

Strategies To Reduce The Contraction And Spread Of Infectious Diseases By Family Physicians

Atef Eid Madkour Elsayed¹, Mubarak Almulhim², Abdullah Hameed Alghanmi³, Saleh Bin Ali Alghamdi⁴, Zaid Musaad Alsharif⁵, Asalah Abdulaziz Alhazmi⁶, Jizayah deham alshammari⁷, Walid Suliman Alwabli⁸, Alwaleed Faydullah M. Alidriss⁹, Fawzh Muzil Alshammary¹⁰, Reham Othman Alzahrani¹¹, Duaa Hussain Al Huraiz¹²

¹Consultant cardiology King abdelaziz hospital sakaka saudiarabia

²Medical student

³Family Medicine

⁴Resident Phc

⁵Family medicine

⁶Family medicine

⁷Family medicine consultant

⁸Resident Physician

⁹General Physician (Family Medicine Resident)

¹⁰Family medicine consultant

¹¹Family medicine

¹²General practitioner

Abstract

Background: Infectious diseases remain a significant public health challenge globally. Family physicians, as frontline primary care providers, play a critical role in preventing disease contraction and limiting community transmission through prevention, early detection, patient education, and community collaboration. This study aimed to assess the strategies implemented by family physicians to reduce the spread of infectious diseases.

Methods: A descriptive analytical cross-sectional study was conducted among 240 practicing family physicians. Data were collected using a validated, self-administered questionnaire covering demographic characteristics, infection prevention and control measures, vaccination activities, patient education strategies, antimicrobial stewardship, and surveillance practices. Descriptive statistics were used to summarize the data, and inferential analyses were performed to examine associations.

Results: The majority of participants reported high adherence to fundamental infection control measures: routine hand hygiene (89.2%), regular clinic surface disinfection (85.8%), and use of personal protective equipment (82.5%). Most physicians actively recommended vaccinations (85.0%) and routinely reviewed immunization status (80.0%). Patient education was widely practiced, particularly on hand hygiene (90.8%) and antibiotic misuse prevention (84.2%). While antimicrobial stewardship was strong, with 87.5% prescribing antibiotics only when indicated, engagement in surveillance activities—such as reporting notifiable diseases (68.3%) and monitoring local infection trends (61.7%)—was comparatively lower.

Conclusion: Family physicians are actively engaged in key strategies to prevent and control infectious diseases, especially in infection prevention, vaccination promotion, and patient education. However, gaps remain in systematic surveillance and broader community-level campaign participation. Enhancing training, strengthening systemic support, and improving integration with public health systems are recommended to optimize the role of family physicians in infectious disease prevention and preparedness.

Introduction

Background

Infectious diseases continue to represent a major public health challenge worldwide, contributing significantly to morbidity, mortality, and healthcare system burden. Despite advances in medical science, the emergence of new pathogens and the re-emergence of previously controlled infections highlight the ongoing need for effective prevention and control strategies. The rapid transmission of infectious diseases within communities underscores the importance of early intervention and coordinated healthcare responses at the primary care level (Haque et al., 2020).

Family physicians occupy a central position in the healthcare system, serving as the first point of contact for individuals and families. Their continuous, comprehensive, and person-centered approach places them in a unique role to influence both individual behaviors and community health outcomes. Through regular patient interactions, family physicians are well positioned to identify early signs of infection, provide timely management, and implement preventive measures that limit disease spread (Barrera-Cancedda et al., 2019).

The scope of family medicine extends beyond diagnosis and treatment to include health promotion, disease prevention, and patient education. By addressing social, behavioral, and environmental determinants of health, family physicians can reduce risk factors associated with infectious disease transmission. This holistic approach is essential for controlling infections that are influenced by hygiene practices, vaccination uptake, overcrowding, and access to healthcare services (Zahn et al., 2019).

Vaccination remains one of the most effective strategies to prevent infectious diseases, and family physicians play a crucial role in improving immunization coverage. Through routine care, counseling, and addressing vaccine hesitancy, they can enhance patient confidence and adherence to recommended immunization schedules. High vaccination coverage not only protects individuals but also contributes to herd immunity within the community (Alhumaid et al., 2021).

Infection prevention and control measures within primary care settings are fundamental to reducing transmission. Family physicians are responsible for implementing standard precautions, early isolation of suspected cases, and appropriate referral when necessary. Ensuring safe clinical environments protects both healthcare workers and patients, minimizing the risk of healthcare-associated infections (Hansen et al., 2018).

