

Infection Control Considerations In The Cleaning, Disinfection, And Sterilization Of Complex Surgical Devices

Wlaa Ahmed Ali Basalem ⁽¹⁾, Saad Meshabab Nasser Alqahtani ⁽²⁾, Hessah Saleh Ahamd Aod ⁽³⁾, Nasser Arhaim Alotaibi ⁽⁴⁾, Khulud Hamad Tlaq Alanazi ⁽⁵⁾, Muteb Oqab Alanazi ⁽⁶⁾, Abdulkareem Mohammed Alanazi ⁽⁷⁾, Maryam Megeed Alotaibi ⁽⁸⁾, Abeer Abdullah Alqurnas ⁽⁹⁾, Turki Abdulrahman Alghamdi ⁽¹⁰⁾, Amnah Razeim Magrashi ⁽¹¹⁾, Bader Majed L Alotaibi ⁽¹²⁾, Jawaher Muidh Almutairi ⁽¹³⁾, Alla Mohsen Alfrisany ⁽¹⁴⁾, Omar Mahmoud Abduljawad ⁽¹⁵⁾

1. Radiology Technologist, East Jeddah General Hospital, first health cluster; Jeddah, Kingdom of Saudi Arabia.
2. Audiologist, King Khaled Hospital in Alkharj, First Health Cluster, Riyadh, Kingdom of Saudi Arabia.
3. Nursing Technician, Al Marwa Neighborhood Health Center, Second Health Cluster, Kingdom of Saudi Arabia.
4. Health Administration Technologist, Afif General Hospital, Ministry of Health, Kingdom of Saudi Arabia.
5. Dental Assistant Technician, Al Murooj Health Center, Ministry of Health, Kingdom of Saudi Arabia.
6. Physical Therapy, Al-Iman General Hospital, First Health Cluster, Riyadh, Kingdom of Saudi Arabia.
7. Senior Registrar in Family Medicine, First Health Cluster, Ministry of health, Kingdom of Saudi Arabia.
8. Senior Registrar in Family Medicine, Security forces program in Riyadh, Kingdom of Saudi Arabia.
9. Radiography Specialist, King Khaled Hospital and Prince Sultan Center for Health Care in Al-Kharj, First Health Cluster, Kingdom of Saudi Arabia.
10. Specialist Radiological Technology, King Khalid Hospital Alkharj, First Health Cluster, Riyadh, Kingdom of Saudi Arabia.
11. Nurse, King Khalid hospital Al-Kharj, First Health Cluster, Riyadh, Kingdom of Saudi Arabia.
12. Senior Specialist Radiological Technology, King Khalid hospital in Al-Kharj, First Health Cluster, Riyadh, Kingdom of Saudi Arabia.
13. Radiography Specialist, Aflaj Central Hospital, First Health Cluster, Kingdom of Saudi Arabia.
14. Physical Therapy, Almezailif Hospital, Makkah Health cluster, Kingdom of Saudi Arabia.
15. Emergency Medical Services Specialist, Badr General Hospital, Madinah Health Cluster, Kingdom of Saudi Arabia.

Abstract

Background

Complex surgical devices, such as endoscopes and robotic instruments with intricate lumens and joints, pose significant infection control risks due to persistent bioburden, biofilms, and reprocessing failures leading to healthcare-associated infections (HAIs) like surgical site infections.

Methods

This narrative review synthesizes evidence from guidelines (WHO, CDC, AAMI, ISO), experimental studies, observational data, and outbreak investigations on cleaning, disinfection, and sterilization of complex devices, focusing on design challenges and validation in diverse settings.

Results

Studies reveal residual soil and biofilms persist post-reprocessing, with contamination rates up to 8.69% in endoscopes; outbreaks link failures to inadequate precleaning, AER malfunctions, and drying lapses; innovations like AI monitoring and RFID reduce errors by 20-99%.

Conclusions

Robust protocols integrating automation, training, and emerging technologies (e.g., nanomaterials, robotics) are essential for sterility assurance; addressing design gaps and human factors will minimize HAIs across resource settings.

Keywords Cleaning, Disinfection, Sterilization, Complex Surgical Instruments, Infection Control, Healthcare-Associated Infections, Endoscopes, Reprocessing, Sterility Assurance Level.

Introduction

Infection control in surgical practice is fundamentally grounded in the principle that every invasive procedure carries an inherent risk of transmitting microorganisms from devices, the environment, or personnel into normally sterile body sites, potentially resulting in surgical site infections (SSIs), device-associated infections, and catastrophic sepsis if preventive systems fail. Modern surgery increasingly relies on complex reusable instruments which are frequently contaminated with high bioburden and organic soil after use, including blood, tissue, and biofilm-forming microorganisms that are difficult to remove and can persist despite terminal processing if cleaning is suboptimal. Evidence from observational and experimental studies shows that inadequately reprocessed surgical instruments and accessories can harbor residual protein, bacteria, and structured biofilms even after multiple cycles of cleaning and steam sterilization, especially when design features hinder access of detergents and sterilant to all surfaces, thereby creating a reservoir for transmission of pathogens during subsequent procedures. These risks are amplified in resource-constrained settings and high-throughput operating theatres where pressure to turn over instrument sets rapidly may lead to shortcuts in manual cleaning, insufficient inspection, or deviation from manufacturer's instructions for use (IFU), all of which undermine the integrity of infection control programs and compromise patient safety. Consequently, infection prevention in surgical practice now extends beyond classical aseptic technique in the operating room to encompass the entire life cycle of complex devices requiring standardized protocols, validated processes, and continuous quality assurance to reliably interrupt microbial transmission pathways (Costa et al., 2018).

Surgical instruments used in contemporary practice represent a heterogeneous group of devices that can be defined as tools or apparatuses, reusable or single-use, designed to diagnose, cut, dissect, grasp, retract, suture, visualize, or deliver energy or implants to tissues, and they increasingly incorporate miniaturized channels, hinges, porous interfaces, and mixed materials that complicate their reprocessing profile. Traditional classification of instruments in infection control has relied on Spaulding's risk-based framework, which categorizes reusable medical devices into critical, semicritical, and noncritical items according to the type of tissue contact: critical instruments penetrate sterile tissues or the vascular system and therefore require meticulous cleaning followed by sterilization; semicritical devices contact mucous membranes or non-intact skin and require at least high-level disinfection, with sterilization preferred; and noncritical items contact only intact skin or the environment and generally require cleaning with or without low-level disinfection. Complex surgical devices, however, do not always fit neatly into simple taxonomic lists based solely on function (e.g., cutting, clamping, retracting, or endoscopic visualization) because features such as long, narrow lumens, multiple joints, potentiated rough surfaces, and sensitive electronics introduce specific reprocessing challenges beyond their nominal Spaulding category, as exemplified by flexible endoscopes, robotic-assisted surgery instruments, and high-complexity orthopedic depth gauges and femoral medullary reamers. Design studies of orthopedic and endoscopic instruments have demonstrated that even when such devices are formally categorized as critical and subjected to validated steam sterilization cycles, design-related barriers may prevent effective soil removal and result in persistent internal contamination, underscoring the need to consider both risk of tissue contact and structural complexity when defining and classifying instruments for infection control purposes (Rowan et al., 2023).

