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Abstract 

 

Background: Fatigue among healthcare workers is a well-documented contributor to medical errors, 

compromising patient safety and clinical outcomes. Conventional mitigation strategies, including duty-

hour restrictions and self-reported fatigue assessments, remain limited in their ability to provide timely, 

objective detection of fatigue in real-world practice. 

Objective: This study aimed to evaluate the effectiveness of wearable biometric sensors in detecting 

fatigue among healthcare workers and to examine their association with medical error incidence. 

Methods: A prospective cohort design was conducted in two tertiary hospitals involving 120 healthcare 

workers, divided into a biometric monitoring group and a control group. Participants in the intervention 

arm wore multimodal devices measuring heart rate variability, skin conductance, actigraphy, and 

cognitive reaction time during clinical shifts. Fatigue episodes were defined using physiological 

thresholds and cross-validated against self-reported sleepiness scales. Medical errors were recorded via 

electronic health records, incident reporting systems, and observer logs. Statistical analysis incorporated 

descriptive comparisons, machine learning models, and regression testing. 

Results: The wearable monitoring system demonstrated high predictive accuracy for fatigue detection 

(LSTM AUC = 0.91, sensitivity = 88.1%). The biometric group reported 51% fewer documented 

medical errors compared to controls, with the most significant improvements observed in medication 

safety and charting accuracy. Night-shift nurses exhibited the highest rates of fatigue and error reduction 

following biometric alerts. 

Conclusion: Wearable fatigue monitoring offers a robust and scalable tool for early identification of 

fatigue and prevention of medical errors. Its integration into hospital safety systems could strengthen 

workforce resilience and improve patient care quality. 

 

Introduction  

Fatigue among healthcare workers has emerged as a significant occupational hazard with direct 

implications for patient safety, staff well-being, and health system performance. Long working hours, 

high patient loads, emotional demands, and rotating shifts create an environment in which fatigue 
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becomes almost inevitable.[1] The World Health Organization and other global health bodies have 

repeatedly emphasized that provider fatigue is not merely a personal health issue but a systemic risk 

factor that compromises care delivery. Unlike ordinary tiredness, clinical fatigue in healthcare 

professionals encompasses physical exhaustion, reduced psychomotor coordination, and impaired 

cognitive processing. These manifestations increase the likelihood of delayed decision-making, 

inaccurate documentation, medication errors, and procedural mistakes.[2] 

The scale of the problem is evident in multiple large-scale studies. For example, reports from the United 

States and Europe estimate that nearly 40–60% of physicians and nurses experience moderate to severe 

fatigue during routine shifts, with higher prevalence during overnight or extended duty periods. In 

intensive care units, emergency departments, and surgical theaters—settings where precision and rapid 

decisions are critical—fatigue has been shown to escalate the incidence of adverse events. Moreover, 

healthcare fatigue is not confined to acute clinical situations; it extends to reduced empathy, increased 

absenteeism, and workforce attrition, thereby affecting both patient outcomes and institutional 

efficiency.[3,4] 

The significance of this issue is amplified by the fact that patient harm due to preventable medical errors 

remains one of the leading causes of morbidity and mortality worldwide. Studies have equated the 

annual toll of medical errors to the equivalent of a major public health epidemic. Fatigue-induced lapses 

are particularly concerning because they are both highly prevalent and, in theory, preventable. This 

duality highlights fatigue as a critical leverage point for intervention within patient safety frameworks. 

Addressing it effectively requires approaches that move beyond traditional self-regulation to objective, 

real-time detection strategies that can alert individuals and institutions before errors occur.[5] 

 

Link Between Fatigue, Cognitive Decline, and Medical Errors  

In both laboratory and clinical settings, the link between fatigue and cognitive decline has been well-

established.  Attention, memory, problem-solving, and executive function are just a few of the cognitive 

domains that are impacted by fatigue.  The prefrontal cortex and thalamic pathways are disrupted by 

sleep deprivation and circadian misalignment, which results in slower reaction times, less attentiveness, 

and a higher risk of cognitive errors.  These impairments are similar to those caused by alcohol 

intoxication; for instance, it has been demonstrated that 20 hours of continuous awake time impairs 

performance to an extent equivalent to a blood alcohol content of 0.10%, which is higher than the legal 

driving limits in the majority of jurisdictions.[6,7] 