Health education delivered by family physicians is a powerful tool in controlling infectious diseases. By educating patients about hand hygiene, respiratory etiquette, safe food practices, and responsible antibiotic use, family physicians can promote behaviors that reduce infection risk. Consistent messaging during consultations reinforces public health recommendations and encourages long-term behavioral change (Kubde et al., 2023).

Surveillance and early detection are essential components of infectious disease control. Family physicians contribute to disease surveillance by recognizing patterns of illness, reporting notifiable diseases, and participating in outbreak response efforts. Early identification of cases at the primary care level allows for prompt public health interventions that can prevent widespread transmission (Caeiro & Garzón, 2018).

Antimicrobial resistance poses a growing threat to the effective management of infectious diseases. Family physicians play a critical role in promoting rational antibiotic prescribing and educating patients about appropriate antibiotic use. Responsible antimicrobial stewardship in primary care helps preserve the effectiveness of existing treatments and reduces the spread of resistant organisms (Houghton et al., 2020).

Community engagement is another key aspect of the family physician's role in infection control. By collaborating with public health authorities, schools, workplaces, and community organizations, family physicians can support coordinated efforts to prevent and control infectious diseases. Such collaboration enhances the reach and impact of preventive strategies at the population level (Soleimani et al., 2024).

In conclusion, family physicians are integral to reducing the contraction and spread of infectious diseases through prevention, early detection, patient education, and community collaboration. Strengthening strategies within family medicine practice is essential for enhancing public health preparedness and resilience. Understanding and optimizing these strategies can contribute significantly to controlling infectious diseases and improving overall community health outcomes (Al-Tawfiq, 2025).

Methodology

Study Design

This study employed a descriptive analytical cross-sectional design to assess strategies implemented by family physicians to reduce the contraction and spread of infectious diseases. The design was selected to allow the systematic collection and analysis of data at a single point in time, providing an overview of current practices, preventive measures, and professional roles within primary care. This approach was appropriate for evaluating real-world strategies without manipulating variables and is consistent with recommended methodologies for health services and primary care research.

Study Population

The study population consisted of practicing family physicians who were actively involved in direct patient care during the study period. Participants were required to have clinical responsibilities that included diagnosis, treatment, prevention, and follow-up of infectious diseases. Physicians who were not engaged in routine clinical practice or who declined participation were excluded from the study to ensure the relevance and accuracy of collected data.

Sample Size and Sampling Technique

The sample size was calculated using standard epidemiological formulas based on an assumed prevalence of infection control strategy utilization, a confidence level of 95%, and an acceptable margin of error. A non-probability convenience sampling technique was used to recruit eligible participants who met the inclusion criteria. This method was chosen due to feasibility considerations and its frequent use in healthcare workforce research.

Data Collection Tool

Data were collected using a structured, self-administered questionnaire developed after an extensive review of international infection prevention, primary care, and public health guidelines. The questionnaire included sections addressing demographic characteristics, preventive strategies, infection control practices, patient education methods, vaccination-related activities, surveillance roles, and antimicrobial stewardship. The tool was designed in clear and concise language to ensure ease of understanding and completion.

Validity and Reliability

Content validity of the questionnaire was ensured through review by experts in family medicine and public health, who assessed the relevance, clarity, and comprehensiveness of the items. A pilot study was conducted on a small group of family physicians not included in the final analysis to test clarity and applicability. Necessary modifications were made based on feedback. Internal consistency reliability was assessed using Cronbach's alpha coefficient, which demonstrated acceptable reliability for the main study domains.

Data Collection Procedure

Data collection was carried out over a predefined period. Participants were informed about the objectives of the study and provided with clear instructions for completing the questionnaire. Questionnaires were distributed and collected using secure methods to maintain confidentiality. Completed forms were reviewed for completeness before data entry to minimize missing or inconsistent data.

Study Variables

The primary outcome variables included infection prevention strategies employed by family physicians, such as vaccination promotion, patient education, infection control measures, early detection practices, and antimicrobial stewardship. Independent variables included professional characteristics such as years of experience, workload, and exposure to infectious disease training. These variables were selected based on their relevance to infectious disease prevention in primary care settings.