Effective cleaning, disinfection, and sterilization (CDS) of complex surgical devices are pivotal components of infection prevention systems because cleaning removes organic and inorganic soil that can shield microorganisms from biocides, disinfection inactivates most viable pathogens on semicritical surfaces, and sterilization provides the highest level of assurance that no viable microorganisms remain on critical instruments prior to use. Reprocessing failures at any stage of this continuum can result in viable pathogens surviving within lumens, joints, or roughened surfaces and subsequently being introduced into sterile body sites, with epidemiologic investigations linking lapses in instrument cleaning and high-level disinfection to

outbreaks and clusters of SSIs and endoscopy-associated infections in both high-income and low- and middle-income countries. Studies on complex-design reusable surgical instruments and endoscopes show that when cleaning is incomplete, biofilms can form and persist after repeated cycles of manual or automated decontamination and steam sterilization, thereby reducing the efficacy of the terminal process and potentially enabling transmission of multidrug-resistant organisms despite apparent adherence to sterilization parameters, which highlights why cleaning is correctly regarded as the most critical step in CDS. Moreover, high-level disinfection and sterilization technologies are effective only when parameters are optimized and matched to device materials and design, and when supported by robust monitoring systems, staff training, and adequate infrastructure, such that CDS becomes an integrated quality-controlled process rather than a set of isolated technical steps (Ling et al., 2018).

The scope of this review focuses specifically on infection control considerations in the cleaning, disinfection, and sterilization of complex surgical devices, emphasizing devices whose structural or material characteristics pose particular challenges for decontamination and validation of reprocessing. Within this context, the review synthesizes evidence from guidelines, experimental studies, observational data, and design-focused investigations that examine residual soil, bioburden, and biofilm on complex instruments after reprocessing, including orthopedic loaner sets, high-complex-design depth gauges and reamers, flexible and robotic endoscopes, and other minimally invasive surgery devices, as well as analyses from resource-constrained settings where limitations in equipment, water quality, and trained personnel exacerbate reprocessing risks. Despite substantial progress in guideline development and the refinement of Spaulding's classification to better align with emerging device types, important knowledge gaps remain regarding standardized test soils and markers for cleaning efficacy in complex geometries, the real-world impact of residual contamination on SSI risk where sterilization parameters are otherwise validated, optimal workflow design and automation (including robotics) to minimize human error, and the safe, sustainable reprocessing or reuse of nominally single-use complex instruments. Addressing these gaps requires a multidisciplinary approach that integrates infection prevention, device design and regulation, human factors engineering, and health-systems strengthening, and this review aims to highlight current evidence, practical challenges, and research priorities that can inform safer CDS practices for complex surgical devices across diverse healthcare settings (Lopes et al., 2019).

Background and Rationale

Infection control in the era of increasingly sophisticated surgery is critically dependent on safe reprocessing of complex reusable devices, because these instruments interface directly with sterile body sites and can efficiently transmit high-consequence pathogens when cleaning, disinfection, or sterilization steps fail. Numerous outbreak investigations have demonstrated that even when healthcare facilities nominally comply with guidelines, hidden residual bioburden, biofilms, and design-related cleaning limitations in instruments such as flexible endoscopes, laparoscopic tools, and robotic systems can lead to "patient-ready" devices that remain microbiologically contaminated, thereby transforming essential therapeutic technologies into vehicles for healthcare-associated infections (HAIs) and amplifying antimicrobial resistance within hospitals. The global drive toward minimally invasive and image-guided procedures has multiplied the number and complexity of reusable devices in circulation, increasing the workload of central sterile services and heightening the risk that human factors, inadequate infrastructure, and insufficiently validated automated systems will interact with challenging device geometries to produce reprocessing failures with significant clinical and economic consequences (Kenters et al., 2015).

HAIs linked to reusable surgical instruments encompass surgical site infections, bloodstream infections, pneumonias, and urinary tract infections, often caused by multidrug-resistant organisms that exploit lapses in device reprocessing to gain access to susceptible hosts. Outbreaks associated with contaminated flexible endoscopes, duodenoscopes, urological endoscopes, and other thermosensitive instruments have documented transmission of carbapenem-resistant Enterobacteriaceae, *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, and even blood-borne viruses such as hepatitis B, hepatitis C, and HIV, underlining

that inadequate cleaning and high-level disinfection can leave viable bacteria, spores, fungi, and viruses on devices that are subsequently used on large numbers of patients. Epidemiological studies and surveillance reports indicate that endoscope-associated infections and instrument-related surgical site clusters, although often under-recognized due to attribution challenges, contribute measurably to HAIs, increasing length of stay, costs, and mortality, particularly when invasive procedures or immunocompromised hosts are involved and when outbreaks involve highly resistant organisms for which therapeutic options are limited (Dancer et al., 2012).

In hospital settings, the burden of HAIs attributable to reusable devices is magnified by high procedure volumes, rapid instrument turnover, and pressure to minimize downtime, which can compress reprocessing cycles and result in skipped steps, insufficient contact times, or inadequate drying, thereby favoring survival of pathogens and formation of biofilms inside lumens and joints. Multi-center assessments of reprocessed “ready-for-use” gastrointestinal endoscopes have reported unexpectedly high rates of microbial contamination, including the presence of clinically significant bacteria and viruses, suggesting that the true incidence of device-related transmission is likely under-estimated by routine surveillance and that existing quality assurance measures may be insufficient for early detection of reprocessing failures. These observations support the rationale for intensified research, stricter regulatory oversight, robust process validation, and the development of novel technologies and device designs that reduce reprocessing complexity and residual risk, especially in resource-limited settings where infrastructural and staffing constraints further compromise adherence to best practices (Houri et al., 2022).

Complex reusable medical devices can be defined as instruments or systems whose structural features impede direct visual inspection and effective access of cleaning solutions and sterilants, thereby increasing the risk that organic soil and microorganisms persist after standard reprocessing. This category includes flexible gastrointestinal and bronchoscopic endoscopes with multiple internal channels and elevator mechanisms, laparoscopic instruments with slender shafts, insulation layers, and enclosed spaces, and robotic surgery instruments consisting of multi-jointed, cable-driven end effectors and complex housings that cannot be fully disassembled, all of which create “nooks and crannies” where bioburden accumulates and where detergents, disinfectants, and sterilants may not penetrate uniformly (Robertson et al., 2021).

Laparoscopic sets, now widely adopted across general surgery, gynecology, and urology, exemplify how long lumens and tubular components impose requirements for specialized brushes, flushing adapters, and extended exposure times to ensure removal of debris and biofilms, yet in many hospitals only one or few instrument sets are available, forcing rapid turnaround between procedures and constraining the ability of staff to perform meticulous cleaning and inspection. Robotic instruments and advanced hand-held smart tools add further layers of complexity through delicate micro-articulations, embedded sensors, and non-immersible components, which are often heat and moisture sensitive, limit the use of standard steam autoclaves, and require carefully controlled low-temperature sterilization or high-level disinfection cycles that themselves have penetration limits for long, narrow lumens. Flexible endoscopes, especially duodenoscopes and certain urological scopes, have repeatedly been implicated in outbreaks because their elevator channels, angulation mechanisms, and damaged or worn surfaces promote biofilm formation and harbor pathogens despite guideline-concordant manual cleaning and automated endoscope reprocessing, underscoring the intrinsic infection control challenges posed by their design (Alfa & Singh, 2022).

Sterilization science in healthcare has evolved from reliance on simple heat-based methods to sophisticated, validated processes that integrate microbial lethality data, materials compatibility, packaging science, and rigorous monitoring of physical, chemical, and biological indicators to ensure reproducible sterility assurance levels. The development and refinement of pressurized steam autoclaves in the late nineteenth and early twentieth centuries established moist heat as the gold standard for sterilizing heat-stable surgical instruments and textiles; over subsequent decades, improvements in chamber design, air removal (e.g., pre-vacuum systems), and process controls enabled reliable penetration of steam into complex loads, while

regulatory and professional guidelines formalized parameters for temperature, pressure, exposure time, and routine performance verification (Rutala & Weber, 2015).

