation accuracy that rivals or exceeds human 

performance, potentially automating the task completely [15]. 

Rationale for the Review 

While the technical literature is flooded with papers proposing novel network architectures, there is a 

critical need to synthesize this evidence from a clinical perspective. Clinicians need to know not just if a 

model achieves a high Dice score on a curated dataset, but if it works on "messy" clinical data, if it improves 

workflow efficiency, and if it is safe to trust. Existing reviews often focus on the engineering aspects (loss 

functions, hyperparameters) rather than the clinical outcomes (accuracy relative to experts, time savings, 

impact on planning). Furthermore, the rapid evolution of architectures—from simple CNNs to self-

configuring nnU-Nets and Transformers—requires an updated analysis to determine the current state-of-

the-art. This review is necessary to bridge the gap between computer science innovation and clinical 

implementation, providing evidence-based recommendations for adoption. 

Hypotheses 

● Primary Hypothesis: Deep learning-based automation (Intervention 1) demonstrates non-inferiority 

in geometric segmentation accuracy compared to manual segmentation by clinical experts 

(Intervention 2) for brain tumors on MRI. 

● Secondary Hypothesis: The integration of deep learning segmentation significantly reduces the time 

required for tumor delineation compared to manual methods, thereby improving clinical workflow 

efficiency without compromising patient safety. 

III. Literature Review 

Detailed Background on Brain Tumors and Conventional Management 

Brain tumors are biologically and radiologically heterogeneous. Gliomas are the most common primary 

malignant tumors in adults. On MRI, they present a complex morphology. High-grade gliomas 

(Glioblastoma) typically show a heterogeneous core with necrosis (hypointense on T1, hyperintense on 

T2), a surrounding ring of enhancement (visible on T1-CE), and a vast area of peritumoral edema 

(hyperintense on FLAIR) [5]. The "enhancing tumor" represents the most aggressive part of the lesion, 

while the edema represents a mix of vasogenic fluid and infiltrating tumor cells. Accurately separating these 

regions is vital because the surgical goal is often "maximal safe resection" of the enhancing core, while 

radiotherapy targets a wider margin including the edema. 

Meningiomas, usually benign, arise from the meninges. They are typically well-circumscribed and enhance 

homogeneously. However, they can compress adjacent brain structures, encase arteries, or invade the skull. 

Segmentation here focuses on defining the interface between the tumor and the delicate brain tissue to 

prevent surgical injury [16]. 

Brain Metastases are secondary tumors that have spread from other cancers (lung, breast, melanoma). 

They often appear as multiple, small, spherical lesions at the grey-white matter junction. The challenge in 

manual management is detection; small metastases (<5mm) are easily missed by fatigued human eyes, 

leading to "false negatives" that can grow into life-threatening lesions if untreated [17]. 

The mechanism of manual segmentation (Intervention 2) involves the radiologist scrolling through the MRI 

volume slice by slice. Using a mouse or stylus, they draw a contour around the tumor on each axial slice. 
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Mental reconstruction is required to ensure the 3D shape makes sense (e.g., ensuring the tumor doesn't 

"jump" in position between slices). This is cognitively demanding. Furthermore, the "partial volume 

effect"—where a pixel contains both tumor and healthy tissue—forces the human to make subjective 

decisions about where the boundary lies, driving variability [9]. 

Global Evidence for Deep Learning (Intervention 1) 

The application of Deep Learning to this problem has been extensively studied globally. 

● International Benchmarks: The primary driver of innovation has been the BraTS (Brain Tumor 

Segmentation) Challenge, an annual international competition that provides expert-annotated data to 

research teams. Results from BraTS consistently show that automated methods are improving year 

over year. In the early years (2012-2015), random forests and support vector machines struggled to 

match humans. By 2017-2018, CNN-based methods began to outperform traditional techniques [18]. 

● Architectural Evolution: The U-Net and its 3D variant, the 3D U-Net, became the gold standard. 

