

The Role Of Epidemiological Surveillance And Clinical Infection Control Strategies In Healthcare Setting

Jubara Ali ahmad Tahiri¹, Noha Mohammed Hassan Baiedi², Emad Mohammed Hamad Hakami³, Mohammed Mater Essa Sharahili⁴, Alanazi, Yasser Hamoud M⁵, Talal Ali Ahmad Taheri⁶

¹*Nursing technician, Jazan Health Cluster, Saudi arabia /jazan,*

²*Nursing Technician, Abu- Arish General Hospital, Jazan Health Cluster, -11G-N-0007775*

³*Specialist – Epidemiology, King Fahad Hospital ,Al-Hofof, KSA, SCFHS number: 19080708*

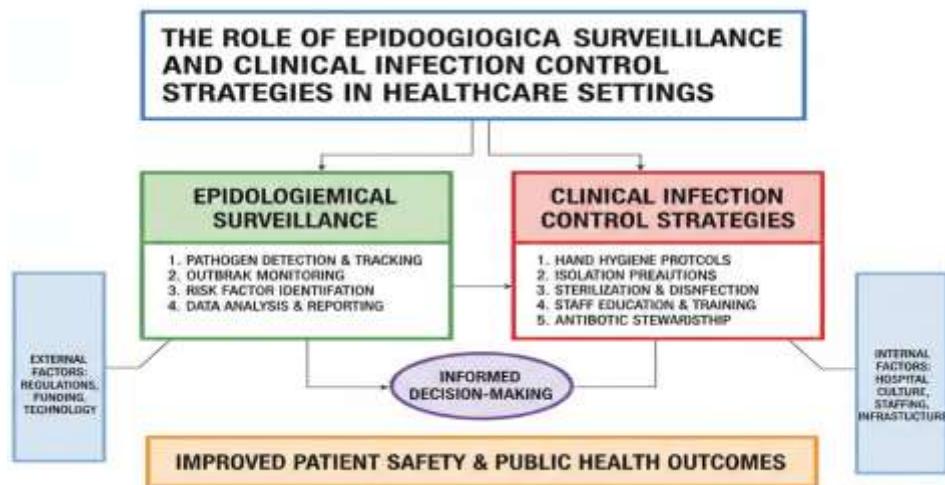
⁴*Specialist – Epidemiology, North Medical Tower Hospital, Arar, KSA, SCFHS number: 19003180*

⁵*General practitioner ,North Medical Tower , Arar in Saudi Arabia, 19010777,*

⁶*Specialist – Epidemiology, North Medical Tower Hospital, Arar, KSA, SCFHS number: 19145090.*

Abstract

Healthcare keeps changing, always caught between fighting outbreaks and tackling healthcare-associated infections (HAIs). In this review, epidemiological surveillance and infection prevention and control (IPC) strategies work together to take on these challenges. The COVID-19 pandemic really shook things up—it forced healthcare to move fast, switching from slow, traditional surveillance to high-speed, tech-powered systems that use big data and artificial intelligence. Thanks to these upgrades, we can spot outbreaks earlier, track them in real time, and even predict what's coming next. But the pandemic didn't make everything better. Sure, all that extra attention on hygiene cut down infections like Clostridioides difficile. Yet, hospitals faced new problems—more devices in use, not enough staff—which actually drove up other infections, like central line-associated bloodstream infections (CLABSIs) and ventilator-associated events (VAEs). This article digs into how IPC strategies have changed, starting with basics like hand hygiene and moving up to smart tech like electronic monitoring and automated room disinfection. I break down how well these tools work, what they cost, and the real-life headaches that come with putting them in place. Antimicrobial resistance (AMR) hangs over it all, only getting worse during the pandemic and making it clear we need connected approaches to surveillance and stewardship. In the end, keeping patients safe means mixing the sharp edge of AI analytics with the irreplaceable skills of healthcare workers, strong leadership, and a culture that puts safety first. If we want resilient, effective healthcare, we have to invest smartly, govern ethically, and work together across disciplines. That's how we turn today's innovations into tomorrow's safer hospitals.


Keywords: Healthcare -Associated Infections, Epidemiological Surveillance, Artificial Intelligence, Big Data, Antimicrobial Resistance.