The emergence of thermosensitive materials, complex devices with internal channels, and electronics drove the introduction of low-temperature sterilization technologies, most notably ethylene oxide gas, which offered excellent penetrability and material compatibility but raised concerns about toxicity, long aeration times, occupational exposure, and environmental impact, stimulating the search for safer alternatives. From the late 1980s onward, hydrogen peroxide gas plasma and other low-temperature systems were developed and commercialized, providing faster cycle times and reduced toxic residues compared with ethylene oxide, although limitations in penetration and packaging compatibility mean that certain long-lumen or highly complex instruments may still require alternative methods, such as low-temperature steam and formaldehyde or carefully controlled ethylene oxide cycles, in order to achieve reliable sterilization. In parallel, the historical shift from exclusively manual cleaning toward standardized mechanical washers and automated endoscope reprocessors has transformed reprocessing workflows, reducing operator variability and improving process consistency but also introducing new dependencies on validated equipment performance, adherence to device-specific instructions for use, and robust quality systems to ensure that automation does not mask underlying design and process deficiencies (Alfa & Singh, 2022).

Principles of Infection Control in Device Reprocessing

Biofilms, residual soil, and microbial contamination represent primary vectors for infection transmission in surgical device reprocessing, where biofilms exhibit multifactorial resistance to cleaning and disinfection, including mechanical quenching of antimicrobials, reduced bacterial metabolism, quorum sensing, persister cells, enzymatic degradation, efflux mechanisms, horizontal gene transfer, and elevated mutation rates, rendering them up to 1,000 times more resistant than planktonic cells and implicated in 65-80% of chronic infections such as catheter-associated urinary tract infections and surgical site infections; residual soil, predominantly proteinaceous with high levels of total organic carbon, hemoglobin, and minor bacterial components, shields microbes during reprocessing cycles, as evidenced by studies showing persistent soil and biofilms on instruments after 20 contamination-reprocessing cycles despite standard manual and automated cleaning, leading to viable pathogens like *Staphylococcus aureus* and *Pseudomonas aeruginosa* surviving high-level disinfection. Cross-contamination risks amplify in operating rooms (ORs) and central sterile supply departments (CSSDs), where contaminated breathing circuits, medication surfaces, and anesthesia equipment harbor clinically significant organisms transferable via direct contact, air splashes, or healthcare worker hands, with 80% of OR instruments showing contamination post-use and cramped CSSD layouts facilitating airborne and contact transmission if clean and unclean areas are not separated, resulting in elevated surgical site infection rates from multidrug-resistant organisms persisting in drains, sinks, and environmental dry surface biofilms (DSBs) that regrow rapidly post-disinfection and transfer pathogens via gloves or wiping (Maillard & Centeleghe, 2023).

The Spaulding classification system categorizes medical devices based on infection risk providing a foundational risk-based framework for reprocessing that ensures sterility assurance levels like 10^{-6} for critical devices via steam, ethylene oxide, or radiation compatible with device materials. Integration with modern reprocessing strategies enhances this hierarchy through automated cleaning/drying systems, real-time monitoring (e.g., adenosine triphosphate bioluminescence for residuals), AI-informed end-to-end processing, and combinational approaches addressing biofilm challenges, such as pre-wetted antimicrobial wipes reducing DSB transfer, peracetic acid formulations overcoming organic loads, and nanotechnology or phytochemicals for eradication, while emphasizing mechanical removal before disinfection/sterilization to achieve 6-log reductions, validated packaging for sterility maintenance, and endoscope-specific protocols including sterile air flushing to prevent regrowth in lumens (McDonnell & Burke, 2011).

Regulatory frameworks from WHO, CDC, AAMI, ISO, and FDA establish comprehensive standards for device reprocessing: WHO emphasizes SSI prevention via hand hygiene, sterile handling, and environmental sanitation; CDC aligns with Spaulding for disinfection tiers; AAMI (e.g., ST67, TIR12)

details sterility assurance, cycle parameters, and labeling for reusable devices; ISO 17664-1:2021 mandates validated cleaning/disinfection/sterilization instructions; FDA requires compatibility with cleared sterilizers and risk-based validation, prohibiting disinfection of implants. Global disparities challenge harmonization, with low- and middle-income countries (LMICs) facing inadequate infrastructure, training, clean water access, and resources leading to higher SSIs from improper reprocessing, unsafe sterilization, multi-dose vial misuse, and poor environmental cleaning, necessitating integrated IPC in global surgery initiatives, modified Delphi processes to prioritize gaps like central line maintenance, and Quintuple Helix collaborations (academia-industry-healthcare-regulators-society) for sustainable solutions amid antimicrobial resistance surges (Garvey, 2023).

Cleaning Phase: The Foundation of Reprocessing

Thorough cleaning represents the critical initial step in reprocessing complex surgical devices, as it removes gross organic and inorganic soils that can compromise subsequent disinfection and sterilization efficacy. Residual organic matter, such as blood, tissue, and bodily fluids adhering to device surfaces or lumens, shields microorganisms from germicides and heat, leading to sterilization failure and heightened risk of healthcare-associated infections (HAIs). Studies demonstrate that even minimal bioburden remnants significantly diminish the sporicidal action of agents like autoclaving, ethylene oxide, or hydrogen peroxide plasma, fostering biofilm formation and bacterial proliferation in hidden crevices of intricate instruments. Comprehensive guidelines emphasize that without effective precleaning, high-level disinfectants and sterilants cannot achieve the necessary log reductions in microbial load, underscoring cleaning as the foundational barrier against patient-to-patient transmission during surgical procedures. Failure to prioritize this phase has been linked to outbreaks, including those involving multidrug-resistant pathogens, where non-compliance or inadequate soil removal perpetuated contamination cycles despite terminal processing (Rutala & Weber, 2016).

Manual cleaning involves initial point-of-use decontamination with enzymatic detergents or neutral pH solutions, followed by brushing accessible surfaces and flushing lumens under running water to prevent soil drying, which complicates removal from complex geometries; this labor-intensive method remains operator-dependent but essential for heavily soiled devices prior to advanced steps. Automated cleaning employs washer-disinfectors that circulate heated detergent solutions through channels via forced flow, offering standardized cycles with superior consistency for high-volume processing, while ultrasonic cleaning leverages cavitation bubbles generated at 40°C to dislodge debris from crevices and narrow lumens, synergizing with multi-enzymatic formulations targeting proteins, fats, and carbohydrates. Enzymatic detergents, particularly alkaline multi-enzyme blends like those with proteases, amylases, and lipases, outperform neutral or single-enzyme options by hydrolyzing organic soils more efficiently, especially when combined with ultrasonics, achieving up to 99% residue reduction compared to manual methods alone; however, compatibility with device materials must guide selection to avoid corrosion or residue buildup. Comparative trials confirm that integrating manual precleaning with automated or ultrasonic phases yields optimal outcomes for laparoscopic and robotic instruments, balancing thoroughness with efficiency in infection control protocols (Li et al., 2025).

Validation of cleaning efficacy mandates multifaceted verification, commencing with visual inspection under magnification or UV light to detect overt residues, augmented by chemical indicators that change color in response to protein or hemoglobin presence, ensuring immediate feedback on process adequacy. Protein residue testing via swab-based assays quantifies organic load below 6.4 $\mu\text{g}/\text{cm}^2$ thresholds per ISO 15883 standards, while ATP bioluminescence provides rapid, real-time microbial contamination assessment through luciferase reaction yielding relative light units (RLUs), correlating strongly with residual bioburden and enabling >95% log reductions post-manual washing. These tools collectively mitigate variability, with ATP assays proving particularly valuable for lumened devices, detecting failures invisible to the eye and guiding remediation before disinfection; integration into routine workflows enhances compliance and

reduces HAI risks by confirming cleanliness across critical points like hinges and channels (Masia et al., 2021).