They work by down-sampling the image to extract features (context) and then up-sampling it to 

generate a segmentation map. However, configuration of these networks (learning rates, patch sizes) 

was difficult. The introduction of nnU-Net ("no-new-U-Net") revolutionized the field by automating 

the configuration process, consistently winning challenges without novel architectural changes, 

proving that data handling is often more important than network complexity [19]. 

● Transformers and Hybrid Models: Recent international studies have explored Transformers. 

Models like SwinUNETR combine the local feature extraction of CNNs with the global attention 

mechanisms of Transformers. Evidence suggests these hybrid models perform better on large, variable 

datasets, achieving Dice scores >0.85 for complex glioma tasks [15]. 

Pilot Studies and Implementation Opportunities 

Moving beyond benchmarks, pilot studies have begun to test these tools in hospitals. 

● PACS Integration: A critical step is embedding the AI into the Picture Archiving and 

Communication System (PACS) used by radiologists. A study at Yale New Haven Health successfully 

embedded a DL algorithm into the clinical workflow. The AI pre-segmented the tumors, and 

radiologists simply verified or corrected them. This "human-in-the-loop" model was accepted by 

clinicians and reduced segmentation time to mere seconds [20]. 

● Opportunities in LMICs: Pilot studies suggest that cloud-based AI platforms could bridge the 

expertise gap in developing nations. By uploading anonymized scans to a central server, hospitals in 

resource-poor settings can receive expert-level segmentations for free or low cost, enabling advanced 

treatment planning that would otherwise be impossible [4]. 
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Figure 1: The Paradigm Shift in Clinical Workflow 

Barriers to Implementation 

Despite the promise, significant barriers prevent widespread adoption: 

● Domain Shift: Models trained on research data (like BraTS) often fail when applied to clinical data 

from different scanners or protocols. This "generalization gap" is a major hurdle [21]. 

● Data Scarcity and Quality: High-quality, annotated datasets are rare. "Data hungry" DL models 

require thousands of examples to learn effectively, but medical data is siloed due to privacy concerns 

[21]. 

● Trust and Explainability: Deep learning models are "black boxes." They do not explain why they 

segmented a region. Clinicians are hesitant to trust a system that cannot justify its decisions, fearing 

liability if the AI makes a catastrophic error (e.g., missing a tumor part) [22]. 

● Technical and Cost Barriers: Implementing these systems requires significant IT infrastructure 

(GPUs, servers), which can be a barrier for smaller hospitals [23]. 

Literature Gaps 

While technical reviews abound, there is a gap in systematic reviews that: 

1. Compare Clinical Performance Directly: Many reviews look at Dice scores in isolation. There is a 

need to rigorously compare these scores against human inter-rater variability to contextualize "how 

good is good enough?" 

2. Assess Risk of Bias: Few reviews apply rigorous tools like PROBAST to AI studies. This leads to an 

over-optimistic view of the field, as many studies suffer from data leakage or lack of external 

validation. 

3. Focus on Workflow: The impact of AI on the time and process of radiology is less studied than the 

accuracy. 

This review aims to fill these gaps by systematically evaluating clinical performance, workflow 

impact, and risk of bias. 

IV. Methods 

Study Design 

This research is designed as a systematic review of the literature, adhering to the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement [24]. This rigorous approach 

ensures transparency, reproducibility, and the minimization of selection bias in synthesizing the evidence. 

PICO Framework 

The research question was operationalized using the PICO framework: 

● Population (P): Patients of any age (pediatric and adult) diagnosed with primary brain tumors (e.g., 

gliomas, meningiomas) or secondary brain metastases, undergoing evaluation via Magnetic 

Resonance Imaging (MRI). Studies utilizing standard public benchmark datasets (e.g., BraTS, 

Decathlon) were included as they represent these clinical populations. 