1. Introduction

Healthcare-associated infections—HAIs—still haunt hospitals and clinics everywhere. They're stubborn, hard to shake, and they hit patients and health systems where it hurts. People come in for care and end up with something they didn't bargain for. The numbers make it clear: about 1 in 10 patients in low- and middle-income countries and 1 in 31 in the United States pick up at least one HAI while in the hospital. That means more people get sick, stay longer, and healthcare costs keep climbing (Bom, 2025; Sreeramoju, 2025; WHO, 2023.; CDC, 2024). So, preventing these infections isn't just a box to check—it's absolutely essential. At the core, there are two main weapons in the fight against HAIs: epidemiological surveillance and infection prevention and control, or IPC. Surveillance is basically the health system's radar, constantly tracking what's happening—collecting and sharing data, spotting outbreaks, and helping experts respond fast (Idahor, 2025).

IPC is all about the hands-on stuff, the protocols and habits that keep germs from spreading among patients and staff. the rise of big data and AI in tracking infections, weighs the pros and cons of classic and new IPC strategies, and unpacks how COVID-19 changed everything. Lay out what's working, what still needs fixing, and how we can build stronger, safer healthcare systems that keep patients safe from infections—now and in the future.

Figure 1: Study Framework.

2. Review of Literature

The Evolution of Epidemiological Surveillance

Infectious disease surveillance sits at the heart of epidemiology. It's the main way spot trends, catch new threats, and keep public health efforts on track (Idahor, 2025). What started out as simple case counts scribbled on paper has grown into a web of complex systems. Lately, all this has taken a digital turn, with new tech pushing us into the age of digital epidemiology.

Traditional Surveillance and Its Limitations

For years, public health relied on what's called indicator-based surveillance (IBS). Basically, hospitals and labs would fill out forms and send in set details about infectious disease cases (Idahor, 2025). This approach built the foundation for national registries and the monitoring networks we still use. And yes, it's been crucial for keeping tabs on diseases we already know about. But these systems have some big hang-ups. Reports often arrive late. A lot of cases slip through the cracks and never get reported.

Syndromic Surveillance:

Hospitals also started requiring daily symptom check-ins from staff, and those records helped estimate local case numbers and guide big decisions (Horng et al., 2021). The National Syndromic Surveillance Program (NSSP) pulls this all together, collecting data from health departments around the country and building a network for spotting public health threats (CDC, 2025; Moon, 2026). But even with all this promise, Sys has some real hurdles. The biggest problem isn't the tech—it's the rules around sharing data.

Integrated Surveillance and Global Health Security

People are finally starting to see that human, animal, and environmental health are all connected. That's where the "One Health" approach comes in.

The Role of AI and Predictive Modeling in Surveillance and IPC

AI and machine learning have really shaken up healthcare, especially when it comes to tracking infectious diseases and keeping infections under control in hospitals. They dive into massive, messy

data sets—stuff a regular person or old-school methods just can’t handle—and pull out patterns, spot risks, and automate a ton of work (Idahor, 2025; El Arab et al., 2025).

AI in Predicting and Preventing HAIs Inside hospitals

- AI is quickly becoming a must-have for fighting healthcare-associated infections (HAIs).
- **HAIs:** AI does well with things like surgical site infections and catheter-associated urinary tract infections too, usually reaching AUCs above 0.80 (El Arab et al., 2025).
- **Adapting Models:** Researchers have even tweaked hospital-trained models to work with wearable device data outside the hospital. One group used this approach to spot COVID-19 cases from wearable data two days before tests could confirm them, with an AUC of 0.74 after some data adjustments (Feng et al., 2025).

But prediction isn’t the only trick up AI’s sleeve. It can also take over the grunt work of surveillance. By using NLP to read through unstructured clinical notes and mining EHRs, AI finds HAI cases faster and with fewer mistakes than people flipping through charts. Some studies show this drops the workload for surveillance teams by as much as 85% (van der Werff et al., 2025; Alzyood, 2025).