The effects of fatigue-induced cognitive decline are especially severe in the healthcare industry.  A tired 

nurse might not notice a vital sign abnormality, miscalculate a medication dosage, or fail to recognise 

a patient's decline.  Similar to this, a tired anaesthesiologist or surgeon may lose focus and cause 

problems during the procedure.  Additionally, fatigue impairs teamwork and situational awareness, two 

qualities that are essential in high-reliability institutions like hospitals.  The likelihood of exacerbated 

communication breakdowns and coordination breakdowns rises significantly when team members are 

fatigued at the same time.[8] 

These connections are supported by empirical data.  According to studies, residents on extended shifts 

make a lot more diagnostic mistakes than those on set schedules.  Similarly, nurses who report high 

levels of fatigue have been linked to lower patient safety ratings, medication errors, and an increase in 

patient falls.  In addition to impairing clinical task accuracy, fatigue also makes it harder to adjust to 

unforeseen circumstances, which is frequently necessary in dynamic care settings.  Crucially, fatigue-

induced cognitive decline occurs gradually, making it challenging for people to identify their own 

compromised state.  The issue is made worse by this self-unawareness since clinicians may continue to 

carry out crucial tasks while underestimating the degree of their impaired ability.[9] 

 

Problem Statement 

 Even though fatigue is acknowledged as a significant contributing factor to medical errors, current 

methods fall short in providing accurate, real-time detection.  The effectiveness of wearable biometric 

monitoring in clinical settings is not well supported by data, which hinders the creation of preventative 

safety measures.  By assessing how well wearable sensors predict fatigue and stop fatigue-related 

medical errors in healthcare settings, this study aims to close that gap. 

 

2.3 Study Objectives and Hypotheses 
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Aim: 

To assess the accuracy and practical utility of wearable sensor–based biometric monitoring for detecting 

healthcare worker fatigue and its potential role in reducing medical errors. 

 

Hypotheses: 

• H1: Wearable biometric monitoring predicts healthcare worker fatigue more reliably than self-

reported measures. 

• H2: Early detection of fatigue through biometric monitoring reduces the incidence of medical 

errors in clinical practice. 

 

Methodology 

 

3.1 Study Design 

The accuracy of wearable biometric sensors in identifying healthcare worker fatigue and its relationship 

to the frequency of medical errors were assessed in this study using a prospective cohort experimental 

design.  Two parallel arms were included in the design: a control group that relied on conventional self-

reported fatigue assessments, and a biometric monitoring group that was outfitted with wearable 

sensors.  Over the course of four weeks, participants were observed in their real clinical work setting.  

The temporal association between medical errors and fatigue episodes was made possible by this real-

world design, which also supported ecological validity. 

3.2 Setting and Participants 

The study was conducted in two large tertiary hospitals located in urban centers, each with a capacity 

of over 300 beds and providing 24/7 emergency, surgical, and ICU services.[10] 

Inclusion criteria: 

• Licensed healthcare workers (nurses, physicians, allied health staff). 

• Aged between 24 and 55 years. 

• Working rotating or night shifts for at least 3 months prior to the study. 

• Provided informed written consent. 

Exclusion criteria: 

• Diagnosed sleep disorders (e.g., narcolepsy, insomnia). 

• Use of stimulants or sedatives within the previous 7 days. 

• Neurological or psychiatric disorders affecting cognition. 

• Pregnancy (due to altered physiological baselines). 

A total of 120 participants were enrolled and stratified into two matched groups (60 each) based on shift 

type, department, and baseline fatigue score (assessed via the Karolinska Sleepiness Scale [KSS]). 

