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Abstract

Background: The global landscape of diagnostic radiology is currently navigating a precarious
inflection point. As imaging volumes surge due to aging populations and expanded screening protocols,
the workforce remains critically constrained. Recent global surveys indicate that over 53% of
radiologists are experiencing burnout, with workforce shortages cited as a primary concern by nearly
half of the profession. This systemic strain exacerbates the risk of diagnostic error—a phenomenon
already estimated to affect approximately 40 million patients annually worldwide. Against this
backdrop, the integration of Artificial Intelligence (Al), specifically Multimodal Foundation Models
(MFMs), has emerged as a potential panacea. These models, capable of processing both visual and
textual data, promise to automate the labor-intensive process of radiology report generation (RRG),
thereby potentially alleviating clinician workload and standardizing diagnostic quality. However, the
transition from experimental architectures to clinical deployment is fraught with challenges related to
factual consistency, safety, and trust.

Objective: This systematic review aims to provide an exhaustive, nuanced evaluation of the current
state of automated radiology report generation using MFMs.

Methods: A comprehensive systematic literature search was conducted across major medical and
technical databases covering the period from 2020 to 2025. The review adhered to PRISMA guidelines
where applicable. Inclusion criteria prioritized studies that evaluated MFMs on standard benchmarks
(MIMIC-CXR, CheXpert) or through direct comparison with board-certified radiologists.

Results: The review reveals a distinct dichotomy in MFM performance: while linguistic fluency has
achieved near-human levels, factual reliability remains volatile. It was demonstrated that a Fact-Aware
Multimodal Retrieval-Augmented Generation (FactMM-RAG) pipeline significantly outperforms
standard foundation models. By grounding generation in retrieved, factually distinct report pairs mined
via RadGraph, FactMM-RAG achieved a 6.5% improvement in F1CheXbert and a 2% improvement in
F1RadGraph on the MIMIC-CXR dataset compared to state-of-the-art retrievers. Conversely, large-
scale comparative studies indicate that generalist models like GPT-4V and Gemini Pro Vision still trail
human radiologists in diagnostic accuracy (49% vs. 61% in complex cases), although they show
promise as "second readers" in specific subspecialties like chest radiology.

Safety analysis presents the most concerning findings. A multimodal evaluation reported a 74.4%
overall hallucination rate across leading visual language models, with a predominance of "fabricated
imaging findings" that are statistically plausible but visually absent. The review identifies a "Plausibility
Paradox" where the most advanced models (e.g., Gemini 2.0) generate the most convincing, yet
factually hallucinated, reports, posing a high risk of automation bias. However, specialized models like
MAIRA-X have reduced critical error rates to 4.6%, approaching the human baseline of 3.0%.
Conclusion: The era of autonomous radiology reporting has not yet arrived, but the era of Al-
augmented reporting is imminent. Retrieval-augmented architectures represent a critical leap forward,
offering a mechanism to constrain the stochastic nature of generative Al with verified clinical facts.
While current hallucination rates preclude independent use, the potential for these systems to
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democratize access to high-quality diagnostics—particularly in underserved regions—is profound.
Future implementation must prioritize "human-in-the-loop" workflows, robust uncertainty
quantification, and the development of safety-critical metrics that penalize plausible fabrications.

1. Introduction

1.1 The Operational Crisis in Diagnostic Radiology

The practice of radiology, often described as the "eye of medicine," is fundamental to modern healthcare
delivery. From trauma triage to oncological staging, medical imaging underpins a vast proportion of
clinical decision-making [1]. However, the operational stability of this discipline is under severe threat.
The 2025 Global Radiologist Report paints a stark picture of a profession at its breaking point. In a
survey of radiologists across multiple continents, 53% of respondents identified burnout as their single
most pressing professional concern [2]. This figure is not merely a reflection of dissatisfaction but a
symptom of a systemic imbalance between supply and demand.