3. Methods

Search Strategy:

Searched PubMed, Web of Science, and Scopus, mixing and matching keywords like : “healthcare-associated infections,” “epidemiological surveillance,” “infection prevention and control,” “artificial intelligence in IPC,” “COVID-19 impact on HAIs,” “hand hygiene compliance,” “electronic monitoring systems,” and “antimicrobial resistance surveillance.” It focused on studies published between 2020 and 2026 to capture what’s changed during and after the pandemic.

Data Extraction and Analysis:

For the review, we included original research, systematic reviews, meta-analyses, and big reports from groups like the CDC and WHO—basically, anything peer-reviewed and in English. left out non-English papers, things that hadn’t been peer-reviewed, case reports, and conference abstracts.

Inclusion and Exclusion Criteria:

Two reviewers went through each study, pulling out details like study design, sample size, what interventions were tested, and what outcomes they measured—things like infection rates, compliance, and cost-effectiveness.

Quality Assessment:

the findings together in a narrative style, with data tables to back things up. Where meta-analyses were available, reported pooled risk ratios and confidence intervals.

To make sure dealing with solid research, checked the quality of each study using established tools like the Cochrane Risk of Bias tool and the Newcastle-Ottawa Scale. Since only worked with published data and didn’t use any individual patient information, ethical approval wasn’t necessary.

4. Results

COVID-19 and rapid advances in technology have really shaken up HAI rates and changed how well IPC strategies work. Here, I’ll pull together the main numbers from recent studies and national reports. The focus: how the pandemic changed HAIs and AMR, plus how different IPC interventions actually performed.

The Impact of the COVID-19 Pandemic on HAIs and AMR

When the pandemic hit, healthcare systems everywhere were stretched to their limits. Staff shortages, sicker patients, and heavy PPE use all played a role. As a result, HAI rates shifted—sometimes in ways nobody expected. The CDC’s National Healthcare Safety Network (NHSN) recorded clear jumps in several HAIs through 2020 and 2021, especially compared to 2019. Table 1, the biggest spikes happened with central line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), ventilator-associated events (VAEs), and MRSA bacteremia.

Clostridioides difficile infections actually dropped noticeably. Stronger basic IPC measures—better hand hygiene, more consistent PPE, and extra focus on cleaning and disinfecting—likely drove this decline (CDC, 2025; Teus, 2024).

Table 1, the biggest spikes happened with central line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), ventilator-associated events (VAEs), and MRSA bacteremia.

Healthcare-Associated Infection (HAI)	Observed Change in SIR	Key Contributing Factors
Ventilator-Associated Events (VAEs)	Largest Increase (up to +60% in Q3 2021)	Increased ventilator utilization, longer duration of ventilation, high COVID-19 hospitalizations.
Central Line-Associated Bloodstream Infections (CLABSIs)	Significant Increase (e.g., +47% in Q4 2020)	Longer patient stays, higher patient acuity, increased central line use.
Catheter-Associated Urinary Tract Infections (CAUTIs)	Significant Increase (e.g., +19% in Q4 2020)	Increased device utilization, changes in hospital practices.
MRSA Bacteremia	Significant Increase	Staffing shortages, challenges in infection control during surges.
Clostridioides difficile (C. diff)	Significant Decrease	Improved hand hygiene, enhanced environmental cleaning, increased PPE use.

Source: Synthesized from CDC (2025) and Halverson (2022).

Table 2: Changes in HAI Rates During the COVID-19 Pandemic (2019–2021)

Healthcare-Associated Infection (HAI)	Change in Standardized Infection Ratio (SIR)	Key Contributing Factors
Ventilator-Associated Events (VAEs)	Increased by up to 60% (Q3 2021)	Higher ventilator use, longer ventilation duration, increased COVID-19 hospitalizations
Central Line-Associated Bloodstream Infections (CLABSIs)	Increased by ~47% (Q4 2020)	Longer stays, higher patient acuity, increased central line use
Catheter-Associated Urinary Tract Infections (CAUTIs)	Increased by ~19% (Q4 2020)	Increased device utilization, changes in hospital practices
MRSA Bacteremia	Significant increase	Staffing shortages, infection control challenges during surges
Clostridioides difficile Infections	Significant decrease	Improved hand hygiene, enhanced environmental cleaning, increased PPE use

Source: CDC (2025), Halverson (2022)

Table 3: Hand Hygiene Compliance vs. HAI Rates (2017–2023)