Challenges in cleaning complex surgical devices stem primarily from narrow lumens (<1 mm), articulated joints, and tortuous geometries that resist brush access and fluid penetration, allowing persistent debris retention even after multi-step protocols, as evidenced by borescope inspections revealing corrosion and soil in every examined instrument. Limitations exacerbate with soil drying, biofilm maturation in moist residues, and MDR pathogen persistence, demanding innovations like AI-driven verification systems that analyze imaging for residue detection with machine learning precision. Technological advances include cleaning robots automating brushless flushing for endoscopes, automated instrument tracking via RFID for traceability, and next-generation ultrasonics with optimized enzymatic cycles at elevated temperatures; emerging AI platforms predict contamination hotspots, while vaporized hydrogen peroxide adjuncts enhance lumen penetration, addressing traditional shortfalls and elevating reprocessing reliability (Wagner et al., 2024).

Disinfection of Complex Devices

Disinfection plays a critical role in managing infection risks associated with complex surgical devices, such as flexible endoscopes and articulated instruments, which feature intricate channels, lumens, and materials that challenge thorough microbial elimination. High-level disinfection (HLD) targets semicritical devices that contact mucous membranes, achieving at least a 6-log reduction in bacterial spores, while intermediate-level disinfection (ILD) eliminates mycobacteria, most viruses, and vegetative bacteria but spares some spores, and low-level disinfection (LLD) suffices for noncritical items contacting intact skin by destroying vegetative bacteria, some viruses, and fungi. These levels follow Spaulding's classification, ensuring cleaning precedes disinfection to remove organic debris that shields microbes, with HLD being essential for complex devices to prevent healthcare-associated infections. Mechanisms of HLD agents involve protein denaturation, lipid disruption, and nucleic acid damage, offering broad-spectrum activity against bacteria, viruses, fungi, mycobacteria, and spores; for instance, aldehydes like glutaraldehyde alkylate proteins, while oxidizers like hydrogen peroxide generate free radicals for cellular destruction. ILD agents, such as iodophors or phenolics, disrupt cell walls and membranes with narrower spectra, and LLD uses alcohols or quaternary ammonium compounds that primarily damage lipid envelopes of vegetative pathogens. Proper selection based on device use and contact time ensures efficacy without compromising device integrity (Rutala et al., 2023).

Key disinfectants for complex surgical devices include ethylene oxide (EtO), a gas sterilant effective against all microbes including spores via alkylation, though its use is declining due to toxicity and long aeration needs; hydrogen peroxide (H₂O₂), available in liquid or plasma forms, excels in oxidizing cellular components with rapid action and minimal residue, ideal for heat-sensitive devices. Peracetic acid (PAA) combines H₂O₂ and acetic acid for potent oxidation, achieving sporicidal effects quickly even in organic loads, while glutaraldehyde (glu) provides reliable HLD through crosslinking proteins but poses respiratory risks and material corrosion over time. Ortho-phthalaldehyde (OPA) offers faster mycobactericidal activity than glu with better stability and lower odor, making it preferred for endoscope reprocessing, though it stains proteins and requires rinsing. Compatibility issues arise with prolonged exposure: EtO may permeate plastics without damage but requires ventilation; H₂O₂ and PAA can degrade certain rubbers and metals if concentrations exceed recommendations; glu corrodes endoscope lenses and channels; OPA is generally material-friendly but can fix proteins to surfaces, complicating cleaning. Manufacturers' guidelines must guide selection to preserve device longevity, with regular integrity testing preventing failures from brittleness or lumen blockages (Hune et al., 2021).

Disinfection failures in complex devices often stem from inadequate cleaning of lumens harboring biofilms, contaminated automated endoscope reprocessors (AERs), or improper storage allowing microbial regrowth, leading to outbreaks like *Pseudomonas aeruginosa* transmissions via inadequately dried duodenoscopes. Risk factors include complex device designs with elevator channels missed during brushing, high bioburden

from insoluble lubricants, and AER malfunctions such as filter failures permitting bacterial ingress from water supplies. Case studies highlight duodenoscope-related carbapenem-resistant Enterobacteriaceae (CRE) outbreaks, where 12 infections including bloodstream cases traced to insufficient manual precleaning and drying deviations; another involved *Mycobacterium chelonae* from AER filtration breakdowns affecting 57 patients. Common errors in scope reprocessing encompass immersion time shortcuts bypassing brush validation, post-disinfectant tap water rinses introducing contaminants, and storage without alcohol flush or forced air drying, fostering rapid proliferation. Non-adherence to protocols, staff training gaps, and ignoring leak tests exacerbate breaches, underscoring the need for standardized auditing to mitigate patient harm (Rodrigues et al., 2021).

Monitoring and quality assurance in disinfection encompass mechanical indicators tracking cycle parameters like temperature, pressure, and time via printouts; chemical indicators (types 1-6) verifying exposure through color changes, with type 5 integrating multiple parameters; and biological indicators (BIs) using spore strips for the gold standard lethality confirmation. For complex devices, process challenge devices (PCDs) simulate lumens during validation, ensuring HLD efficacy against *Geobacillus stearothermophilus* spores. Documentation and traceability involve logging device IDs, cycle details, operator initials, and BI results in electronic systems, enabling rapid recalls during breaches like non-conforming loads. Quarterly AER culturing, daily mechanical checks, and weekly BIs maintain compliance, with integrated air detectors spotting non-condensable gases impairing penetration. Robust systems facilitate outbreak investigations, legal defense, and continuous improvement, aligning with guidelines like APSIC for traceability from patient to process (Rodrigues et al., 2021).

Sterilization Methods and Technologies

Sterilization represents the final and most critical barrier in preventing healthcare-associated infections from complex surgical devices, which often feature intricate lumens, fiber optics, and heat-sensitive materials that challenge conventional processing. Traditional modalities such as steam under pressure, dry heat, hydrogen peroxide gas plasma, electron beam irradiation, and low-temperature hydrogen peroxide systems each offer distinct advantages in achieving a sterility assurance level (SAL) of 10^{-6} , meaning the probability of a single viable microorganism surviving is less than one in a million. Steam sterilization remains the gold standard for heat-tolerant metal instruments due to its rapid microbicidal action via protein denaturation and coagulation at 121–134°C under 15–30 psi for 3–30 minutes, while dry heat at 160–170°C for 1–2 hours oxidizes cellular components but risks damaging plastics. Gas plasma systems, operating below 60°C, generate reactive species like hydroxyl radicals and UV photons to disrupt microbial DNA and membranes without toxic residues, ideal for endoscopes and electronics. Electron beam provides deep penetration for bulk sterilization of single-use devices at doses of 25–40 kGy, and low-temperature methods like vaporized hydrogen peroxide excel for moisture-sensitive items by oxidizing essential cell components in cycles under 60 minutes (Land et al., 2023).

The efficacy of sterilization hinges on precisely controlled parameters that dictate microbial lethality while ensuring device integrity, particularly for complex surgical tools with narrow channels prone to residual bioburden. In steam sterilization, saturated steam at 121°C and 15 psi for 15–30 minutes or 134°C and 30 psi for 3–4 minutes achieves rapid penetration and coagulation of proteins, but excessive humidity can corrode metals or delaminate adhesives. Dry heat relies on conduction at 170°C for 60 minutes, oxidizing lipids and proteins without moisture but potentially embrittling polymers like polycarbonate. Gas plasma mechanisms involve free radicals, UV radiation, and charged particles generated from hydrogen peroxide vapor at 45–55°C and low pressure (1–2 Torr) for 45–75 minutes, penetrating lumens >1 mm but limited by cellulose materials. Critical parameters include concentration (e.g., 6–10 mg/L H₂O₂), gas flow, and vacuum cycles; material compatibility favors metals and silicones but excludes absorbents like paper or linens due to radical quenching. Plastics such as polyethylene terephthalate glycol (PETG) tolerate plasma but degrade under prolonged heat, while fiber optics in laparoscopes demand low-temperature options to prevent delamination or cracking, necessitating manufacturer-validated cycles (George et al., 2024).