Data Management and Statistical Analysis

Data were coded, entered, and analyzed using a statistical software package. Descriptive statistics were used to summarize participant characteristics and reported strategies, including frequencies, percentages, means, and standard deviations. Inferential statistical tests were applied to assess associations between independent variables and the implementation of infection control strategies. A p-value of less than 0.05 was considered statistically significant, in accordance with standard biomedical research practices.

Ethical Considerations

Ethical approval was obtained from the appropriate research ethics committee prior to data collection. Participation was voluntary, and informed consent was obtained from all participants. Confidentiality and anonymity were strictly maintained throughout the study, and collected data were used solely for research purposes. The study adhered to internationally recognized ethical principles for medical research involving human participants.

Results

A total of **240 family physicians** participated in this study and were included in the final analysis. The results present participants' characteristics, infection prevention strategies, clinical practices aimed at reducing disease transmission, patient education activities, and antimicrobial stewardship behaviors. Frequencies and percentages were used to describe the distribution of responses and to highlight the most commonly applied strategies in family medicine practice.

Table 1. Sociodemographic and Professional Characteristics of Participants (n = 240)

Variable	Frequency (n)	Percentage (%)
Gender		
Male	138	57.5
Female	102	42.5
Years of Practice		
< 5 years	56	23.3
5–10 years	82	34.2
> 10 years	102	42.5
Average Daily Patient Load		
< 20 patients	48	20.0
20–40 patients	134	55.8
> 40 patients	58	24.2

Previous Training in Infection Control		
Yes	168	70.0
No	72	30.0

More than half of the participants were male (57.5%). Physicians with over 10 years of experience constituted the largest group (42.5%), indicating a predominantly experienced workforce. Most physicians reported seeing 20–40 patients per day (55.8%). Notably, 70% had received prior infection control training, reflecting substantial exposure to preventive health education.

Table 2. Infection Prevention and Control Measures Used in Clinical Practice

Measure	Frequency (n)	Percentage (%)
Routine hand hygiene compliance	214	89.2
Use of personal protective equipment	198	82.5
Isolation of suspected infectious cases	172	71.7
Regular clinic surface disinfection	206	85.8
Respiratory hygiene enforcement	184	76.7

Hand hygiene was the most frequently reported measure, practiced by 89.2% of physicians. Regular disinfection of clinic surfaces was also highly prevalent (85.8%). While isolation of suspected cases was reported by over two-thirds of participants (71.7%), it was less consistently applied compared to other preventive measures.

Table 3. Role of Family Physicians in Vaccination and Disease Prevention

Activity	Frequency (n)	Percentage (%)
Reviewing vaccination status routinely	192	80.0
Actively recommending vaccinations	204	85.0
Addressing vaccine hesitancy	176	73.3
Maintaining vaccination records	188	78.3
Participating in vaccination campaigns	142	59.2

The majority of physicians actively recommended vaccinations (85.0%) and routinely reviewed patient immunization status (80.0%). Addressing vaccine hesitancy was reported by 73.3%, demonstrating an active educational role. Participation in organized vaccination campaigns was comparatively lower at 59.2%, indicating potential barriers to broader community involvement.

Table 4. Patient Education Strategies to Reduce Infectious Disease Transmission

Educational Topic	Frequency (n)	Percentage (%)
Hand hygiene education	218	90.8

Respiratory etiquette	196	81.7
Safe food and water practices	172	71.7
Home isolation guidance	184	76.7
Prevention of antibiotic misuse	202	84.2

Patient education on hand hygiene was the most common educational strategy, reported by 90.8% of physicians. Education on preventing antibiotic misuse was also high (84.2%), reflecting awareness of antimicrobial resistance. Education on safe food and water practices, although still substantial, was less frequently addressed (71.7%).

Table 5. Antimicrobial Stewardship and Surveillance Practices

Practice	Frequency (n)	Percentage (%)
Prescribing antibiotics only when indicated	210	87.5
Educating patients about antibiotic adherence	196	81.7
Avoiding antibiotics for viral infections	188	78.3
Reporting notifiable infectious diseases	164	68.3
Monitoring local infection trends	148	61.7

A high proportion of physicians reported prescribing antibiotics only when clinically indicated (87.5%). Patient education regarding adherence was reported by 81.7%, reinforcing stewardship principles. Reporting notifiable diseases was performed by 68.3%, while active monitoring of infection trends was the least reported practice (61.7%), suggesting variability in surveillance engagement.