 

 Table 1. Participant Demographics and Baseline Characteristics 

Variable Biometric Group (n=60) Control Group (n=60) p-value 

Mean Age (years) 34.5 ± 6.2 35.1 ± 5.9 0.61 

Gender (F/M) 38 / 22 40 / 20 0.68 

Profession (Nurse/Physician) 45 / 15 46 / 14 0.84 

Mean Weekly Work Hours 54.3 ± 8.7 55.1 ± 9.2 0.55 

KSS Baseline Score (0–9) 4.8 ± 1.3 5.0 ± 1.4 0.47 
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Figure 2. Participant Flow Diagram 

 

3.3 Wearable Sensors and Biometric Measures 

Participants in the biometric group wore a multi-sensor monitoring suite during their entire work shifts 

for four consecutive weeks. Devices were selected based on prior clinical validation and included: 

• EEG Headband (e.g., Muse S): for real-time assessment of cognitive alertness via alpha and 

theta wave monitoring. 

• Wrist-worn HRV Monitor (e.g., Polar H10): to measure heart rate variability (HRV) as a 

proxy for autonomic fatigue. 

• Actigraphy Sensor (e.g., ActiGraph GT9X): for movement tracking and micro-sleep detection. 

• Skin Conductance Sensor (e.g., Empatica E4): for measuring electrodermal activity (EDA) 

linked to stress and fatigue. 

Key biometric indicators included: 

• HRV (ms): Lower values indicate reduced parasympathetic activity. 

• Skin Conductance Level (µS): Elevated levels indicate stress or arousal. 

• EEG Alpha-Theta Ratio: Lower ratios suggest drowsiness. 

• Reaction Time (ms): Measured via a custom app (data based on PVT test). 

• Postural Sway (RMS mm): Indicates neuromotor instability under fatigue. 

 

Thresholds for fatigue state classification were based on evidence from prior studies and vendor 

calibrations (e.g., HRV < 45 ms, EEG alpha-theta ratio < 1.5, reaction time > 300 ms). 
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Figure 3. Wearable Sensor Setup and Data Streams 

 

3.4 Data Collection Procedure 

Each participant in the biometric group was monitored for 8-hour shifts (day or night), five times per 

week for 4 weeks (totaling 20 shifts per person). 

• Devices synchronized using Bluetooth Low Energy (BLE) and uploaded encrypted data to a 

cloud-based analytic platform. 

• Contextual variables were recorded via mobile app: shift timing, subjective workload (NASA-

TLX scale), and caffeine intake.[11] 

• Self-reported fatigue ratings were also recorded every 2 hours using the Karolinska Sleepiness 

Scale (0 = very alert, 9 = very sleepy). 

For the control group, only self-reported fatigue assessments and performance logs were recorded using 

identical time intervals and survey tools, but no wearable data was collected. 

All biometric data were time-stamped and synchronized with the hospital's digital clock and staff 

schedules. Preprocessing included signal noise reduction, artifact removal (e.g., motion artifacts in 

EEG), and normalization across devices. 

3.5 Medical Error Recording 

Medical errors were recorded from three convergent sources: 

1. Electronic Health Record (EHR) Reports – medication timing deviations, missed charting, 

abnormal lab ordering. 

2. Hospital Incident Reporting System – formal error submissions logged by supervisors or 

safety officers. 

3. Direct Observer Logs – trained clinical observers using validated checklists for procedural 

adherence and documentation errors during selected shifts. 

Each error was classified according to the National Coordinating Council for Medication Error 

Reporting and Prevention (NCC MERP) taxonomy. 

 

Table 2. Distribution of Medical Errors by Type and Group 

Error Type Biometric Group (n=60) Control Group (n=60) 

Medication Dose Omission 8 16 

Delayed Charting 10 19 

Vital Sign Oversight 4 9 
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Wrong Patient Labeling 2 5 

Total Errors (per group) 24 49 

Mean Errors per Participant 0.4 0.82 

 

3.6 Ethical Considerations 

Ethical approval was obtained from the Institutional Review Boards (IRBs) of both participating 

hospitals (Approval IDs: HSRP-2025-113A and MEDSAFE-2025-078B). All participants provided 

written informed consent and were briefed on the study objectives, procedures, risks, and the voluntary 

nature of participation. 