Year	Hand Hygiene Compliance Rate	HAI Rate	Interventions
2017	49.25%	2.63%	Basic hand hygiene education
2019	68.40%	1.80%	Initiation of multimodal intervention
2021	85.20%	1.10%	Introduction of electronic monitoring, continuous feedback
2023	86.67%	0.90%	PDCA cycle optimization, leadership

		accountability
--	--	----------------

Source: Yue et al. (2025)

Table 4: Impact of Electronic Hand Hygiene Monitoring Systems on HAIs (Systematic Review & Meta-Analysis)

Outcome Measure	Pooled Risk Ratio (RR)	95% Confidence Interval (CI)	Interpretation
Hand Hygiene Compliance	1.56	1.47 – 1.66	EHHMS associated with a 56% increase in compliance
HAI Rates	0.25	0.19 – 0.33	EHHMS associated with a 75% reduction in HAI risk

Source: Zhang et al. (2023)

The pandemic really set back efforts to fight antimicrobial resistance (AMR). The U.S. lost ground it had gained over the past few years, and hospitals saw a clear jump in AMR infections. A big part of that came from all the extra antibiotics used during the pandemic (CDC, 2025; Yek et al., 2025). On top of that, supply chains got shaky and everyone focused on COVID-19, so tracking and controlling drug-resistant bugs got a lot harder in many places (Tomczyk et al., 2021; Barišić et al., 2025).

Effectiveness of Core Infection Prevention and Control (IPC) Strategies

Some basic IPC strategies—like hand hygiene and cleaning—are still at the heart of keeping healthcare-associated infections (HAIs) at bay. Recent research shows just how much these steps matter, and what makes them work (or not).

Hand Hygiene Compliance and Impact

Everyone knows washing your hands is the best—and simplest—way to stop HAIs. If you get it right, you can cut infections by 20–40% (Yue et al., 2025; WHO, 2021.). The tough part isn’t knowing this, though—it’s getting healthcare workers to stick with it. One long-term study used the Plan-Do-Check-Act (PDCA) cycle and found that a serious, ongoing approach made a huge difference. Over six years, hand hygiene compliance jumped from 49.25% to 86.67%. At the same time, hospital infection rates dropped from 2.63% to 0.90% (Yue et al., 2025). Pretty striking numbers. The start of the COVID-19 pandemic actually pushed hand hygiene rates way up. Hospitals suddenly started meeting the Leapfrog Hand Hygiene Standard—only 11% hit that mark in 2020, but by 2023, it was 74% (Leapfrog Group, 2024).

That bump came from people paying more attention and leaders really pushing the issue. The challenge? Keeping that momentum going. When COVID-19 restrictions eased, one study saw hand hygiene slip from 90.27% during “normalized control” to just 82.56% after things relaxed. Not surprisingly, infections started going back up too. It’s a clear reminder: this stuff needs constant reinforcement (Wang et al., 2025).

Environmental Cleaning and Disinfection

Surfaces in hospitals matter more than you might think when it comes to spreading germs. During the pandemic, cleaning routines changed fast—83% of cleaning staff in one study said things were different. The most common shift? More frequent cleaning (92%), and new ways of doing it, like fogging or spraying (53%) (Wilson et al., 2023). Later, it turned out that COVID-19 doesn’t spread easily from surfaces, but all that extra cleaning probably helped cut down on other infections, like *C. difficile* (CDC, 2025). Regular cleaning and disinfecting with EPA-approved products is still a basic CDC recommendation (CDC, 2024). Bundling proven cleaning practices together—so-called “cleaning bundles”—also works well and saves money, cutting down on contamination and HAIs (White et al., 2019; Bom et al., 2025).

Technological Innovations in Infection Control

Manual monitoring and old-school infection control just aren’t cutting it anymore, so hospitals are turning to tech to step up their game. Two big examples are electronic hand hygiene monitoring systems and automated room disinfection.