Discussion

The present study examined strategies employed by family physicians to reduce the contraction and spread of infectious diseases, highlighting prevention, education, vaccination, infection control, and antimicrobial stewardship practices. The findings demonstrated high engagement of family physicians in fundamental infection prevention measures, reinforcing the central role of primary care in limiting community transmission of infectious diseases. These results align with broader evidence emphasizing the effectiveness of frontline healthcare workers in preventing both healthcare-associated and community-acquired infections (Haque et al., 2020).

A substantial proportion of participants reported consistent adherence to hand hygiene and environmental disinfection measures. These practices are widely recognized as the cornerstone of infection prevention and control across healthcare settings. The high compliance observed in this study supports previous findings that adherence to basic infection control measures significantly reduces pathogen transmission when consistently implemented (Kubde et al., 2023; Alhumaid et al., 2021).

The frequent use of personal protective equipment and respiratory hygiene measures among family physicians further reflects increased awareness of airborne and droplet transmission risks. Similar trends have been reported in systematic reviews that emphasize the effectiveness of barrier precautions in reducing respiratory infectious disease spread, particularly in outpatient and primary care environments (Hansen et al., 2018; Houghton et al., 2020).

Isolation of suspected infectious cases, while practiced by the majority of participants, was less consistently applied than other measures. This finding mirrors previous research identifying structural, logistical, and time-related constraints as barriers to optimal isolation practices in primary care settings (Houghton et al., 2020). Limited space and high patient flow may contribute to this variability and warrant targeted system-level interventions.

Vaccination-related activities were strongly represented in the study results, with most physicians routinely reviewing immunization status and actively recommending vaccines. This highlights the critical influence of family physicians on vaccination uptake and public trust. Prior studies have demonstrated that physician recommendation is one of the strongest predictors of patient vaccine acceptance, particularly in routine clinical encounters (Haque et al., 2020).

Addressing vaccine hesitancy was reported by nearly three-quarters of participants, underscoring the expanding educational role of family physicians. This aligns with evidence suggesting that effective communication and personalized counseling by trusted healthcare providers can counter misinformation and improve vaccination coverage (Alhumaid et al., 2021). However, lower participation in organized vaccination campaigns suggests missed opportunities for broader community engagement.

Patient education emerged as a dominant strategy in reducing infectious disease transmission. Education on hand hygiene, respiratory etiquette, and antibiotic misuse was widely practiced, reflecting the preventive orientation of family medicine. These findings support literature emphasizing education as a cost-effective and sustainable approach to infection control beyond healthcare facilities (Hansen et al., 2018).

Education on safe food and water practices, although present, was less frequently reported. This may indicate a focus on respiratory and contact-transmitted infections over enteric diseases. However, previous research highlights the importance of comprehensive preventive counseling, particularly in resource-limited or high-risk populations where foodborne and waterborne infections remain prevalent (Caeiro & Garzón, 2018).

Antimicrobial stewardship practices were strongly represented, with most physicians reporting judicious antibiotic prescribing and avoidance of antibiotics for viral infections. These findings are encouraging, as inappropriate antibiotic use in primary care is a key driver of antimicrobial resistance. Similar studies emphasize the pivotal role of family physicians in antimicrobial stewardship due to their high prescribing volume (Haque et al., 2020).

Despite strong prescribing practices, surveillance-related activities such as reporting notifiable diseases and monitoring infection trends were less consistently performed. This finding is consistent with previous evidence indicating limited integration of primary care into formal surveillance systems, often due to workload pressures and insufficient feedback mechanisms (Barrera-Cancedda et al., 2019).

The observed gap in surveillance engagement highlights the need for stronger collaboration between family physicians and public health authorities. Effective surveillance depends on timely case detection and reporting at the primary care level, which is particularly critical during outbreaks and emerging infectious threats (Caeiro & Garzón, 2018).

The high proportion of physicians with prior infection control training likely contributed to the favorable preventive practices observed. Training has been consistently associated with improved compliance and confidence in infection prevention behaviors across healthcare settings (Alhumaid et al., 2021; Barrera-Cancedda et al., 2019).

Nevertheless, training alone may not fully address systemic barriers such as time constraints, patient load, and limited institutional support. Studies have shown that sustained improvements in infection control require supportive leadership, adequate resources, and clear organizational policies in addition to individual knowledge (Houghton et al., 2020).

The findings of this study reinforce the expanding role of family physicians beyond clinical care to include education, advocacy, and community-level prevention. This multidimensional role aligns with contemporary perspectives that position primary care as the backbone of infectious disease prevention and public health resilience (Zahn et al., 2019).