The demand for medical imaging is growing at a rate that far outstrips the production of new radiologists
[3]. Aging populations in developed nations require more frequent and complex imaging (CT, MRI) to
manage chronic diseases [4]. Simultaneously, workforce shortages (cited by 49% of radiologists as a
top concern) and the "brain drain" of locally trained clinicians leaving for better opportunities (40%)
have created a vacuum in many healthcare systems [2, 5]. The consequences of this imbalance are
tangible: increased patient wait times, delayed diagnoses, and a weary workforce prone to error.
Diagnostic error in radiology is a pervasive issue, often characterized as the elephant in the reading
room [6]. Estimates suggest that diagnostic errors occur in 3% to 5% of interpretations, translating to
approximately 40 million errors annually worldwide [7]. These errors are not random; they are
frequently the result of cognitive fatigue, perceptual overload, and the sheer volume of cases a
radiologist must interpret in a single shift [8, 9]. The convergence of burnout and error rates creates a
compelling ethical and clinical imperative to develop automated solutions that can support the
radiologist's cognitive load [10].

1.2 The Technological Paradigm Shift: From CAD to Foundation Models

Historically, the automation of radiology has been pursued through Computer-Aided Diagnosis (CAD)
systems. These early tools, prevalent from the 1990s through the 2010s, were "narrow" Al—designed
to detect specific abnormalities like lung nodules or breast microcalcifications. While helpful, they were
limited in scope and often suffered from high false-positive rates, leading to "alert fatigue." They could
flag a spot on an image, but they could not synthesize the findings into a coherent medical report [11].
The emergence of Foundation Models (FMs) represents a discontinuous leap in capability. Unlike
narrow Al, foundation models are trained on massive, broad datasets using self-supervised learning,
enabling them to adapt to a wide range of downstream tasks [ 12]. The "Transformer" architecture, which
underpins Large Language Models (LLMs) like GPT-4 and BERT, allows these models to understand
context, syntax, and semantics with unprecedented sophistication.

When applied to radiology, these become Multimodal Foundation Models (MFMs) or Vision-Language
Models (VLMs). By processing pixel data (images) and text data (reports/clinical notes)
simultaneously, MFMs aim to replicate the full workflow of a radiologist: perceiving the image,
reasoning about the findings in the context of the patient's history, and generating a natural language
report that communicates the diagnosis to referring physicians [12].

1.3 The Promise and Peril of Generative Al

The potential benefits of successful RRG automation are transformative.

e [Efficiency: Automating the "drafting" of reports could reduce the time-per-case, allowing
radiologists to focus on image interpretation and complex problem-solving rather than dictation.

e Standardization: Al can ensure that reports consistently use standard terminology and structural
formats, reducing the variability that currently exists between different radiologists.

e Global Health Equity: Al-enabled workflows hold the promise of bridging the gap in healthcare
access [13]. In low-resource settings where radiologists are scarce or nonexistent, an Al system that
can generate a preliminary report for a chest X-ray or a screening mammogram could be lifesaving,
serving as a triage tool to prioritize patients who need urgent care.
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However, the generative nature of these models introduces a new and dangerous failure mode:
Hallucination. In a text generation context, a model might invent facts to complete a sentence plausibly.
In radiology, this translates to the Al describing a tumor that isn't there (insertion) or describing a
healthy spine as fractured. Unlike a simple "miss" (false negative), a hallucination is often detailed,
confident, and persuasive. The risk is that a tired radiologist might accept the Al's plausible but false
report, leading to inappropriate treatment or unnecessary anxiety for the patient [14].

1.4 Research Objectives

This systematic review seeks to navigate the complex landscape of automated RRG by addressing the

following critical questions:

1. Clinical Accuracy: How do current MFMs compare to human radiologists and previous
generations of Al when evaluated on rigorous clinical metrics (e.g., F1CheXbert, F1RadGraph)?

2. Technological Advancement: How does the Fact-Aware Multimodal Retrieval Augmentation
(FactMM-RAG) approach proposed by Sun et al. (2025) alter the performance landscape compared
to standard generative approaches?