Validation ensures sterilization processes consistently deliver SAL 10^{-6} through half-cycle overkill methods using biological indicators (BIs) like *Geobacillus stearothermophilus* spores (10^6 population, $D_{121^\circ\text{C}}=1.5\text{--}2.5$ min), chemical indicators (CIs) for physical parameters, and parametric release for monitored cycles. BIs challenge worst-case scenarios in device-loaded chambers, verified post-exposure via incubation for no growth, confirming >12 -log reduction beyond natural bioburden (typically $10^2\text{--}10^5$ CFU/device). Monitoring integrates physical (temperature, pressure via PCDs), chemical (Class 5 integrators changing at lethality endpoints), and biological controls per load, with weekly BIs for routine steam cycles per ISO 17665 and AAMI ST79. Quality assurance involves process challenge devices simulating complex lumens, annual revalidation, and failure investigations linking excursions to root causes like air entrapment or overloading. For complex devices, rapid-readout BIs (3–24 hours fluorescence) enable same-day release, enhancing throughput while maintaining compliance with FDA and ISO 11138 standards (Sakudo et al., 2019).

Emerging technologies address limitations of legacy methods for heat- and moisture-sensitive complex devices, with ozone sterilization combining gaseous O₃ (85–100 mg/L at 30–40°C, 4–6 logs kill via oxidation) and hydrogen peroxide for broad-spectrum sporicidal action in cycles under 60 minutes, compatible with lumens but requiring synthetic wraps. Supercritical CO₂ (scCO₂) at 7.4–10.3 MPa and 35–40°C with peroxide or peracetic acid permeates tortuous paths via phase fluidity, inactivating via membrane rupture and protein denaturation (SAL 10^{-6} in 2–3 hours), preserving biomaterials like grafts without residues. UV-C (254 nm) excels for surface decontamination via thymine dimerization but penetrates poorly (<0.1 mm), suiting non-lumened tools. AI-driven monitoring integrates sensors, machine learning for real-time anomaly detection (e.g., pressure deviations), and predictive analytics via IoT platforms to forecast failures, reducing SAL variability by 20–30% and enabling parametric release without BIs (Sakudo et al., 2019).

Human Factors and Workflow in Reprocessing

Competency-based training programs for reprocessing personnel in CSSDs emphasize structured education on cleaning, disinfection, and sterilization of complex surgical devices, incorporating initial onboarding, annual refreshers, and hands-on competency assessments to ensure proficiency in handling intricate instruments with lumens, hinges, and mated surfaces that are prone to residual bioburden. Certification programs, such as those aligned with international standards like those from the Asia Pacific Society of Infection Control (APSIC), mandate written tests, observed demonstrations, and ongoing evaluations, with supervisors required to hold recognized qualifications in sterilization technology; these programs integrate multidisciplinary input from infection control experts and cover topics from Spaulding classification to device-specific manufacturer instructions for use (IFUs), fostering a culture of excellence that directly correlates with reduced reprocessing errors and improved patient safety. Action research-driven implementations, like hierarchical training systems built on post-competency models, have demonstrated significant gains in theoretical knowledge (e.g., from 68.10 to 83.30 overall scores) and practical skills (e.g., from 86.43 to 93.53), with satisfaction surging up to 60.5% in session length and 100% in scheduling adherence, through methods like scenario simulations, mind mapping, and fragmented online modules tailored to adult learners' needs in high-volume CSSDs. Policies require all staff to receive training on personal protective equipment (PPE), chemical safety, and traceability systems, with documentation of competencies reviewed annually by infection prevention committees to verify adherence, particularly for complex devices requiring meticulous disassembly and verification of cleanliness via visual inspection, ATP bioluminescence, or protein residue tests (Ling et al., 2018).

Human error in reprocessing complex surgical devices arises from behavioral factors like fatigue during extended shifts, cognitive biases such as overconfidence in routine tasks leading to skipped verification steps, and systemic issues including inadequate staffing in under-resourced CSSDs, resulting in frequent interruptions during packaging (85.7% negative outcomes) or sterilization alarms that prolong cycles and heighten contamination risks. Compliance barriers encompass lapses in following IFUs for lumen irrigation

or enzymatic presoaking, exacerbated by high workloads where operators prioritize speed over thoroughness, as seen in failures to scan items individually (leading to "non-sterilized" flags) or verify exchange slips against systems, contributing to wet packs and traceability gaps that compromise sterility assurance levels (SAL) of 10^{-6} . Healthcare Failure Mode and Effects Analysis (HFMEA) identifies root causes like missing departmental sorting prompts or insufficient cooling (>30 minutes post-unloading), with interventions such as SOP refinements, reward systems, and peak-hour staffing reducing defects from 87 to 11 per $\sim 185,000$ packages ($p < 0.001$); behavioral contributors include low awareness of HAI risks, while cognitive errors manifest in overlooking small-lumen cleaning, mitigated by root cause analysis training and simulation-based reinforcement. Systemic barriers involve policy gaps in single-use device reprocessing oversight and recall procedures, where multidisciplinary committees must enforce audits to counter non-compliance rates that elevate outbreak potential, as evidenced by historical endoscopy breaches from inadequate training (Huang et al., 2025).

Ergonomic optimization in CSSD layout separates decontamination (negative pressure), packing, sterilization, and storage zones with physical barriers to contain aerosols and contaminants, incorporating height-adjustable benches, anti-fatigue mats, and intuitive flow paths that reduce musculoskeletal strain during manual brushing of complex devices, while ensuring 4-10 air changes/hour, $\leq 24^{\circ}\text{C}$, and $\leq 70\%$ humidity to maintain process integrity. Workflow design principles prioritize unidirectional movement from soiled to clean areas, minimizing cross-contamination risks for intricate surgical tools, with FIFO stock rotation and carts featuring bottom barriers to prevent floor contact, audited regularly via environmental swabbing and hand hygiene compliance checks. Automation, such as RFID tracking for instrument identification, automated washers with validated cycles, and robotic packaging, enhances efficiency by reducing manual handling errors (e.g., scanning compliance), cutting turnaround times, and ensuring consistent exposure to sterilants like steam or hydrogen peroxide, though ergonomics-based integration is crucial to avoid new stressors like interface complexity; studies show HFMEA-driven automation yields 93-99% defect reductions in steam sterilization. Layouts accommodate peak loads with flexible scheduling, while positive pressure in clean zones and HEPA-filtered drying cabinets for endoscopes further bolster consistency, aligning with APSIC recommendations for centralized reprocessing compliant with occupational limits on chemical vapors (Ling et al., 2018).

