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Abstract

Background: Fatigue among healthcare workers is a well-documented contributor to medical errors,
compromising patient safety and clinical outcomes. Conventional mitigation strategies, including duty-
hour restrictions and self-reported fatigue assessments, remain limited in their ability to provide timely,
objective detection of fatigue in real-world practice.

Objective: This study aimed to evaluate the effectiveness of wearable biometric sensors in detecting
fatigue among healthcare workers and to examine their association with medical error incidence.
Methods: A prospective cohort design was conducted in two tertiary hospitals involving 120 healthcare
workers, divided into a biometric monitoring group and a control group. Participants in the intervention
arm wore multimodal devices measuring heart rate variability, skin conductance, actigraphy, and
cognitive reaction time during clinical shifts. Fatigue episodes were defined using physiological
thresholds and cross-validated against self-reported sleepiness scales. Medical errors were recorded via
electronic health records, incident reporting systems, and observer logs. Statistical analysis incorporated
descriptive comparisons, machine learning models, and regression testing.

Results: The wearable monitoring system demonstrated high predictive accuracy for fatigue detection
(LSTM AUC = 0.91, sensitivity = 88.1%). The biometric group reported 51% fewer documented
medical errors compared to controls, with the most significant improvements observed in medication
safety and charting accuracy. Night-shift nurses exhibited the highest rates of fatigue and error reduction
following biometric alerts.

Conclusion: Wearable fatigue monitoring offers a robust and scalable tool for early identification of
fatigue and prevention of medical errors. Its integration into hospital safety systems could strengthen
workforce resilience and improve patient care quality.

Introduction

Fatigue among healthcare workers has emerged as a significant occupational hazard with direct
implications for patient safety, staff well-being, and health system performance. Long working hours,
high patient loads, emotional demands, and rotating shifts create an environment in which fatigue
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becomes almost inevitable.[1] The World Health Organization and other global health bodies have
repeatedly emphasized that provider fatigue is not merely a personal health issue but a systemic risk
factor that compromises care delivery. Unlike ordinary tiredness, clinical fatigue in healthcare
professionals encompasses physical exhaustion, reduced psychomotor coordination, and impaired
cognitive processing. These manifestations increase the likelihood of delayed decision-making,
inaccurate documentation, medication errors, and procedural mistakes.[2]

The scale of the problem is evident in multiple large-scale studies. For example, reports from the United
States and Europe estimate that nearly 40-60% of physicians and nurses experience moderate to severe
fatigue during routine shifts, with higher prevalence during overnight or extended duty periods. In
intensive care units, emergency departments, and surgical theaters—settings where precision and rapid
decisions are critical—fatigue has been shown to escalate the incidence of adverse events. Moreover,
healthcare fatigue is not confined to acute clinical situations; it extends to reduced empathy, increased
absenteeism, and workforce attrition, thereby affecting both patient outcomes and institutional
efficiency.[3,4]

The significance of this issue is amplified by the fact that patient harm due to preventable medical errors
remains one of the leading causes of morbidity and mortality worldwide. Studies have equated the
annual toll of medical errors to the equivalent of a major public health epidemic. Fatigue-induced lapses
are particularly concerning because they are both highly prevalent and, in theory, preventable. This
duality highlights fatigue as a critical leverage point for intervention within patient safety frameworks.
Addressing it effectively requires approaches that move beyond traditional self-regulation to objective,
real-time detection strategies that can alert individuals and institutions before errors occur.[5]

Link Between Fatigue, Cognitive Decline, and Medical Errors

In both laboratory and clinical settings, the link between fatigue and cognitive decline has been well-
established. Attention, memory, problem-solving, and executive function are just a few of the cognitive
domains that are impacted by fatigue. The prefrontal cortex and thalamic pathways are disrupted by
sleep deprivation and circadian misalignment, which results in slower reaction times, less attentiveness,
and a higher risk of cognitive errors. These impairments are similar to those caused by alcohol
intoxication; for instance, it has been demonstrated that 20 hours of continuous awake time impairs
performance to an extent equivalent to a blood alcohol content of 0.10%, which is higher than the legal
driving limits in the majority of jurisdictions.[6,7]