3. Safety Profile: What is the prevalence of hallucinations in current state-of-the-art models? Are
these errors random, or do they follow specific patterns related to modality or pathology?

4. Integration Barriers: What are the non-technical hurdles—trust, liability, workflow integration—
that currently prevent widespread adoption?

2. Literature Review

2.1 The Evolution of Automated Reporting Architectures

The journey toward automated radiology reporting has evolved through distinct "eras," each defined by
the dominant machine learning architecture of the time. Understanding this evolution is crucial to
appreciating the significance of current multimodal foundation models.

2.1.1 The Encoder-Decoder Era (CNN-RNN)

Prior to the transformer revolution, the dominant paradigm for image captioning (and by extension,

report generation) was the CNN-RNN architecture.

e Encoder (Vision): A Convolutional Neural Network (CNN), such as ResNet or DenseNet, was
used to extract feature maps from the medical image. These maps represented the visual information
(shapes, textures, opacities) in a compressed vector format.

e Decoder (Language): A Recurrent Neural Network (RNN), typically a Long Short-Term Memory
(LSTM) network, received these visual features and generated the report sequentially, word by
word.

Limitations: While these models could generate simple sentences ("The heart is normal in size"), they

struggled with long-range dependencies. They often failed to maintain coherence over a full paragraph

and were prone to "repetition loops," generating the same phrase multiple times. Furthermore, they
lacked "clinical reasoning"—they were essentially performing advanced pattern matching without an
understanding of anatomical relationships or disease progression.

2.1.2 The Attention Mechanism and Transformers

The introduction of the Attention mechanism addressed the "forgetfulness" of RNNs. Attention allowed
the model to focus on specific regions of the image while generating specific words (e.g., looking at the
lung base while writing "pleural effusion").

The Transformer architecture replaced RNNs entirely, using self-attention to process the entire
sequence of text simultaneously. This enabled the training of models on vastly larger datasets, leading
to the development of Large Language Models (LLMs) like BERT and GPT.

In radiology, this transition manifested in models that could handle the complex, hierarchical structure
of a radiology report (Findings section vs. Impression section). Researchers began to use BERT-based
encoders to initialize the language component, significantly improving the grammatical quality and
fluency of the generated reports [15].

2.1.3 Multimodal Foundation Models (2023—Present)
The current era is defined by Multimodal Foundation Models (MFMs). These are massive, pre-trained
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systems that align visual and textual representations in a shared semantic space.

e Contrastive Learning: Models like CLIP (Contrastive Language-Image Pre-training) and its
medical variants (BiomedCLIP, CXR-CLIP) are trained by matching images to their corresponding
text captions across millions of pairs. This forces the model to learn robust visual representations
that are semantically linked to medical concepts [16].

e Generative VLMs: Models like GPT-4V, Gemini, and LLaVA-Med extend this by adding a
generative decoder. They can take an image as input (along with a text prompt) and generate a novel
textual response. This capability allows for "Zero-Shot" or "Few-Shot" performance, where the
model can perform a task it wasn't explicitly trained for, simply by following instructions [12].

2.2 The Challenge of Evaluation: Why BLEU Fails

A pervasive theme in the literature is the inadequacy of traditional Natural Language Processing (NLP)

metrics for evaluating radiology reports.

e N-gram Metrics (BLEU, ROUGE): These metrics measure the overlap of words between the
generated report and the "ground truth" report written by a radiologist. However, in medicine, a
single word difference can invert the meaning.

o Reference: "There is a pneumothorax."

o Generated: "There is no pneumothorax."

o BLEU Score: High (3 out of 4 words match).
o Clinical Accuracy: Zero (Critical Error).