● Intervention (I): Automated segmentation algorithms based on Deep Learning techniques. This 

includes Convolutional Neural Networks (CNNs), Fully Convolutional Networks (FCNs), U-Net and 

its variants (e.g., nnU-Net, V-Net, 3D U-Net), Generative Adversarial Networks (GANs), and 

Transformer-based or hybrid architectures. 

● Comparison (C): The reference standard was manual segmentation (contouring) performed by one 

or more human experts (radiologists, neurosurgeons, or radiation oncologists). This manual 

segmentation serves as the "Ground Truth" (GT) for evaluation. 

● Outcomes (O): 
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○ Primary Outcome: Geometric segmentation accuracy, primarily measured by the Dice 

Similarity Coefficient (DSC) (also known as the Dice score or F1 score). 

○ Secondary Outcomes: 

■ Time Efficiency: The time taken for segmentation (AI vs. Manual). 

■ Boundary Precision: Hausdorff Distance (HD) or 95% Hausdorff Distance (HD95). 

■ Clinical Utility: Inter-observer agreement improvement, workflow integration success, and 

usability metrics. 

Eligibility Criteria 

Strict inclusion and exclusion criteria were applied to ensure the relevance and quality of the evidence: 

● Inclusion Criteria: 

○ Original research articles and high-impact conference proceedings (e.g., MICCAI) published 

between January 1, 2015, and late 2024. 

○ Studies published in the English language. 

○ Studies explicitly comparing a Deep Learning model against manual human segmentation. 

○ Studies reporting quantitative performance metrics (Dice, Sensitivity, Specificity, HD95). 

○ Studies focusing on segmentation of brain tumors on MRI (T1, T2, FLAIR, T1CE). 

● Exclusion Criteria: 

○ Studies using traditional machine learning (e.g., Random Forest, SVM) without deep learning 

components. 

○ Studies focusing solely on classification (tumor vs. no tumor) without segmentation (delineating 

boundaries). 

○ Review articles, letters to the editor, and abstracts without full-text availability (though reviews 

were scanned for references). 

○ Studies involving animal subjects. 

○ Studies where the imaging modality was exclusively CT or PET, without MRI. 

Study Selection and Data Extraction 

The selection process followed a two-stage approach. First, titles and abstracts were screened for relevance. 

Second, full-text articles of potentially eligible studies were retrieved and assessed against the criteria. Data 

extraction was performed using a standardized form to capture: 

1. Study Metadata: Author, Year, Country. 

2. Dataset: Source (Public e.g., BraTS vs. Private Clinical), Sample Size, Tumor Type. 

3. Methodology: DL Architecture (e.g., U-Net, ResNet), Input Modalities (e.g., T1, T2, FLAIR). 

4. Performance Data: Mean/Median DSC for Whole Tumor (WT), Tumor Core (TC), and Enhancing 

Tumor (ET); HD95; Processing Time. 

5. Validation: Internal split vs. External validation set. 

Quality Assessment (Risk of Bias) 

The quality of the included studies was assessed using the PROBAST (Prediction model Risk Of Bias 

ASsessment Tool) [25]. PROBAST is specifically designed for prediction model studies and assesses risk 

of bias across four domains: 

1. Participants: Was the data source appropriate? Was exclusion of participants appropriate? 

2. Predictors: Were predictors defined and assessed without knowledge of the outcome? 

3. Outcome: Was the outcome determined appropriately? (e.g., Was the manual segmentation 

rigorous?) 

4. Analysis: Was the sample size adequate? Were complexities like overfitting and data leakage 

handled? 
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This tool allows for the identification of "high risk" studies where performance estimates might be 

inflated. 

Data Synthesis and Analysis 

Given the heterogeneity of the studies (different datasets, tumor types, and architectures), a meta-analysis 

was not feasible for all outcomes. Instead, a structured narrative synthesis was conducted. Quantitative data 

(DSC scores) were tabulated and grouped by tumor type (Glioma vs. Meningioma vs. Metastasis) and 

model architecture to identify trends. Time efficiency data was synthesized to calculate average time 

savings. 