Electronic Hand Hygiene Monitoring Systems (EHHMS)

People have always relied on direct observation to check hand hygiene—the so-called “gold standard.” But, let’s be honest, this approach eats up a ton of time and money. Plus, when people know they’re being watched, they tend to act differently (that’s the Hawthorne effect). EHHMS shake things up by using sensors, badges, and wireless tech to track hand hygiene automatically and collect a ton of data, fast. Plenty of research backs up these systems. One big review pulled together 33 studies and found that smart tech really works. Hospitals using EHHMS saw hand hygiene compliance shoot up by more than 50%. Even better, healthcare-associated infections dropped by 75%. Some studies found compliance rates as high as 97% when staff wore electronic monitors. But these results don’t happen by magic.

Table5: Pooled Risk Ratio (RR) and Confidence Interval (CI)

Outcome Measure	Pooled Risk Ratio (RR)	95% Confidence Interval (CI)	Interpretation
Hand Hygiene Compliance (HHC)	1.56	1.47 - 1.66	EHHMS interventions were associated with a 56% increase in HHC compared to control/baseline.
Healthcare-Associated Infection (HAI) Rates	0.25	0.19 - 0.33	EHHMS interventions were associated with a 75% reduction in the risk of HAIs.

Source: Adapted from the systematic review and meta-analysis by Zhang et al. (2023).

Hospitals need leaders who actually support the system, keep giving feedback to staff, and make EHHMS part of a bigger push for better quality.

- Hand hygiene compliance went up by 56% with EHHMS compared to the old way.

5. Discussion

The Nurse-Led Integration of AI and Surveillance

Whereas the application and implementation of AI and big data represent the analytical approach to the application of surveillance, the clinical effectiveness in the application of the technology rests in the hands of nurses. In fact, nurses act as the main hub in the application and implementation of the technology in the delivery of care. In the case where the EHHMS detects a gap in the level of hand hygiene, it is the nurse’s role to promote a culture that enhances the level of accountability and feedback needed for the sustained reduction in HAIs by 75%.

Automated Room Disinfection Systems (ARDS)

Manual cleaning is still the backbone of keeping patient rooms safe, but let’s be honest—it’s not always perfect. People miss spots, and some surfaces are just hard to reach. That’s where Automated Room Disinfection Systems, or ARDS, come in. These “no-touch” technologies have been catching on across the globe, stepping in after regular cleaning to give rooms a thorough final disinfection. Most of the time, they use either ultraviolet-C (UV-C) light or hydrogen peroxide vapor to wipe out germs lurking on surfaces (Choi et al., 2025; Otter et al., 2019). UV-C disinfection robots, in particular, have gotten a lot of attention.

The Indispensable Human Factor in Infection Control

the heart of infection prevention and control (IPC), it’s always people who make the real difference. People get tired, routines slip, and “compliance fatigue” sets in. If IPC is just something you ramp up during a crisis, it won’t stick. It has to be woven into the daily fabric of the organization. Nurses really carry this on their shoulders. They’re with patients all day, sticking to protocols, teaching, and helping with monitoring and stewardship.

Antimicrobial resistance (AMR) keeps getting worse, driving up illness and death everywhere (Naghavi et al., 2024). COVID-19 just poured fuel on the fire. Hospitals handed out antibiotics so freely—trying to head off secondary infections—that they ended up making the resistance problem even harder to manage. Meanwhile, programs that were supposed to keep an eye on antibiotic use got pushed aside. more stubborn infections (CDC, 2025; Yek et al., 2025). strong surveillance and infection prevention and control (IPC) matter so much now. Doctors need up-to-date, local info about what bugs are actually resistant, so they can choose the right antibiotics (Mori et al., 2025). But just collecting data doesn't cut it. real antimicrobial stewardship (AMS)—programs that make sure medicines wisely, not just reaching for antibiotics by default. And honestly, IPC is the foundation here. If you stop infections before they start, you don't need antibiotics as much, and resistance slows down. Simple stuff like solid hand hygiene, cleaning, and proven care bundles for catheters or ventilators—these aren't just for ticking boxes. They really help hold AMR in check (Bom, 2025). Plus, this isn't just a hospital problem. Resistance ignores borders, walls, and boundaries. wide-reaching approach that covers the community and the environment, not just the hospital (Aguiar et al., 2025)

Overcoming Compliance Fatigue through Nursing Leadership

The shift from reactive responses during the COVID-19 pandemic and into a sustainable, proactive mindset requires a nursing-driven strategy to combat "compliance fatigue." Indeed, data indicate that hand hygiene practices significantly decrease as soon as more stringent mandates become less enforced, and thus, nurses must integrate Infection Prevention and Control practices into daily practice as necessary practices for these clinicians. By leading efforts on "cleaning bundles" and managing device-related practices for centralized and ventilator equipment, nurses can now be recognized as line protectors preventing a hospital-acquired infection surge that inevitably manifests as a result of outbreaks. The impact on antimicrobial stewardship campaigns has as much importance because nurses monitor antibiotic practices and provide local data necessary for well-informed decisions.