Because of this failure mode, the field has pivoted toward Clinical Efficacy Metrics:

o CheXbert: This metric uses a BERT-based labeler to extract 14 common observations (e.g.,
Atelectasis, Cardiomegaly, Pneumonia) from both the reference and generated reports. It then
calculates the F1 score of the agreement between these labels. This measures diagnostic accuracy
rather than linguistic similarity [17].

e RadGraph: Developed to capture the complex structure of reports, RadGraph represents the text
as a knowledge graph of entities (anatomy, observation) and relations (located at, modifies).
F1RadGraph measures the overlap between the graph of the generated report and the reference
report. This is considered a gold standard for assessing factual completeness and structural
correctness [17].

e RadCliQ: A composite metric designed to correlate better with human radiologist preferences,
combining elements of BLEU and CheXbert [17].

2.3 Retrieval-Augmented Generation (RAG)

The most recent innovation, heavily featured in 2024-2025 literature, is Retrieval-Augmented
Generation (RAG). The core insight of RAG is that instead of forcing a model to "memorize" all medical
knowledge in its weights (which leads to hallucination), the system should be able to "look up" relevant
information during the generation process.

Sun et al. (2025) pioneered FactMM-RAG, a system that retrieves "factually informed" report pairs
from a training corpus based on the input image. These retrieved reports serve as templates or
references, guiding the generative model to produce text that follows established clinical patterns while
adapting to the specific features of the new image [16]. This approach attempts to combine the fluency
of generative Al with the reliability of a retrieval-based system.

Figure 1: The Fact-Aware Multimodal Retrieval-Augmented Generation (FactMM-RAG)
architecture.
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2.4 Al and Health Equity

The literature also increasingly addresses the sociological impact of these technologies. Commentary
in Nature Digital Medicine argue that the value of Al in radiology cannot be measured solely by
accuracy in elite academic centers. In global health contexts, where the alternative to Al is often "no
imaging" or "interpretation by non-specialists," the threshold for utility may be different. Al tools have
demonstrated the ability to reduce sepsis mortality and improve diabetic retinopathy screening in
underserved populations by providing expert-level screening at scale [13]. However, this
democratization is contingent on the models being robust to domain shifts (e.g., different X-ray machine
manufacturers, different patient demographics) to avoid exacerbating existing biases.

3. Methodology

3.1 Search Strategy

This systematic review was conducted by aggregating and synthesizing research material from a diverse

array of high-impact sources. The search strategy targeted literature published between 2020 and 2025,

capturing the rapid ascent of transformer-based models and the subsequent foundation model era.

e Databases: The primary repositories accessed include arXiv (for preprints of rapidly evolving
computer science methods), ACL Anthology (for NLP-specific advancements),
PubMed/MEDLINE (for clinical validation studies), and the proceedings of major conferences such
as RSNA (Radiological Society of North America), CVPR (Computer Vision and Pattern
Recognition), and NAACL (North American Chapter of the Association for Computational
Linguistics).

e Keywords: Search terms included combinations of "radiology report generation," "multimodal
foundation models," "vision-language models," "hallucination," "retrieval-augmented generation,"
"clinical accuracy," and "automation."

nn

3.2 Inclusion and Exclusion Criteria

To ensure the review focused on the most relevant and high-quality evidence, strict criteria were
applied:

e Inclusion:

o Studies evaluating Multimodal models (Text + Image). Unimodal (text-only or image-only)
studies were excluded unless used as baselines.

o Studies reporting Quantitative Clinical Metrics (F1CheXbert, F1RadGraph) or Human Expert
Evaluation. Studies relying solely on BLEU/ROUGE scores were excluded as insufficient for
determining clinical safety.

o Research published or preprinted from 2023 onwards was prioritized to reflect the "Foundation
Model" era, though seminal papers from 2020-2022 were included for context.

e Exclusion:

o Studies evaluating only classification (e.g., "Pneumonia: Yes/No") without report generation.

o Country-specific healthcare policy papers without technical or clinical evaluation.

o Papers with insufficient methodological detail to reproduce or understand the architecture.

3.3 Data Extraction and Analysis
For each selected study, the following data points were extracted:
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Model Architecture: (e.g., LLaVA, GPT-4V, FactMM-RAQG).

Dataset: (e.g., MIMIC-CXR, CheXpert, internal hospital datasets).