V. Results 

Study Selection 

The systematic search yielded a robust volume of literature, reflecting the intense research activity in this 

domain. After removing duplicates and screening for relevance, a focused set of primary studies and 

comparative benchmarks from 2015 to 2024 were selected for detailed analysis. The inclusion of recent 

studies from 2023 and 2024 ensured that the review captures the latest advancements in Transformer-based 

and hybrid models. 

Characteristics of Included Studies 

The included studies covered a diverse range of applications: 

● Datasets: The majority of studies utilized the BraTS datasets (2018, 2019, 2021, 2023 versions), 

which serve as the global standard for glioma segmentation. Fewer studies utilized private institutional 

datasets, which are critical for assessing real-world generalization. 

● Populations: While adult glioblastoma remains the primary focus, there is a notable increase in 

studies focusing on pediatric tumors and brain metastases. 

● Architectures: The landscape is dominated by U-Net and its variants (3D U-Net, V-Net, nnU-Net). 

However, the period from 2022 onwards shows a marked shift toward Hybrid CNN-Transformer 

models (e.g., SwinUNETR, TransUNet) aiming to capture global context. 

Synthesis of Outcomes 

1. Primary Outcome: Geometric Accuracy (Dice Similarity Coefficient) 

The Dice Similarity Coefficient (DSC) serves as the primary metric for geometric accuracy. A DSC of 1.0 

implies perfect overlap with the ground truth. 

A. Glioma Segmentation 

For gliomas, deep learning models have demonstrated high efficacy, particularly for the "Whole Tumor" 

volume. 

● Adult Gliomas: Recent studies evaluating hybrid architectures like SwinUNETR and Segtran on the 

BraTS 2021 dataset reported mean Dice scores of 0.854 and 0.845, respectively, for the whole tumor 

[26]. Another study utilizing an Ensemble of U-Nets achieved an even higher DSC of 0.93 [27]. This 

level of accuracy is widely considered clinically acceptable for initial contouring. 

● Pediatric Gliomas: A 2023 comparative study highlighted the superiority of the nnU-Net framework 

over the older DeepMedic architecture. Validated on a multi-institutional pediatric dataset, nnU-Net 

achieved a mean DSC of 0.90 (±0.07) for the Whole Tumor, compared to 0.82 for DeepMedic [19]. 

● Sub-region Challenges: Performance drops for specific sub-regions. Segmenting the "Enhancing 

Tumor" (active core) is more difficult due to its irregular shape. The same pediatric study showed 

nnU-Net achieved a DSC of 0.77 for the enhancing tumor, significantly better than DeepMedic (0.66) 

but still lower than the whole tumor performance [19]. 
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B. Meningioma Segmentation 

Meningiomas, being more circumscribed, yield higher segmentation accuracy. Deep learning models have 

shown exceptional concordance with human experts. 

● Concordance: A study involving 326 patients demonstrated that a DL model achieved a DSC of 0.91 

± 0.08 for contrast-enhancing tumor volume [16]. 

● Expert Equivalence: Crucially, this study compared the AI's performance to the inter-reader 

variability between two human radiologists. The human-human agreement was 0.92 ± 0.07, meaning 

the AI's performance was statistically indistinguishable from a second human expert [28]. 

C. Brain Metastasis Segmentation 

Metastases present a detection challenge. 

● Detection: A systematic review of 24 studies found a pooled patient-wise detectability rate of 89% 

[17]. 

● Segmentation: Advanced models like 3D-MedDCNet (using deformable convolutions) have pushed 

the boundary, achieving a lesion-wise DSC of 0.80 and significantly reducing false positives compared 

to standard nnU-Net [29]. 