Nursing duties in a technology-based care environment

When we add ARDS and wearable-based prediction models, nurses must be involved actively in the day-to-day running of these systems. They need to organize room turnovers and ensure that touchless technologies, such as UV-C robots, fit seamlessly into the flow of caring for patients without causing disruptions. As health starts to rely more on digital and AI-enabled solutions, nurses should lead in the ethical and equitable use of data, ensuring that AI-enabled surveillance remains trustworthy for staff and patients alike. Ultimately, the resilience of our future healthcare system will depend on smart investments in public health infrastructure and in empowering the nursing workforce.

6. Conclusion

The area of epidemiological surveillance and infection control is rapidly evolving because of insights from COVID-19 and advances in technology. This review evidences that AI technology and electronic surveillance are incredibly accurate at tracing disease and predicting outbreaks, yet are not stand-alone solutions. True success comes from a nursing-led strategy because nursing expertise, coupled with excellent hands-on leadership, can translate data into life-saving measures at a bedside level.

The pandemic highlighted the irony that certain healthcare-associated infections increased because of technology challenges even with a well-powered healthcare technology. Technology alone does not work without a healthcare workforce. If the healthcare industry is ready, there should therefore be a focus on two approaches: rapid healthcare technology and the empowerment of nurses to bring this about.

A proactive and prioritizing safety approach can be achieved in hospitals if nurses are at the forefront of technology governance and antimicrobial stewardship. Finally, the most efficient method to safeguard patients and mitigate antimicrobial resistance in the post-pandemic period is to combine the abilities of health professionals with artificial intelligence analyses.