Performance Metrics: Numerical values for F1CheXbert, F1RadGraph, BLEU-4.
Safety Data: Hallucination rates, critical error rates, omission rates.

e Human Benchmarking: Comparative performance against radiologists (residents vs. attendings).
The synthesis of this data follows a narrative approach, grouping findings by theme (Accuracy, Safety,
Architecture) rather than a simple study-by-study summary. This allows for the identification of broader
trends, such as the trade-off between plausibility and truthfulness.

4. Results: Clinical Accuracy of Multimodal Foundation Models

The assessment of clinical accuracy in automated radiology reporting has moved beyond simple pattern
recognition to evaluating complex diagnostic reasoning and structural completeness. The results from
2024 and 2025 demonstrate significant progress yet highlight a persistent gap between Al capabilities
and human expertise.

4.1 The Efficacy of Retrieval-Augmented Generation (FactMM-RAG)

The work of Sun et al. (2025) represents a benchmark in the effort to improve the factual correctness of
generated reports. Their proposed architecture, FactMM-RAG, addresses the "hallucination" problem
by retrieving factually relevant reports from a training corpus to guide the generation process [16].

4.1.1 Mechanism of Action

Standard RAG approaches typically retrieve documents based on visual similarity (images that look

alike) or semantic similarity (texts that read alike). However, Sun et al. identified that visually similar

images might have different clinical findings (e.g., a small pneumothorax is visually subtle but clinically
distinct from a normal lung).

e Fact-Aware Mining: The researchers utilized RadGraph to annotate the training corpus, extracting
entities and relations. They then mined pairs of reports that were factually similar—sharing the
same clinical entities and relations—rather than just textually similar.

e Universal Multimodal Retriever: This "fact-aware" data was used to train a retriever that learns
to find reports with matching clinical facts given an input image [16].

4.1.2 Performance Metrics on MIMIC-CXR
The performance of FactMM-RAG was evaluated on the MIMIC-CXR dataset, a standard benchmark
consisting of chest X-rays and reports.

Table 1: Performance Comparison of FactMM-RAG vs. State-of-the-Art Baselines (MIMIC-
CXR)

F1CheXbert F1RadGraph Imbrovement
Model Architecture | (Diagnostic (Structural/Factual prove
Mechanism
Accuracy) Accuracy)
Eta:lﬂ;/[M_RAG (Sun 0.605 0.249 Fact-Aware Retrieval
Med-MARVEL 0.581 0.239 Dense Retrieval
BiomedCLIP 0.540 0.229 Co'nt'rastlve Pre-
training
CXR-CLIP 0.536 0.228 Copt_rastlve Pre-
training
MedCLIP 0.528 0.225 Co'nt'rastlve Pre-
training
GLoRIA 0.512 0.220 Global-Local
Attention
Basetinm " 0.548 0.222 Direct Generation
(Baseline)
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Analysis:

e Superiority of RAG: The FactMM-RAG model significantly outperforms the "No Retriever"
baseline (0.605 vs. 0.548 in F1CheXbert). This confirms that providing the model with reference
material (retrieved reports) allows it to generate more accurate diagnoses than relying solely on its
internal weights.

e The Fact-Aware Advantage: FactMM-RAG also outperforms other retrieval-based models like
Med-MARVEL (0.605 vs 0.581). This validates the hypothesis that retrieving based on clinical
facts (RadGraph) is more effective than retrieving based on generic multimodal embeddings.

e F1RadGraph Significance: The score of 0.249 in F1RadGraph, while the highest among
automated methods, is still far below the "Oracle" score (theoretical maximum if the perfect report
was retrieved, typically >0.40). This indicates that while the model is better at capturing clinical
entities, it still struggles with the complex relational structure of a full radiology report (e.g.,
correctly linking modifiers like "severe" or "bilateral" to the correct anatomical locations) [16].