Infection Control Challenges with Specific Device Types

Endoscopes and bronchoscopes pose significant infection control challenges due to their complex designs with narrow, elongated channels that facilitate biofilm formation and persistent microbial contamination even after reprocessing. Biofilms, assemblages of microbial cells embedded in a protective exopolymeric matrix, adhere to internal surfaces and exhibit heightened resistance to high-level disinfectants (HLD) and antibiotics, often surviving manual cleaning, HLD via automated endoscope reprocessors (AERs), or even ethylene oxide (EtO) sterilization if moisture persists during storage. Inadequate drying post-reprocessing exacerbates this by allowing microbial replication in residual moisture, leading to buildup biofilm that shields pathogens like *Pseudomonas aeruginosa*, nontuberculous mycobacteria, and *Staphylococcus* species from eradication, with studies detecting growth in up to 58% of fully reprocessed bronchoscopes. Persistent contamination rates average 8.69% in patient-ready reusable flexible bronchoscopes (RFBs), as revealed by systematic reviews analyzing flush-brush-flush sampling and surveillance cultures exceeding ESGE-ESGENA thresholds (<20 CFU/channel or indicator organisms like *Enterobacteriaceae*). These issues stem from challenges in visualizing and brushing narrow lumens, occult damage like scratches promoting adhesion, and reprocessing lapses such as insufficient precleaning or AER malfunctions, underscoring the need for rigorous manual cleaning with enzymatic detergents, channel purging, and microbiological surveillance to detect early colonization (Kovaleva et al., 2013).

Reprocessing guideline gaps further compound risks, as compliance with multifaceted protocols remains suboptimal despite endorsements by CDC, FDA, ASGE, and ESGE. Outbreak analyses highlight failures even when guidelines are reportedly followed, such as multidrug-resistant *P. aeruginosa* transmissions post-

ERCP or bronchoscopy due to biofilms in undamaged channels or contaminated AERs, with documented pseudo-outbreaks linked to third-party repairs or inadequate valve disassembly. Recent paradigm shifts advocate elevating bronchoscopes to critical device status per Spaulding classification, mandating sterilization (e.g., vaporized hydrogen peroxide or EtO) over HLD, routine ATP bioluminescence or protein residue monitoring, and quarantine until negative cultures, as non-adherence contributes to exogenous infections in vulnerable ICU patients. Enhanced training, quality systems audits, and supplemental measures like repeat HLD or culturing have reduced non-compliance in some units, but persistent gaps in drying and surveillance necessitate single-use alternatives where feasible to eliminate cross-contamination risks (Kovaleva et al., 2013).

Robotic and minimally invasive surgical instruments present unique disassembly and cleaning limitations owing to their intricate, non-detachable components like thin wires, articulated joints, and sealed housings that trap bioburden and resist penetration by cleaners or sterilants. These devices, used in laparoscopic or da Vinci systems, often feature cable-driven mechanisms drawing contaminants deep into shafts during actuation, complicating manual brushing and flushing, with studies showing microbial persistence post-HLD due to inaccessible crevices and material incompatibilities with aggressive detergents. Validation of sterilization cycles is challenged by complex geometries requiring low-temperature methods like hydrogen peroxide gas plasma or peracetic acid, yet efficacy varies with load configuration, cycle parameters, and biological indicators, demanding manufacturer-specific protocols and rigorous biological challenge testing to achieve a 6-log spore reduction. Instrument tracking systems are essential for traceability, integrating RFID or barcoding to monitor reprocessing history, prevent use of incompletely processed tools, and facilitate outbreak investigations, as lapses have led to surgical site infections from residual pathogens. Addressing these demands automated systems with ultrasound-assisted cleaning or robotic grippers, alongside standardized nomenclature and SPD-OR coordination to minimize defects and delays (Alfred et al., 2021).

Dental and ophthalmic devices introduce cross-infection hazards through frequent mucosal contact and unique sterilization challenges, as their delicate, heat-sensitive materials like optics and fine tips preclude steam autoclaving, relying instead on chemical HLD or low-temperature plasma that may fail against prions, mycobacteria, or viruses if precleaning is inadequate. In dentistry, handpieces and endodontic files harbor biofilms in internal turbines and narrow canals, with cross-contamination risks amplified by high patient throughput and lapses in biological indicator verification, prompting weekly spore testing per ADA, OSAP, and WHO guidelines. Ophthalmic tools like A-scan probes, gonioscopy lenses, and tonometers, classified as semicritical, demand HLD to eliminate non-lipid viruses and fungi, yet regulatory scrutiny highlights inconsistencies in outpatient protocols, with in vitro studies showing viral persistence absent friction-enhanced rinsing or antimicrobial coatings. Emerging technologies such as vaporized hydrogen peroxide and UV ozone offer material-friendly alternatives, but failures from staff training deficits, poor maintenance, and residue interpretation underscore needs for rigorous precleaning, dedicated storage, and verification to prevent iatrogenic transmissions (Bonsignore et al., 2011).

Orthopedic and implantable device interfaces exhibit material-related sterilization resistance, particularly polymers like UHMWPE and PEEK in joint prostheses, which degrade under gamma irradiation or EtO, generating oxidative damage, radicals, or swelling that compromise biomechanics and osseointegration. Pre-cleaning requirements are stringent to remove bacterial debris (e.g., LPS), manufacturing residues, and proteins that inhibit implant-host integration if residual post-autoclaving, with rigorous enzymatic washing achieving >99.9% contaminant reduction and enhancing pullout strength in murine models. Aseptic handling considerations include terminal sterilization validation, fresh gloved manipulation to avert intraoperative recontamination, and shielding techniques, as bioburden from reprocessing or theater exposure elevates surgical site infection risks. Degradable scaffolds demand porosity-preserving methods to maintain surgical deployability, avoiding ethanol-UV combos inadequate for SAL 10⁻⁶, while multidisciplinary guidelines emphasize early sterility integration in design (Herczeg & Song, 2022).

Innovations and Future Directions

The integration of digital technologies such as the Internet of Things (IoT), Radio Frequency Identification (RFID) tracking, and artificial intelligence (AI) for quality monitoring represents a transformative shift in the reprocessing of complex surgical devices, enabling real-time traceability, automated data collection, and predictive analytics to enhance infection control efficacy. RFID tags attached to surgical instruments facilitate individual management and validation of cleaning processes, with studies demonstrating that washer-disinfectors achieve residual protein levels below 100 μ g when properly used, significantly reducing secondary infection risks from overlooked contamination in intricate devices like endoscopes or orthopedic tools. IoT-enabled systems extend this by connecting reprocessing equipment to centralized networks, allowing continuous monitoring of parameters like temperature, cycle completion, and compliance with guidelines, while AI algorithms analyze vast datasets from these sensors to detect anomalies in cleaning efficacy, predict equipment failures, and optimize workflows, thereby minimizing human error in high-volume sterile processing departments (DSCs). For instance, RFID systems have been deployed intraoperatively to track instrument use, achieving near-perfect agreement (Cohen's Kappa 0.81) with manual observations and enabling up to 50.8% reduction in tray supplies without compromising safety, which indirectly supports reprocessing by reducing overload on sterilization cycles. These innovations address longstanding challenges in complex devices with lumens or mated surfaces, where manual verification often fails, by providing quantifiable assurance through digital logs that comply with WHO infection prevention standards and facilitate audits. Future IoT-AI hybrids could incorporate machine learning to forecast bioburden based on usage patterns, dynamically adjusting disinfection protocols for devices like laparoscopic tools, ultimately curbing healthcare-associated infections (HAIs) linked to inadequate reprocessing (Yamashita et al., 2013).