Finally, the overall results support a vision of infection prevention as an integrated philosophy rather than a set of isolated actions. Achieving sustained reductions in infectious disease transmission requires consistent application of preventive strategies, continuous education, and system-wide commitment across primary care settings (Al-Tawfiq, 2025).

Conclusion

This study demonstrated that family physicians play a vital role in reducing the contraction and spread of infectious diseases through consistent infection control practices, vaccination advocacy, patient education, and responsible antimicrobial use. While preventive and educational strategies were widely implemented, gaps were identified in surveillance activities and community-level engagement. Strengthening training, system support, and integration with public health structures can further enhance the effectiveness of family physicians in infectious disease prevention. Optimizing these strategies within primary care is essential for improving population health outcomes and strengthening preparedness against current and future infectious threats.

References

1. Haque, M., McKimm, J., Sartelli, M., Dhingra, S., Labricciosa, F. M., Islam, S., Jahan, D., Nusrat, T., Chowdhury, T. S., Coccolini, F., Iskandar, K., Catena, F., & Charan, J. (2020). Strategies to Prevent Healthcare-Associated Infections: A Narrative Overview. *Risk management and healthcare policy*, 13, 1765–1780. <https://doi.org/10.2147/RMHP.S269315>
2. Barrera-Cancedda, A. E., Riman, K. A., Shinnick, J. E., & Buttenheim, A. M. (2019). Implementation strategies for infection prevention and control promotion for nurses in Sub-Saharan Africa: a systematic review. *Implementation science : IS*, 14(1), 111. <https://doi.org/10.1186/s13012-019-0958-3>
3. Zahn, M., Adalja, A. A., Auwaerter, P. G., Edelson, P. J., Hansen, G. R., Hynes, N. A., Jezek, A., MacArthur, R. D., Manabe, Y. C., McGoodwin, C., & Duchin, J. S. (2019). Infectious Diseases Physicians: Improving and Protecting the Public's Health: Why Equitable Compensation Is Critical. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*, 69(2), 352–356. <https://doi.org/10.1093/cid/ciy888>
4. Alhumaid, S., Al Mutair, A., Al Alawi, Z., Alsuliman, M., Ahmed, G. Y., Rabaan, A. A., Al-Tawfiq, J. A., & Al-Omari, A. (2021). Knowledge of infection prevention and control among healthcare workers and factors influencing compliance: a systematic review. *Antimicrobial resistance and infection control*, 10(1), 86. <https://doi.org/10.1186/s13756-021-00957-0>
5. Hansen, S., Zimmerman, P. A., & van de Mortel, T. F. (2018). Infectious illness prevention and control methods and their effectiveness in non-health workplaces: an integrated literature review. *Journal of infection prevention*, 19(5), 212–218. <https://doi.org/10.1177/1757177418772184>
6. Kubde, D., Badge, A. K., Ugemuge, S., & Shah, S. (2023). Importance of Hospital Infection Control. *Cureus*, 15(12), e50931. <https://doi.org/10.7759/cureus.50931>
7. Caeiro, J. P., & Garzón, M. I. (2018). Controlling infectious disease outbreaks in low-income and middle-income countries. *Current treatment options in infectious diseases*, 10(1), 55–64. <https://doi.org/10.1007/s40506-018-0154-z>
8. Houghton, C., Meskell, P., Delaney, H., Smalle, M., Glenton, C., Booth, A., Chan, X. H. S., Devane, D., & Biesty, L. M. (2020). Barriers and facilitators to healthcare workers' adherence with infection prevention and control (IPC) guidelines for respiratory infectious diseases: a rapid qualitative

evidence synthesis. The Cochrane database of systematic reviews, 4(4), CD013582.
<https://doi.org/10.1002/14651858.CD013582>

9. Soleimani, M., Fakhr-Movahedi, A., & Yarahmadi, S. (2024). Family engagement in the care of infectious patients in intensive care units: A hybrid concept analysis. *Nursing open*, 11(3), e2117.
<https://doi.org/10.1002/nop2.2117>
10. Al-Tawfiq J. A. (2025). Striving for zero traditional and non-traditional healthcare-associated infections (HAI): a target, vision, or philosophy. *Antimicrobial stewardship & healthcare epidemiology : ASHE*, 5(1), e146. <https://doi.org/10.1017/ash.2025.10031>