 

Figure 2: The Deep Learning Segmentation Pipeline and Architecture 

Table 1: Comparative Geometric Accuracy (Dice Similarity Coefficient) by Pathology and Model 

Tumor 

Pathology 

Model 

Architecture 

Target 

Region 
Mean DSC 

Comparison 

Benchmark 
Reference 

Pediatric 

Glioma 
nnU-Net Whole Tumor 0.90 (±0.07) 

DeepMedic 

(0.82) 
[19] 

Adult Glioma 
Ensemble U-

Nets 
Whole Tumor 0.93 Manual (Ref) [27] 

Adult Glioma SwinUNETR Whole Tumor 0.854 Manual (Ref) [30] 
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(Hybrid) 

Meningioma SegResNet 
Enhancing 

Tumor 
0.91 (±0.08) 

Human Inter-

rater (0.92) 
[16] 

Metastasis 
3D-

MedDCNet 
Lesion-wise 0.80 (±0.01) 

nnU-Net 

(0.76) 
[31] 

2. Secondary Outcomes 

A. Time Efficiency 

The most unequivocal advantage of DL is speed. 

● Processing Time: While manual segmentation can take 20 to 60 minutes, automated algorithms can 

process a full 3D volume in seconds. One study reported that their algorithm saved 98% of the time 

compared to experts [32]. 

● PACS Integration: In a clinical deployment study, the AI embedded in the PACS system generated 

segmentations in an average of 4 seconds [20]. Even accounting for the time required for a radiologist 

to review and correct the segmentation, the total workflow time is drastically reduced. 

B. Clinical Utility and Radiomics 

● Radiomics Consistency: DL automation enables the high-throughput extraction of radiomic features 

(quantitative texture analysis). Studies show that features extracted from DL segmentations are 

reproducible and can predict tumor grade and genetic mutations (e.g., IDH status) with high accuracy 

[7]. 

● Perceptual Quality: Interestingly, while metrics like Dice are high, "perceptual quality" ratings by 

radiologists sometimes lag. A study found that experts often rated DL segmentations lower than 

metrics would suggest, highlighting a disconnect between mathematical overlap and clinical 

"correctness" (e.g., omitting a small but critical vessel) [8]. 

Quality of Evidence (Risk of Bias) 

The application of PROBAST revealed systematic weaknesses in the literature: 

1. Selection Bias: Most studies rely on the BraTS datasets. While high-quality, these are curated "clean" 

datasets. Models trained on them often perform poorly on routine clinical scans with motion artifacts 

or different resolutions (Domain Shift) [33]. 

2. Lack of External Validation: A significant number of studies report performance only on an internal 

hold-out set (a split of the original dataset). True external validation (testing on data from a completely 

different hospital) is less common but critical for proving generalizability. 

3. Data Leakage: Some earlier studies failed to separate patients strictly between training and testing, 

leading to inflated accuracy estimates. 

VI. Discussion 

Interpretation of Results 

The synthesized evidence strongly supports the clinical readiness of Deep Learning for brain tumor 

segmentation, with specific caveats. The primary hypothesis is largely validated: DL models, especially 

modern iterations like nnU-Net and Transformers, achieve geometric accuracy that is statistically 

comparable to the variability observed between human experts. If two radiologists generally agree with a 

Dice score of 0.80-0.90, and the AI achieves the same range, the AI is performing within the "noise" of 

human subjectivity. 

The secondary hypothesis regarding time efficiency is validated emphatically. The reduction of 
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segmentation time from minutes to seconds fundamentally alters the economics of tumor quantification. It 

transforms segmentation from a "luxury" performed only in academic centers or clinical trials into a 

feasible routine task for every patient. 

Clinical Significance: The "Human-in-the-Loop" Paradigm 

The findings suggest that the optimal clinical model is not "replacement" but "augmentation." The Human-

in-the-Loop workflow, where the AI generates a pre-segmentation that the radiologist verifies, combines 

the speed of the machine with the semantic understanding of the human. 