Automation and robotic-assisted reprocessing emerge as pivotal advancements, standardizing the handling of fragile, precision surgical instruments that are prone to reprocessing errors due to their intricate designs and high turnover rates. Robotic systems, such as the Franka Emika Panda integrated with endoscope washer-disinfectors (EWDS), automate transfer from cleaning to storage, ensuring consistent force thresholds and eliminating human variability, with hygiene controls confirming no abnormalities in routine use. This is particularly beneficial for complex devices in minimally invasive surgery, where manual brushing misses residues in narrow channels; automated systems achieve higher cleaning verification rates, reducing rewash incidences and extending instrument lifespan while aligning with APSIC guidelines for centralized reprocessing and competency-based training. AI-enhanced automation further refines this by incorporating quality control modules in DSCs, boosting sterilization qualification to 100% and slashing handover errors, which collectively lower HAI transmission risks from pathogens like those in surgical site infections (SSIs). Pilot integrations have shown robotic pathways improve workflow efficiency, from reprocessing to delivery, potentially scalable to full certification of cycles for devices like gastrointestinal endoscopes, where high-level disinfection remains contentious. As precision medicine proliferates devices with nanoscale features, robotic precision will mitigate fragility issues, with future directions including collaborative robot arms for multi-device parallel processing, fostering sustainable, error-free sterilization in resource-constrained settings (Xiong et al., 2025).

Nanomaterials and biocompatible coatings herald a paradigm of self-disinfecting surfaces, fundamentally altering infection control by embedding antimicrobial properties directly into surgical devices to supplement traditional cleaning, disinfection, and sterilization. Silver nanoparticles (AgNPs), zinc oxide (ZnO) nanorods, and 2D nanomaterials like graphene oxide composites exhibit broad-spectrum bactericidal effects against pathogens such as *E. coli*, *S. aureus*, *P. aeruginosa*, and *S. epidermidis* through oxidative stress, ion release, and hydrophobicity modulation, reducing biofilm formation on implants and reusable tools. These coatings maintain stability over extended periods (e.g., 7 days for ZnO), promote osteoblast adhesion for biocompatibility, and show promise for orthopedic and endoluminal devices, where residual contaminants persist post-reprocessing. Layer-by-layer assemblies enhance surface roughness to deter adhesion while leaching minimal ions, positioning them as adjuncts for HAIs prevention without altering

device functionality. Challenges like toxicity necessitate rigorous biocompatibility testing, but their integration could evolve reusables into "self-sterilizing" hybrids, decreasing reliance on harsh chemical disinfectants and supporting greener protocols. Ongoing research explores hybrid nanocomposites for lumened devices, where coatings target internal surfaces vulnerable to microbial harbors, paving the way for next-generation tools that inherently resist contamination during storage or transport (Sahoo et al., 2022).

Shifting trends toward single-use devices (SUDs) versus sustainable reusables underscore a tension between infection prevention and environmental imperatives, with evidence indicating properly reprocessed reusables pose no elevated SSI risk (0.5-3% incidence) compared to SUDs, challenging the default SUD paradigm. SUDs eliminate cross-contamination worries but generate substantial waste, prompting transitions like reusable trocars yielding \$275,000 annual savings, while reusables cut carbon footprints when sterilization adheres to validated protocols. Innovations like RFID-optimized trays bolster reusables by refining supply, reducing processing burdens, and ensuring traceability, aligning with lean methodologies for cost-effective infection control. Future directions favor hybrid models: advanced reusables with nanomaterial coatings or AI-monitored cycles for sustainability, versus selective SUDs for ultra-complex, high-risk devices like certain endoscopes. Regulatory pushes for lifecycle assessments and WHO-aligned IPC programs will likely prioritize reusables with digital verification, balancing HAI mitigation (via rigorous reprocessing) against planetary health amid rising minimally invasive procedures. This evolution promises resilient systems, integrating digital, automated, and material innovations for holistic infection control in complex surgical device management (Hill et al., 2022).

Conclusion

Effective reprocessing of complex surgical devices through meticulous cleaning, disinfection, and sterilization remains essential to preventing healthcare-associated infections, as emphasized throughout the document which highlights persistent challenges like biofilms in intricate lumens, human factors in high-volume settings, and resource constraints in low- and middle-income countries that amplify risks from multidrug-resistant pathogens. Adherence to Spaulding classification, validated protocols, and manufacturer instructions ensures sterility assurance levels of 10^{-6} , with cleaning as the foundational step removing soil that shields microbes from subsequent processes. Innovations such as AI-driven monitoring, RFID traceability, robotic automation, and self-disinfecting coatings offer promising solutions to reduce errors, enhance workflow efficiency, and balance safety with sustainability via hybrid reusable-single-use models. Moving forward, multidisciplinary efforts must address knowledge gaps in validation, workflow optimization, and emerging technologies to prioritize evidence-based practices that enhance patient safety across diverse global healthcare settings.

References

1. Alfa, M. J., & Singh, H. (2022). Contaminated flexible endoscopes: Review of impact of channel sampling methods on culture results and recommendations for root-cause analysis. *Infection Control & Hospital Epidemiology*, 43(5), 623–638. <https://doi.org/10.1017/ice.2021.128>
2. Alfred, M., Catchpole, K., Huffer, E., Fredendall, L., & Taaffe, K. M. (2021). Work systems analysis of sterile processing: Assembly. *BMJ Quality & Safety*, 30(4), 271–282. <https://doi.org/10.1136/bmjqqs-2019-010740>
3. Bonsignore, L. A., Colbrunn, R. W., Tatro, J. M., Messerschmitt, P. J., Hernandez, C. J., Goldberg, V. M., Stewart, M. C., & Greenfield, E. M. (2011). Surface Contaminants Inhibit Osseointegration in a Novel Murine Model. *Bone*, 49(5), 923–930. <https://doi.org/10.1016/j.bone.2011.07.013>
4. Costa, D. de M., Lopes, L. K. de O., Vickery, K., Watanabe, E., Vasconcelos, L. S. N. de O. L., de Paula, M. C., Melo, D. S., Hu, H., Deva, A. K., & Tipple, A. F. V. (2018). Reprocessing safety issues associated with complex-design orthopaedic loaned surgical instruments and implants. *Injury*, 49(11), 2005–2012. <https://doi.org/10.1016/j.injury.2018.09.006>