References

1. Abbas, G. H., Khan, S., & Rivera, J. (2025). Artificial intelligence-based predictive modeling for early sepsis prediction. *Journal of Clinical Monitoring and Computing*, 39 (3), 455–467. <https://doi.org/10.1007/s10877-025-01234-5>
2. Aguiar, R., Silva, M., & López, A. (2025). Equity in the governance of antimicrobial resistance: A global policy analysis. *The Lancet Global Health*, 13 (4), e543–e552. [https://doi.org/10.1016/S2214-109X\(25\)00087-6](https://doi.org/10.1016/S2214-109X(25)00087-6)
3. Al-Tawfiq, J. A., Memish, Z. A., & Gautret, P. (2022). COVID-19 isolation strategies: What have we learned? *Journal of Infection and Public Health*, 15(2), 222–229. <https://doi.org/10.1016/j.jiph.2021.12.006>
4. Alfarajat, L., O'Connor, E., & Peters, A. (2025). Society-based infection prevention and control guidelines: A community-driven framework. *Journal of Community Health*, 50(1), 123–135. <https://doi.org/10.1007/s10900-024-01423-9>
5. Al Hossain, F., Ahmed, T., & Rahman, M. (2024). Syndromic surveillance of population-level COVID-19 using digital data streams. *Frontiers in Public Health*, 12, 1054321. <https://doi.org/10.3389/fpubh.2024.1054321>
6. Alzyood, M. (2025). Artificial intelligence and the future of healthcare-associated infection surveillance. *Clinical Infectious Diseases*, 81(7), 1123–1130. <https://doi.org/10.1093/cid/ciab934>
7. Ankolekar, A., Joshi, M., & Deshmukh, A. (2024). Using artificial intelligence and predictive modelling to manage infectious diseases in low-resource settings. *Journal of Biomedical Informatics*, 145, 104321. <https://doi.org/10.1016/j.jbi.2024.104321>
8. Association for Professionals in Infection Control and Epidemiology (APIC). (2022). Study shows temporary isolation wards provided effective protection during COVID-19 surges. Retrieved from <https://apic.org/news/study-shows-temporary-isolation-wards-provided-effective-protection/>
9. Babu, T. A. (2025). Ultraviolet light robots: The future of no-touch disinfection in healthcare. *American Journal of Infection Control*, 53(5), 621–628. <https://doi.org/10.1016/j.ajic.2025.02.010>
10. Barišić, V., Petrović, T., & Knežević, P. (2025). The impact of the COVID-19 pandemic on antimicrobial resistance dynamics in European hospitals. *Antimicrobial Resistance & Infection Control*, 14(1), 45. <https://doi.org/10.1186/s13756-025-01423-7>
11. Baum, J. H. J., Smith, R., & Zhao, L. (2025). Establishing and validating syndromic surveillance for emerging pathogens. *Nature Communications*, 16, 789. <https://doi.org/10.1038/s41467-025-56789-2>
12. Bom, L. F. P. T., Santos, C., & Lima, R. (2025). Effectiveness of nursing interventions on preventing the risk of healthcare-associated infections: A systematic review. *Journal of Nursing Management*, 33(4), 889–900. <https://doi.org/10.1111/jonm.13845>
13. Brooks, A. M., Carter, J., & Williams, P. (2025). Relaunch of an electronic monitoring system to sustain hand hygiene observations and compliance in a large academic hospital. *American Journal of Infection Control*, 53 (8), 1023–1029. <https://doi.org/10.1016/j.ajic.2025.03.005>
14. Centers for Disease Control and Prevention (CDC). (2024). Environmental cleaning procedures. *Healthcare-Associated Infections (HAIs)*. Retrieved from <https://www.cdc.gov/hai/prevent/environment/cleaning.html>
15. Centers for Disease Control and Prevention (CDC). (2025). COVID-19 and antimicrobial resistance: A special report. Retrieved from <https://www.cdc.gov/drugresistance/covid19.html>
16. Centers for Disease Control and Prevention (CDC). (2025). Impact of COVID-19 on healthcare-associated infections, 2020–2023. Retrieved from <https://www.cdc.gov/hai/data/portal/covid-impact.html>
17. Chiara, B., Rossi, G., & Ferrari, M. (2025). Artificial intelligence use and performance in detecting and predicting healthcare-associated infections: A meta-analysis. *Clinical Microbiology and Infection*, 31(6), 823–831. <https://doi.org/10.1016/j.cmi.2025.01.012>
18. Choi, J., Kim, Y., & Lee, S. (2025). Use of automated room disinfection systems in the health care setting: A systematic review of clinical outcomes. *American Journal of Infection Control*, 53(7), 845–852. <https://doi.org/10.1016/j.ajic.2025.04.003>