Data confidentiality was ensured via end-to-end encryption and secure data storage on password-

protected servers. Participants could withdraw at any time without consequence to employment or 

evaluation. Biometric data were anonymized prior to analysis using participant IDs and were not shared 

with clinical supervisors or administrators to protect against surveillance bias. 

Sample Python Code Snippet: Fatigue Detection Using Random Forest 

 

3.7.3 Regression Analysis: Linking Fatigue to Medical Errors 

A multivariate logistic regression model was used to estimate the odds of committing a medical error 

during fatigue episodes (KSS ≥ 7 or model-predicted fatigue).[13] 

Model Covariates: 

• Shift type (day/night) 

• Profession 

• Biometric fatigue score 

• Self-reported fatigue 

• Workload index 

Results: 

• Biometric-predicted fatigue (OR = 2.75; 95% CI: 1.65–4.59; p < 0.001) 

• Self-reported fatigue (OR = 1.32; 95% CI: 0.89–1.99; p = 0.11) 

• Night shift (OR = 1.88; p = 0.045) 

→ Biometric fatigue was a significantly stronger predictor of errors than self-report. 

3.7.4 Mediation Analysis 

Using PROCESS Macro in SPSS, a mediation model evaluated whether biometric fatigue indirectly 

increased medical errors through impaired alertness (reaction time as mediator). 

Bootstrapped Indirect Effect: 

• Path: Biometric Fatigue → Reaction Time → Error Likelihood 

• Indirect Effect: B = 0.17, 95% CI [0.08, 0.29] (p = 0.002) 

→ Suggests alertness mediates the relationship between fatigue and errors. 
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Results 

 

4.1 Participant Characteristics 

A total of 120 healthcare workers were enrolled in the study and evenly randomized into the Biometric 

Monitoring Group (n=60) and the Control Group (n=60). The distribution of demographic variables and 

baseline fatigue levels was statistically comparable between the groups, confirming effective 

stratification. 

 

Table 1. Participant Demographics and Baseline Fatigue 

Variable Biometric Group (n=60) Control Group (n=60) p-

value 

Mean Age (years) 34.5 ± 6.2 35.1 ± 5.9 0.61 

Gender (F/M) 38 / 22 40 / 20 0.68 

Profession (Nurse/Physician) 45 / 15 46 / 14 0.84 

Mean Weekly Work Hours 54.3 ± 8.7 55.1 ± 9.2 0.55 

Night Shifts (per 4 weeks) 8.1 ± 2.0 8.4 ± 1.9 0.48 

KSS Fatigue Score (Baseline, 0–9) 4.8 ± 1.3 5.0 ± 1.4 0.47 

No statistically significant differences were found in demographic or baseline fatigue measures (p > 

0.05). This suggests comparability of exposure conditions between groups prior to intervention. 

 

4.2 Sensor Data and Fatigue Profiles 

Over 4 weeks, biometric sensors recorded continuous physiological and behavioral fatigue markers. 

Data analysis revealed identifiable fatigue patterns that matched shift timing and workload intensity. 

Fatigue thresholds were defined using multi-sensor convergence (e.g., HRV < 45 ms, alpha-theta ratio 

< 1.5). 

 

Table 2. Summary of Biometric Indicators During Fatigue Episodes 

Metric Mean ± SD (Fatigued State) Reference Normal Range 

Heart Rate Variability (ms) 38.2 ± 6.5 >55 ms 

EEG Alpha-Theta Ratio 1.3 ± 0.4 >1.8 

Skin Conductance (µS) 6.9 ± 1.2 2–5 µS 

Reaction Time (ms) 365 ± 42 <280 ms 

Postural Sway RMS (mm) 3.7 ± 0.8 <2.5 mm 

Figure 4. Fatigue Profiles Across Shifts 

Biometric fatigue episodes were most frequent during night shifts (62%) and final two hours of 

continuous work blocks. Trends aligned with subjective reports but showed earlier detection. 
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Figure: Sample sensor screenshots showing raw HRV and EDA traces during fatigue episodes 

 

4.3 Predictive Accuracy of Wearable Sensors 

Wearable sensor data were used to train supervised machine learning models for real-time fatigue 

prediction. Model performance was evaluated using ROC curves and confusion matrices. 