4.2 Comparative Diagnostic Performance: GPT-4V vs. Human Radiologists

While specialized models like FactMM-RAG are optimized for report generation, general-purpose
foundation models like GPT-4V (OpenAl) and Gemini (Google) are increasingly tested for their zero-
shot diagnostic capabilities. A series of studies published in Radiology and presented at RSNA
2024/2025 provide direct comparisons.

4.2.1 The "Diagnosis Please' Challenge
In a study involving 190 challenging "Diagnosis Please" cases, GPT-4V and Gemini Pro Vision were
pitted against board-certified radiologists.

e Radiologist Performance: Achieved an overall diagnostic accuracy of 61%.

e GPT-4V Performance: Achieved 49% accuracy at the optimal temperature setting (T=1).

e Gemini Pro Vision: Significantly underperformed, with accuracy below 40% in most settings

[18].
Table 2: Subspecialty Accuracy Breakdown (GPT-4V vs. Radiologists)

. . . GPT-4V Accuracy . .
Subspecialty Radiologist Accuracy (Temp=1) Differential Gap
Overall 61% 49% -12%

Chest Radiology 59% 75% +16% (Al Superior)
Gastrointestinal o o -44% (Human
(GD) 68% 24% Superior)
Neuroradiology Comparable Comparable Neutral

Deep Dive Analysis:

e Chest Superiority: The finding that GPT-4V outperformed radiologists in Chest Radiology (75%
vs 59%) is striking. This is likely due to the massive prevalence of chest X-rays in the public datasets
used to train these models. The model has seen more examples of chest pathology than any single
human radiologist.

e GI Weakness: The catastrophic performance in GI radiology (24% vs 68%) highlights a critical
limitation of current VLMSs: Spatial Reasoning. GI diagnosis often involves understanding complex
3D relationships (e.g., bowel loops, obstructions) and temporal sequences (e.g., fluoroscopy).
Current VLMs process images as "flat" snapshots and struggle with the spatial synthesis required
for abdominal imaging.

o The Temperature Factor: The study found that GPT-4V performed better at a higher temperature
(T=1) than at a lower temperature (T=0). In LLMSs, higher temperature increases randomness and
"creativity." For complex diagnosis, which requires generating a broad differential based on subtle
cues, this "creativity" appears necessary. However, as discussed in the Safety section, this same
parameter increases the risk of hallucination [18].

4.2.2 The Temporal Improvement of Foundation Models
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Another study tracking performance over one year (RSNA 2023 vs RSNA 2024 questions) showed
rapid improvement.

e OpenAl ol (2024 model): Scored 59% on 2024 cases.

e GPT-40: Scored 54%.

e Gemini 1.5 Pro: Scored 36%.

e Llama 3.2 90B: Scored 33%.
The 2024 model (OpenAl ol) reached statistical parity with the two senior radiologists in the study
(59% vs 58% and 66%, p=0.99), suggesting that the "human gap" is closing rapidly for text-based
reasoning tasks, though image interpretation remains the bottleneck [19].

4.3 Evaluation of "Critical Errors" with MAIRA-X
Accuracy metrics do not differentiate between a minor error (typo) and a major error (missed cancer).
The MAIRA-X model, a multimodal Al fine-tuned specifically for chest X-rays, was evaluated using a
"Critical Error" framework.

e Human Critical Error Rate: 3.0% (in the study sample).

e MAIRA-X Critical Error Rate: 4.6%.
While the Al still commits more critical errors than humans, the gap is narrow (1.6%). Furthermore,
the "acceptability" of the Al-generated sentences was 97.4%, nearly identical to the human baseline of
97.8% [20]. This suggests that for specific, narrow domains like chest X-rays, fine-tuned MFMs are
approaching a level of reliability that could support drafted reporting, provided a radiologist reviews
the output.

5. Results: Safety and the Hallucination Epidemic

While accuracy results are promising, safety analysis reveals the fragility of these systems. In clinical
medicine, the maxim is primum non nocere (first, do no harm). The current generation of MFMs,
particularly Visual Large Language Models (VLLMs), struggles to adhere to this principle due to a high
prevalence of hallucination.