5. Dancer, S. J., Stewart, M., Coulombe, C., Gregori, A., & Virdi, M. (2012). Surgical site infections linked to contaminated surgical instruments. *Journal of Hospital Infection*, 81(4), 231–238. <https://doi.org/10.1016/j.jhin.2012.04.023>
6. Garvey, M. (2023). Medical Device-Associated Healthcare Infections: Sterilization and the Potential of Novel Biological Approaches to Ensure Patient Safety. *International Journal of Molecular Sciences*, 25(1), 201. <https://doi.org/10.3390/ijms25010201>
7. George, R. E., Bay, C. C., Shaffrey, E. C., Wirth, P. J., & Rao, V. K. (2024). A Day in the Life of a Surgical Instrument: The Cycle of Sterilization. *Annals of Surgery Open*, 5(1), e381. <https://doi.org/10.1097/AS9.0000000000000381>
8. Herczeg, C. K., & Song, J. (2022). Sterilization of Polymeric Implants: Challenges and Opportunities. *ACS Applied Bio Materials*, 5(11), 5077–5088. <https://doi.org/10.1021/acsabm.2c00793>
9. Hill, I., Olivere, L., Helmkamp, J., Le, E., Hill, W., Wahlstedt, J., Khoury, P., Gloria, J., Richard, M. J., Rosenberger, L. H., & Codd, P. J. (2022). Measuring intraoperative surgical instrument use with radio-frequency identification. *JAMIA Open*, 5(1), ooac003. <https://doi.org/10.1093/jamiaopen/ooac003>
10. Houri, H., Aghdaei, H. A., Firuzabadi, S., Khorsand, B., Soltanpoor, F., Rafieepoor, M., Tanhaei, M., Soleymani, G., Azimirad, M., Sadeghi, A., Ebrahimi Daryani, N., Zamani, F., Talaei, R., Yadegar, A., Mohebi, S. R., Sherkat, G., Hagh Azalli, M., Malekpour, H., Hemmasi, G., & Zali, M. R. (2022). High Prevalence Rate of Microbial Contamination in Patient-Ready Gastrointestinal Endoscopes in Tehran, Iran: An Alarming Sign for the Occurrence of Severe Outbreaks. *Microbiology Spectrum*, 10(5), e01897-22. <https://doi.org/10.1128/spectrum.01897-22>
11. Huang, J., Yi, L., Wu, K., Chen, Y., Hu, R., Pan, W., Hu, T., & Jiang, S. (2025). Situations and demands of central sterile supply department training on nursing interruptions. *BMC Health Services Research*, 25, 38. <https://doi.org/10.1186/s12913-024-12190-7>
12. Hune, S. R., DiGeorge Foushee, A.-M., Ervin, M. C., Anderson, S. J., Ervin, M. D., & Mallory, A. M. (2021). An Analysis of the Effectiveness of High-level Disinfection for Surgical Instruments Used by Department of Defense Austere Surgical Teams. *Military Medicine*, 186(Supplement_1), 122–128. <https://doi.org/10.1093/milmed/usaa440>
13. Kenters, N., Huijskens, E. G. W., Meier, C., & Voss, A. (2015). Infectious diseases linked to cross-contamination of flexible endoscopes. *Endoscopy International Open*, 3(4), E259–E265. <https://doi.org/10.1055/s-0034-1392099>
14. Kovaleva, J., Peters, F. T. M., van der Mei, H. C., & Degener, J. E. (2013). Transmission of Infection by Flexible Gastrointestinal Endoscopy and Bronchoscopy. *Clinical Microbiology Reviews*, 26(2), 231–254. <https://doi.org/10.1128/CMR.00085-12>
15. Land, V., Dickerson, S., Goldman, A., & Shirley, E. D. (2023). The Surgical Instrument Sterilization Process: What Every Surgeon Should Know. *JBJS Reviews*, 11(11), e23.00131. <https://doi.org/10.2106/JBJS.RVW.23.00131>
16. Li, J., Gao, S., Zhang, S., Geng, L., Zhao, Y., Zhang, T., Zhang, L., Li, H., Sun, Y., & Wan, J. (2025). Comparative efficacy of decontamination methods for laparoscopic equipment: A systematic review and meta-analysis. *Frontiers in Cellular and Infection Microbiology*, 15, 1591478. <https://doi.org/10.3389/fcimb.2025.1591478>
17. Ling, M. L., Ching, P., Widitaputra, A., Stewart, A., Sirijindadirat, N., & Thu, L. T. A. (2018). APSIC guidelines for disinfection and sterilization of instruments in health care facilities. *Antimicrobial Resistance and Infection Control*, 7, 25. <https://doi.org/10.1186/s13756-018-0308-2>
18. Lopes, L. K. O., Costa, D. M., Tipple, A. F. V., Watanabe, E., Castillo, R. B., Hu, H., Deva, A. K., & Vickery, K. (2019). Complex design of surgical instruments as barrier for cleaning effectiveness, favouring biofilm formation. *The Journal of Hospital Infection*, 103(1), e53–e60. <https://doi.org/10.1016/j.jhin.2018.11.001>
19. Maillard, J.-Y., & Centeleghe, I. (2023). How biofilm changes our understanding of cleaning and disinfection. *Antimicrobial Resistance and Infection Control*, 12, 95. <https://doi.org/10.1186/s13756-023-01290-4>

20. Masia, M. D., Dettori, M., Deriu, G. M., Bellu, S., Arcadu, L., Azara, A., Piana, A., Palmieri, A., Arghittu, A., & Castiglia, P. (2021). ATP Bioluminescence for Assessing the Efficacy of the Manual Cleaning Procedure during the Reprocessing of Reusable Surgical Instruments. *Healthcare*, 9(3), 352. <https://doi.org/10.3390/healthcare9030352>
21. McDonnell, G., & Burke, P. (2011). Disinfection: Is it time to reconsider Spaulding? *The Journal of Hospital Infection*, 78(3), 163–170. <https://doi.org/10.1016/j.jhin.2011.05.002>
22. Robertson, D., Gnanaraj, J., Wauben, L., Huijs, J., Samuel, V. M., Dankelman, J., & Horeman-Franse, T. (2021). Assessment of laparoscopic instrument reprocessing in rural India: A mixed methods study. *Antimicrobial Resistance and Infection Control*, 10, 109. <https://doi.org/10.1186/s13756-021-00976-x>
23. Rodrigues, S. B., de Souza, R. Q., Graziano, K. U., Erzinger, G. S., & Souza, O. (2021). Performance evaluation of chemical, biological and physical indicators in the process of sterilization under the effect of non-condensable gases. *The Journal of Hospital Infection*, 108, 1–6. <https://doi.org/10.1016/j.jhin.2020.11.005>
24. Rowan, N. J., Kremer, T., & McDonnell, G. (2023). A review of Spaulding's classification system for effective cleaning, disinfection and sterilization of reusable medical devices: Viewed through a modern-day lens that will inform and enable future sustainability. *The Science of the Total Environment*, 878, 162976. <https://doi.org/10.1016/j.scitotenv.2023.162976>
25. Rutala, W. A., Boyce, J. M., & Weber, D. J. (2023). Disinfection, sterilization and antisepsis: An overview. *American Journal of Infection Control*, 51(11S), A3–A12. <https://doi.org/10.1016/j.ajic.2023.01.001>
26. Rutala, W. A., & Weber, D. J. (2015). Disinfection, Sterilization, and Control of Hospital Waste. *Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases*, 3294-3309.e4. <https://doi.org/10.1016/B978-1-4557-4801-3.00301-5>
27. Rutala, W. A., & Weber, D. J. (2016). Disinfection and Sterilization in Health Care Facilities. *Infectious Disease Clinics of North America*, 30(3), 609–637. <https://doi.org/10.1016/j.idc.2016.04.002>
28. Sahoo, J., Sarkhel, S., Mukherjee, N., & Jaiswal, A. (2022). Nanomaterial-Based Antimicrobial Coating for Biomedical Implants: New Age Solution for Biofilm-Associated Infections. *ACS Omega*, 7(50), 45962–45980. <https://doi.org/10.1021/acsomega.2c06211>
29. Sakudo, A., Yagyu, Y., & Onodera, T. (2019). Disinfection and Sterilization Using Plasma Technology: Fundamentals and Future Perspectives for Biological Applications. *International Journal of Molecular Sciences*, 20(20), 5216. <https://doi.org/10.3390/ijms20205216>
30. Wagner, L., Jourdan, S., Mayer, L., Müller, C., Bernhard, L., Kolb, S., Harb, F., Jell, A., Berlet, M., Feussner, H., Buxmann, P., Knoll, A., & Wilhelm, D. (2024). Robotic scrub nurse to anticipate surgical instruments based on real-time laparoscopic video analysis. *Communications Medicine*, 4, 156. <https://doi.org/10.1038/s43856-024-00581-0>
31. Xiong, J., Jiang, W., Wan, W., Zuo, L., Tu, P., & Rao, D. X. (2025). Improving precision instrument cleaning with a quality control module: Implementation and outcomes. *Frontiers in Public Health*, 13, 1553113. <https://doi.org/10.3389/fpubh.2025.1553113>
32. Yamashita, K., Kusuda, K., Tokuda, Y., Onishi, A., Tanaka, K., Shimizu, M., Kanda, R., Honda, H., Komino, M., Iwakami, Y., Ohta, Y., & Okubo, T. (2013). Validation of cleaning evaluation of surgical instruments with RFID tags attached based on cleaning appraisal judgment guidelines. *Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference*, 2013, 926–929. <https://doi.org/10.1109/EMBC.2013.6609653>