 

Table 3. Predictive Accuracy Metrics by Model 

Model AUC Accuracy Sensitivity Specificity F1 Score 

SVM 0.86 81.0% 81.3% 84.2% 0.83 

Random Forest 0.89 85.5% 84.6% 86.3% 0.85 

LSTM Neural Net 0.91 88.3% 88.1% 87.9% 0.87 

       

 

 Figure 5. ROC Curves of Fatigue Detection Models 

 

Confusion Matrix – LSTM Model (Test Set) 
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Predicted Fatigue Predicted Alert 

True Fatigue 112 15 

True Alert 17 108 

The LSTM model demonstrated the highest predictive performance with 88.3% accuracy. 

Misclassification occurred primarily in borderline physiological states (e.g., moderate HRV with 

borderline EEG). 

4.4 Association Between Fatigue Detection and Medical Errors 

Medical error incidence was analyzed over the study period, with particular attention to the relationship 

between fatigue episodes and timing of errors. 

 

Table 4. Medical Error Frequency by Group 

Error Type Biometric Group Control Group 

Medication Omission 8 16 

Delayed Charting 10 19 

Missed Vital Abnormality 4 9 

Incorrect Labeling 2 5 

Total Errors 24 49 

Mean Errors per Person 0.4 ± 0.7 0.82 ± 1.0 

                                           

 

  Figure 8. Comparative Error Rates: Biometric vs. Contro 

l 

Regression Analysis Output: 

• Biometric fatigue predicted 2.75× higher odds of an error occurring (OR = 2.75; 95% CI: 1.65–

4.59; p < 0.001). 

• Self-reported fatigue was not a statistically significant predictor (OR = 1.32; p = 0.11). 

The biometric monitoring group demonstrated significantly lower error rates, particularly in medication 

administration and documentation. Alerts provided 15–20 minute advance warnings in most instances, 

enabling proactive action or supervision.[14] 

4.5 Subgroup Analyses 

Further stratified analysis revealed nuanced insights based on profession and shift timing. 

 

Table 5. Subgroup Comparison – Error Rates and Fatigue Episodes 

Subgroup Fatigue Events 

(n) 

Errors 

(n) 

Avg. Reaction Time 

(ms) 

Error Rate per 

Shift 
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Nurses – Night 

Shift 

94 21 373 ± 38 0.60 

Nurses – Day 

Shift 

64 10 341 ± 33 0.29 

Physicians – Night 42 7 356 ± 30 0.28 

Physicians – Day 34 3 326 ± 26 0.11 

 

Figure 4. Heatmap – Reaction Time by Shift Type and Role (Darker cells indicate higher fatigue-

induced delays) 

 

Nurses on night shifts experienced the highest number of fatigue episodes and error rates, followed by 

physicians on night shifts. Daytime shifts consistently showed lower biometric and error values across 

both roles. 

 

Discussion 

 

5.1 Principal Findings 

Continuous multimodal wearables (PPG-derived HR/HRV, actigraphy, and skin conductance) were 

able to detect clinically significant fatigue states with high discrimination across a sizable prospective 

sample of clinicians and shifts.  In comparison to an a priori composite fatigue gold standard, our best 

late-fusion model, which combines time-windowed HRV features with activity-context and previous 

shift history, outperformed self-reports and single-channel baselines, achieving an AUC of 0.89 and an 

F1 of 0.83.  With only slight deterioration on high-motion services (such as ED nights), the model's 

performance was strong during both day and night duty, and calibration held steady following temporal 

validation.  Significantly, detection was not just correlational; combining the algorithm with unit-level 

escalation rules and just-in-time "biometric alertness" nudges was linked to lower avoidable error rates 

at the shift level, especially for medication-related and near-miss documentation errors.[15] 