5.1 Defining Hallucinations in Radiology
A hallucination in radiology is not merely a wrong answer; it is a Fabrication.
e Fabricated Findings: The model describes a pathology (e.g., "There is a 3cm mass in the left
lung") that is completely absent from the image.
e Misidentifications: The model correctly sees an opacity but misidentifies the anatomy (e.g.,
calling the "right lung" the "left lung").
A comprehensive systematic evaluation published in Life (MDPI) quantified these errors across
multiple state-of-the-art models [21].

5.2 Prevalence of Hallucinations

The study reported a shocking statistic: Hallucinations occurred in 74.4% of all assessments across the
tested models. This indicates that currently, a generative VLM is more likely to hallucinate a finding
than to produce a completely accurate report.

Table 3: Hallucination Rates by Model

Hallucination Rate Plausibility of .

Model (Overall) Hallucinagons Risk Level
Gemini 2.0 51.7% (Lowest) 95.6% (Highest) Critical Risk
ChatGPT-4o0 72.8% 93.9% High Risk
LLaVA-Med 73.6% 65.6% High Risk
Claude Sonnet 3.7 78.3% 87.8% Severe Risk
Vision Al 79.2% 89.4% Severe Risk
Perplexity Al 82.8% 74.4% Severe Risk

5.3 The Plausibility Paradox
The data reveals a counter-intuitive and dangerous trend: The "better" the model, the more dangerous
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its hallucinations.
e Gemini 2.0 had the lowest overall hallucination rate (51.7%), making it the most "accurate" model.
e However, its Plausibility Score was 95.6%. This means that when it did hallucinate (which was
still half the time), the hallucination was nearly indistinguishable from a correct report. It used
correct medical terminology, proper syntax, and logical consistency.
Implication: This creates a high risk of Automation Bias. A radiologist reviewing a report from Gemini
2.0 might be lulled into a false sense of security by the report's professional tone and logical flow,
causing them to overlook the fabricated finding. In contrast, a model like LLaV A-Med, which had lower
plausibility (65.6%), might generate errors that are obvious and clumsy, making them easier for a human
to catch [21].

5.4 Modality and Context Effects

e Modality: Hallucination rates were significantly higher in complex cross-sectional imaging
compared to projectional imaging.

o MRI: 78.3% hallucination rate.
o CT:71.7%.
o X-ray: 73.9%.

The high rate in MRI reflects the difficulty models have in interpreting multi-sequence, volumetric data

compared to 2D X-rays [21].

e Context: Providing clinical context (e.g., "Patient has a history of cough") reduced the rate of
fabricated imaging findings from 81.4% to 67.4%. This confirms that providing "anchors" in the
form of patient history helps constrain the model's imagination. However, it also introduces
Context Bias, where the model might "hallucinate" a finding that aligns with the history (e.g.,
hallucinating pneumonia because the history says "fever") even if it isn't visible on the scan [21].

5.5 Omission vs. Insertion

While "Insertion" (fabrication) is the dominant failure mode in generative VLLMs (accounting for
>80% of errors in uncontextualized settings), "Omission" (missing a real finding) remains a significant
issue in summarization tasks. A study on LLM summarization noted that omission of critical
information is a distinct failure mode that requires separate detection mechanisms, often using "black-
box" comparison methods to ensure the summary aligns with the source text [22].

Figure 2: The Plausibility paradox and safety risks in visual LLMs.
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6. Discussion

6.1 The Disconnect Between Reasoning and Perception

The synthesis of findings from 2024 and 2025 paints a complex picture. MFMs have achieved
Reasoning Parity with humans in text-based tasks (as seen in the RSNA 2024 question comparisons).
They can generate differentials, synthesize history, and write fluent prose. However, they lack
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Perceptual Grounding. The high hallucination rates (74.4%) indicate that the visual encoders (the "eyes"
of the Al) are not yet reliably anchored to the pixel data. The models often "guess" based on the text
prompt rather than "seeing" the pathology.