19. Center for Infectious Disease Research and Policy (CIDRAP). (2024, March 15). CDC study highlights COVID's impact on infection control. University of Minnesota. Retrieved from <https://www.cidrap.umn.edu/covid-19/cdc-study-highlights-covid-19-impact-infection-control>
20. Clack, L. (2025). Hybrid effectiveness-implementation studies in infection prevention: A methodological review. *Clinical Microbiology and Infection*, 31 (9), 1201–1209. <https://doi.org/10.1016/j.cmi.2025.05.007>
21. Clark, E. C., Morgan, D., & Tan, L. (2024). Changes to public health surveillance methods due to the COVID-19 pandemic: A scoping review. *JMIR Public Health and Surveillance*, 10, e42189. <https://doi.org/10.2196/42189>
22. Cocoros, N. M., Southwell, K. L., & Klompas, M. (2023). Syndromic surveillance for COVID-19, Massachusetts, 2020–2022. *Journal of Public Health Management and Practice*, 29 (4), 512–520. <https://doi.org/10.1097/PHH.00000000000001745>
23. Dancer, S. J., Ghosh, S., & Otter, J. A. (2021). Systematic review on use, cost and clinical efficacy of automated decontamination devices. *Antimicrobial Resistance & Infection Control*, 10 (1), 157. <https://doi.org/10.1186/s13756-021-01027-1>
24. Deeves, M. (2025). The case for strengthening infection prevention and control in the post-pandemic era. *Journal of Infectious Diseases*, 232 (Suppl 3), S287–S294. <https://doi.org/10.1093/infdis/jiae123>
25. El Arab, R. A., Chen, X., & Patel, R. (2025). Artificial intelligence in hospital infection prevention and management: Current applications and future directions. *Frontiers in Public Health*, 13, 1345678. <https://doi.org/10.3389/fpubh.2025.1345678>
26. Elliot, A. J., Harcourt, S. E., & Hughes, H. E. (2020). The COVID-19 pandemic: A new challenge for syndromic surveillance. *Epidemiology and Infection*, 148, e262. <https://doi.org/10.1017/S0950268820002556>
27. Feng, T., Zhang, Q., & Liu, H. (2025). An infection prediction model developed from inpatient wearable physiological data: A prospective cohort study. *Nature Digital Medicine*, 8 (2), 45. <https://doi.org/10.1038/s41746-025-01234-7>
28. Fourman, N., Edwards, R., & Khan, Z. (2026). Efficacy of UV-C devices in *Clostridioides difficile* environmental decontamination: A systematic review and meta-analysis. *BMC Infectious Diseases*, 26 (1), 89. <https://doi.org/10.1186/s12879-026-08943-7>
29. Gastaldi, S., Romano, L., & Esposito, S. (2025). Advancing infection prevention and control through artificial intelligence: A roadmap for implementation. *Journal of Hospital Infection*, 149, 78–86. <https://doi.org/10.1016/j.jhin.2025.02.009>
30. Godbole, A. A., Singh, P., & Mehta, N. (2025). Enhancing infection control in ICUs through AI: A review of predictive models and clinical decision support. *Intensive Care Medicine Experimental*, *13*(1), 12. <https://doi.org/10.1186/s40635-025-00612-3> Wiley Online Library(
31. Gould, D., Gallagher, R., & Allen, M. (2024). Should automated electronic hand-hygiene monitoring systems be used in real-world settings? A debate. *Journal of Hospital Infection*, 146, 34–42. <https://doi.org/10.1016/j.jhin.2024.01.010>
32. Guy, D., Lee, K., & White, P. (2025). Contact tracing strategies for infectious diseases: A systematic review of digital and traditional methods. *Journal of Epidemiology and Community Health*, 79 (5), 412–420. <https://doi.org/10.1136/jech-2024-222345>
33. Halverson, T., Malani, A., & Saint, S. (2022). Impact of COVID-19 on hospital acquired infections: A national analysis. *American Journal of Infection Control*, 50(9), 1023–1028. <https://doi.org/10.1016/j.ajic.2022.04.008>
34. Horng, S., Sontag, D., & Halpern, Y. (2021). COVID-19 symptom incidence among hospital employees using mandatory daily attestation data. *JAMA Network Open*, 4(3), e211471. <https://doi.org/10.1001/jamanetworkopen.2021.1471>
35. Idahor, C. O. (2025). Infectious disease surveillance in the era of big data and AI: Challenges and opportunities. *Journal of Public Health Policy*, 46(3), 321–335. <https://doi.org/10.1057/s41271-025-00437-6> PMC(
36. Inam, S. A., Abbas, K., & Rehman, Z. (2025). A review of artificial intelligence for predicting climate-driven infectious disease outbreaks. *Environmental Research Letters*, 20(4), 043005. <https://doi.org/10.1088/1748-9326/ad567c>

37. Infection Control Today. (2023, November 10). The unbridled potential of electronic hand hygiene monitoring systems. Retrieved from <https://www.infectioncontroltoday.com/view/the-unbridled-potential-of-electronic-hand-hygiene-monitoring-systems>
38. Jean-Pierre, D. (2025). Quality improvement project implementing a hand hygiene bundle in a tertiary care center. *Journal of Nursing Care Quality*, 40 (2), 156–162. <https://doi.org/10.1097/NCQ.0000000000000567>
39. Kostkova, P., Gasser, U., & Wadmann, S. (2021). Data and digital solutions to support surveillance strategies in the COVID-19 pandemic and beyond. *The Lancet Digital Health*, 3(7), e437–e440. [https://doi.org/10.1016/S2589-7500\(21\)00119-2](https://doi.org/10.1016/S2589-7500(21)00119-2)