The signals' patterning aligns with established physiology.  Activity-aware features helped distinguish 

between mental and physical exhaustion, while HRV features characteristic of lowered parasympathetic 

tone (e.g., elevated LF components, reduced RMSSD) increased monotonically with time-on-task and 

correlated with reaction-time slowing.  Low-movement periods prior to important tasks and wearable-

captured micro-sleep proxies identified high-risk times where errors were concentrated.  Night shifts 

and early-career employees, where subjective fatigue under-recognition is prevalent and current staffing 

countermeasures are weakest, exhibited the largest relative gains, according to subgroup analyses.  The 

findings collectively bolster the study's main argument: objective, ongoing biometric monitoring is 

more accurate than self-report at detecting impending alertness lapses and is linked to fewer errors at 

the point of care when combined with practical safety measures.[16,17] 
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External validity is strengthened by the pragmatic design of the study.  We minimised protocol 

interference, employed commercial-grade devices on busy inpatient services, and anchored results in 

standard patient safety data (structured observer logs, incident reports, and EHR discrepancies).  

However, residual confounding (e.g., concurrent safety campaigns) may occur because this is an 

observational intervention with unit-level alerting, and the composite error measure combines events 

with different aetiologies.  To measure causal effects and improve the trade-off between sensitivity and 

alarm fatigue at scale, future randomised cluster-crossover deployments will be crucial.[18] 

5.2 Comparison with Existing Literature 

Our results are consistent with a large body of research that links higher adverse event rates and poorer 

safety climates to clinician burnout and fatigue.  Burnout is linked to higher rates of nosocomial 

infections, falls, medication errors, adverse events, and a poorer safety culture, according to a 2024 

JAMA Network Open meta-analysis of 85 studies (n = 288,000 nurses). This highlights the system-

level effects of alertness impairment (and the need for upstream prevention) rather than just individual 

restoration.[19] 

Wearable objective physiology provides a credible link between preventative action and subjective 

fatigue.  According to a recent systematic review, HRV is a valid autonomic indicator of cognitive 

weariness because it tracks mental fatigue with time-on-task, particularly when there are decreases in 

vagal-indexed metrics like RMSSD and characteristic shifts in LF components.  These findings are 

supported by our HRV signatures and their correlation with impairments in reaction time.  Although 

our protocol focused on non-intrusive sensors, the directionality we observed is consistent with current 

EEG-based drowsiness detection literature, which reports strong alignment between theta–alpha 

dynamics and behavioural sleepiness. EEG features like the theta–alpha ratio rise with drowsiness.[20] 

Beyond isolated modalities, multi-sensor, machine-learning approaches analogous to ours have 

demonstrated high performance for fatigue detection in other safety-critical domains. An explainable, 

multimodal drowsiness system (EEG/ECG/EOG) recently validated subject-independent performance 

and highlighted the value of interpretable features for trustworthy deployment—paralleling our 

emphasis on transparent risk scores and human-factors integration. In the wild, a 2024 PNAS Nexus 

study showed that a network of body-worn sensors with ML can continuously stratify physical fatigue 

across tasks, supporting feasibility of scalable, multimodal monitoring pipelines. [21] 

Evidence specific to clinical staff and wearable validity is also emerging. In nurses, PPG-based 

wearables can approximate HR/HRV against ECG in real-world work, though motion artifacts require 

careful handling—consistent with our noise-robust preprocessing and activity-aware features. 

Observational and modeling work continues to implicate shift work, sleepiness, and chronic fatigue in 

higher incident risk; our subgroup gains at night and under high workload converge with those findings. 

[22] 

5.3 Practical Implications 

For implementation, hospitals should integrate biometric alertness monitoring into existing safety 

architectures rather than treating it as a standalone tool. At the point of care, the optimal unit of action 

is the team, not just the individual: shift-level dashboards that surface rising fatigue risk (with context 

such as workload, admissions, and task acuity) enable charge nurses and attending physicians to 

reassign high-risk tasks, insert micro-breaks, or schedule brief relief coverage before medication 

preparation, handoffs, or procedures. A two-tiered alert design—personal silent nudges (device 

vibration or app cards) followed by supervisor-visible flags if risk persists—balances autonomy with 

accountability and helps prevent alert fatigue. Risk scores must be interpretable: exposing which 

features (e.g., RMSSD drop, extended low-activity bouts near 03:00, cumulative night-shift debt) drove 

a flag supports clinician trust and targeted remediation.[23] 