6.2 The Imperative of Retrieval Augmentation

The success of FactMM-RAG (Sun et al., 2025) suggests that the solution to hallucination is not simply
"bigger models." Grounding the Al in retrieved, verified data (RAG) acts as a factual guardrail. By
forcing the model to reference existing reports that match the clinical entities of the current case, RAG
bridges the gap between the probabilistic nature of LLMs and the deterministic requirements of clinical
reporting. This architecture likely represents the future blueprint for safe radiology Al [16].

6.3 Health Equity and the Global Context

Revisiting the work of Huang et al. (2024), the evaluation of these tools must be contextualized. In
high-resource settings (e.g., US academic hospitals), a 4.6% critical error rate is a step backward from
the human standard (3.0%). However, in low-resource settings—where the radiologist-to-population
ratio can be 1:1,000,000 or worse—an automated report with a 95% accuracy rate is infinitely better
than no report at all.

Al-enabled workflows have already demonstrated the ability to improve access to care for diabetic
retinopathy and sepsis management in underserved populations.7 The challenge lies in ensuring that
these models do not export bias—training on US/European data (like MIMIC-CXR) and deploying in
Africa or Asia could lead to errors due to differences in disease prevalence (e.g., Tuberculosis) and
equipment quality.

6.4 Barriers to Clinical Adoption

Despite the technological promise, non-technical barriers loom large.

e Trust: Surveys indicate that transparency is the #1 factor for physician trust (56%). The "black
box" nature of deep learning, combined with the "Plausibility Paradox" of high-quality
hallucinations, erodes this trust [23].

e Liability: Who is responsible when an Al hallucinates a tumor? The lack of legal clarity regarding
liability for Al-generated errors remains a significant hurdle for hospital administrators [23].

e  Workflow Integration: Radiologists do not want more "clicks." Successful adoption requires that
Al be invisible—pre-drafting reports that appear in the dictation window ready for review, rather
than requiring a separate login or interface.

6.5 Future Directions: Agentic Al and Uncertainty

The next frontier is Agentic Al Instead of a passive model that generates a report in one shot,
researchers are developing "agents" that can plan, critique, and verify their own work. An agent might
generate a draft, then "look" at the image again to verify specific findings, or query a knowledge graph
to check for contradictions.

Additionally, Uncertainty Quantification is vital. An Al should be able to say, "I see an opacity in the
left lung, but I am only 60% confident it is pneumonia." Currently, most models project 100%
confidence even when hallucinating. Developing metrics that reward calibrated uncertainty is essential
for safety.

7. Conclusion

The landscape of automated radiology report generation has undergone a seismic shift with the advent
of Multimodal Foundation Models. We have moved from the rigid, repetitive outputs of CNN-RNNs
to the fluent, reasoned, but occasionally delusional outputs of Vision-Language Models.

Key Conclusions:

1. Clinical Accuracy: Retrieval-Augmented Generation (FactMM-RAG) is the current state-of-the-
art, outperforming generative baselines by significantly improving factual and structural accuracy
(F1CheXbert/F1RadGraph).

2. Safety Gap: General-purpose MFMs (GPT-4V, Gemini) are not yet safe for autonomous primary
reporting due to hallucination rates exceeding 50%. The "Plausibility Paradox" makes these models
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particularly risky for human-in-the-loop workflows.

Human Comparison: While Al approaches human performance in specific tasks (Chest X-ray
diagnosis), it lags significantly in complex, spatial reasoning tasks (GI/MRI) and overall critical
error rates.

Equity Impact: Despite imperfections, these tools hold immense potential to address the global
radiologist shortage, provided they are deployed with robust safeguards and equitable validation
(Huang et al., 2024).

Ultimately, the future of radiology Al is not "replacement" but "augmentation." The combination of a
fatigued human radiologist and a fact-aware Al assistant—one that retrieves relevant priors, drafts
routine text, and flags discrepancies—promises a system that is safer, faster, and more accurate than
either human or machine alone.
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