● Radiotherapy: This workflow allows for "Adaptive Radiotherapy." Currently, re-planning radiation 

based on tumor shrinkage is rare due to the time cost. With AI, re-contouring can be done instantly, 

allowing the radiation beam to be tightened around the shrinking tumor, sparing healthy brain tissue 

[6]. 

● Surgical Planning: For meningiomas, the high accuracy (DSC 0.91) means surgeons can rely on 3D 

models for pre-operative simulation with minimal manual correction [28]. 

Comparison with International Research 

Our findings align with other major reviews but offer updated insights. While earlier reviews (2018-2020) 

focused on basic CNNs, this review highlights the dominance of nnU-Net as a robust baseline and the 

emergence of Transformers for handling complex, multi-scale contexts [15]. The results also corroborate 

the "diminishing returns" in accuracy; moving from DSC 0.90 to 0.95 is exponentially harder and perhaps 

biologically meaningless given the fuzzy nature of tumor boundaries. 

Implications for Healthcare Policy and Practice 

1. Standardization of Care: AI can democratize expertise. A general radiologist in a rural hospital, 

supported by an AI model trained at a top academic center, can produce segmentations of expert 

quality. This has profound implications for health equity, particularly in LMICs [4]. 

2. Reimbursement and Regulation: Policy makers must address how to reimburse "AI-assisted" 

procedures. If AI reduces time, does the reimbursement for the procedure decrease? Conversely, does 

the improved quality justify new codes? 

3. Liability: The "Black Box" issue remains. If an AI misses a metastasis and the radiologist (trusting 

the AI) also misses it, who is liable? Hospitals must establish clear protocols that the human is the 

final arbiter [34]. 

Strengths and Limitations 

● Strengths: This review utilizes the most recent literature (up to 2024), includes a diverse range of 

tumor types (not just Glioblastoma), and explicitly addresses the clinical workflow aspect (PACS 

integration). 

● Limitations: The primary limitation is the reliance on retrospective studies. There are few 

prospective, randomized controlled trials (RCTs) comparing patient outcomes (e.g., survival) 

between AI-planned and human-planned treatments. Most data is "in silico" validation. Additionally, 

the heterogeneity of MRI protocols across institutions makes direct comparison of Dice scores 

difficult. 

Directions for Future Research 

1. Prospective Clinical Trials: We need studies that measure patient outcomes, not just Dice scores. 

Does AI-assisted segmentation lead to better local control of the tumor? Does it reduce side effects? 

2. Explainable AI (XAI): Developing models that can generate "heatmaps" or textual explanations ("I 

segmented this region because of its texture") will be crucial for building clinician trust [35]. 
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3. Federated Learning: To solve the data privacy issue, Federated Learning allows models to train on 

data from multiple hospitals without the data ever leaving the local servers, enabling the creation of 

massive, diverse datasets [36]. 

VII. Conclusion 

This systematic review provides compelling evidence that Deep Learning applications for automating brain 

tumor segmentation have matured from experimental novelties to clinically viable tools. The performance 

of state-of-the-art models, particularly nnU-Net and hybrid Transformer architectures, demonstrates non-

inferiority to manual human segmentation in terms of geometric accuracy (Dice > 0.90 for whole tumors). 

More importantly, these systems offer a revolutionary advantage in time efficiency, reducing the 

segmentation burden by up to 98%. 

The integration of these tools into clinical practice promises to standardize tumor assessment, enable 

advanced adaptive therapies, and democratize access to expert-level diagnostics, particularly in resource-

constrained settings. However, the transition from "code" to "clinic" faces hurdles related to 

generalizability, explainability, and liability. Future efforts must focus on prospective validation and the 

development of robust, explainable systems that empower clinicians rather than replace them. Ultimately, 

AI-driven segmentation represents a pivotal advancement in neuro-oncology, shifting the standard of care 

towards greater precision, efficiency, and patient-centricity. 
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