Biometric data streams can enhance current staffing and incident-learning systems at the enterprise 

level.  Proactive risk stratification for units and time blocks is supported by connecting de-identified 

fatigue indices to EHR quality signals (medication verification overrides, barcode scanning misses, 

unsigned orders).  Even without identifying specific people, safety leaders can then modify staffing, re-

distribute admissions, or stagger breaks where risk clusters.  Effective governance is crucial. IRB/ethics 

and joint management-labor committees must supervise the codification of explicit policies on consent, 

opt-outs, data minimisation, retention, and non-punitive use.  Biometric monitoring offers the objective 

substrate that fatigue-risk-management systems have historically lacked, which is why national bodies 

are emphasising these systems more and more as part of safety programs.[24] 
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5.5 Future Directions and Recommendations 

Priority should be given to three options.  First, dynamic rosters that specifically reduce anticipated 

fatigue at crucial times should replace static duty-hour restrictions in AI-driven adaptive scheduling.  In 

order to suggest staffing and break schedules that lower risk without inflating headcount, reinforcement-

learning or simulation-optimization techniques can take into account forecasted admissions, clinician 

skill mix, circadian science, and learnt fatigue response curves.  It is necessary to conduct studies 

comparing the safety and satisfaction results of AI-optimized schedules with best-practice human 

scheduling.[25] 

Second, "closed-loop" safety interventions may be made possible by close integration with the EHR 

and clinical communication tools.  Examples include context-aware smart prompts that postpone non-

urgent inbox tasks during high-risk windows, team-aware routing that transfers time-sensitive 

verifications to colleagues who have had a chance to rest, and pre-procedure "green-light" checks that 

take into account alertness score and recent micro-breaks.  Explainability and human-in-the-loop 

overrides must be incorporated in order to avoid automation bias and guarantee that clinical judgement 

is respected.  Experience with digital health implementations shows that impact at scale is determined 

by usability and trust, not just AUC.[26] 

Third, large-scale randomized and hybrid effectiveness–implementation trials are needed. Cluster-

crossover designs across hospitals can estimate causal effects on preventable harm, examine 

heterogeneity (e.g., ICU vs. med-surg), and quantify any unintended consequences (e.g., workload 

shifts, alarm fatigue). Parallel qualitative work should evaluate acceptability, privacy perceptions, and 

professional identity. Hardware and algorithm portfolios should expand to include low-burden EEG in 

subcohorts to refine drowsiness phenotyping, and to leverage ongoing advances in multimodal 

wearables for robust, real-time inference under motion. Establishing open datasets and benchmarking 

standards—analogous to recent “in-the-wild” multimodal fatigue studies—will accelerate 

methodological convergence and regulatory review, paving the way for interoperable, trustworthy 

clinical-grade alertness monitoring. [27] 

 

Conclusion 

This study demonstrates that wearable biometric monitoring provides a reliable and objective method 

for detecting fatigue among healthcare workers and offers meaningful potential for reducing medical 

errors. By integrating multimodal signals such as heart rate variability, skin conductance, actigraphy, 

and cognitive performance markers, the system detected fatigue episodes with high predictive accuracy, 

outperforming conventional self-report measures. Importantly, real-time alerts linked to these biometric 

indices were associated with lower error incidence, particularly in medication administration and 

documentation tasks, where lapses in attention have immediate implications for patient safety. 

The findings underscore that fatigue in clinical practice is not merely an individual challenge but a 

systemic risk that compromises care quality. Traditional strategies such as shift regulations and 

subjective assessments, while valuable, remain inadequate in addressing the dynamic physiological 

changes that precede cognitive decline. The deployment of wearable sensor–based monitoring thus 

provides a pragmatic and scalable approach, allowing early identification and timely intervention. 

Future work should prioritize randomized trials, integration with electronic health records, and AI-

driven scheduling systems to maximize clinical utility. Ultimately, biometric monitoring represents a 

transformative tool for advancing patient safety and workforce resilience in healthcare environments. 
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