The effects of fatigue-induced cognitive decline are especially severe in the healthcare industry. A tired
nurse might not notice a vital sign abnormality, miscalculate a medication dosage, or fail to recognise
a patient's decline. Similar to this, a tired anaesthesiologist or surgeon may lose focus and cause
problems during the procedure. Additionally, fatigue impairs teamwork and situational awareness, two
qualities that are essential in high-reliability institutions like hospitals. The likelihood of exacerbated
communication breakdowns and coordination breakdowns rises significantly when team members are
fatigued at the same time.[8§]

These connections are supported by empirical data. According to studies, residents on extended shifts
make a lot more diagnostic mistakes than those on set schedules. Similarly, nurses who report high
levels of fatigue have been linked to lower patient safety ratings, medication errors, and an increase in
patient falls. In addition to impairing clinical task accuracy, fatigue also makes it harder to adjust to
unforeseen circumstances, which is frequently necessary in dynamic care settings. Crucially, fatigue-
induced cognitive decline occurs gradually, making it challenging for people to identify their own
compromised state. The issue is made worse by this self-unawareness since clinicians may continue to
carry out crucial tasks while underestimating the degree of their impaired ability.[9]

Problem Statement

Even though fatigue is acknowledged as a significant contributing factor to medical errors, current
methods fall short in providing accurate, real-time detection. The effectiveness of wearable biometric
monitoring in clinical settings is not well supported by data, which hinders the creation of preventative
safety measures. By assessing how well wearable sensors predict fatigue and stop fatigue-related
medical errors in healthcare settings, this study aims to close that gap.

2.3 Study Objectives and Hypotheses
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Aim:
To assess the accuracy and practical utility of wearable sensor—based biometric monitoring for detecting
healthcare worker fatigue and its potential role in reducing medical errors.

Hypotheses:
e HI1: Wearable biometric monitoring predicts healthcare worker fatigue more reliably than self-
reported measures.
e H2: Early detection of fatigue through biometric monitoring reduces the incidence of medical
errors in clinical practice.

Methodology

3.1 Study Design
The accuracy of wearable biometric sensors in identifying healthcare worker fatigue and its relationship
to the frequency of medical errors were assessed in this study using a prospective cohort experimental
design. Two parallel arms were included in the design: a control group that relied on conventional self-
reported fatigue assessments, and a biometric monitoring group that was outfitted with wearable
sensors. Over the course of four weeks, participants were observed in their real clinical work setting.
The temporal association between medical errors and fatigue episodes was made possible by this real-
world design, which also supported ecological validity.
3.2 Setting and Participants
The study was conducted in two large tertiary hospitals located in urban centers, each with a capacity
of over 300 beds and providing 24/7 emergency, surgical, and ICU services.[10]
Inclusion criteria:

e Licensed healthcare workers (nurses, physicians, allied health staff).

e Aged between 24 and 55 years.

e  Working rotating or night shifts for at least 3 months prior to the study.

e Provided informed written consent.
Exclusion criteria:

e Diagnosed sleep disorders (e.g., narcolepsy, insomnia).

¢ Use of stimulants or sedatives within the previous 7 days.

e Neurological or psychiatric disorders affecting cognition.

e Pregnancy (due to altered physiological baselines).
A total of 120 participants were enrolled and stratified into two matched groups (60 each) based on shift
type, department, and baseline fatigue score (assessed via the Karolinska Sleepiness Scale [KSS]).

Table 1. Participant Demographics and Baseline Characteristics

Variable Biometric Group (n=60) Control Group (n=60) p-value
Mean Age (years) 345+6.2 351+£59 0.61
Gender (F/M) 38/22 40/ 20 0.68
Profession (Nurse/Physician) 45/ 15 46/ 14 0.84
Mean Weekly Work Hours | 54.3 £8.7 55.1+£9.2 0.55
KSS Baseline Score (0-9) 48+1.3 50+14 0.47
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Figure 2. Participant Flow Diagram

3.3 Wearable Sensors and Biometric Measures
Participants in the biometric group wore a multi-sensor monitoring suite during their entire work shifts
for four consecutive weeks. Devices were selected based on prior clinical validation and included:
e EEG Headband (e.g., Muse S): for real-time assessment of cognitive alertness via alpha and
theta wave monitoring.
e  Wrist-worn HRV Monitor (e.g., Polar H10): to measure heart rate variability (HRV) as a
proxy for autonomic fatigue.
e Actigraphy Sensor (e.g., ActiGraph GT9X): for movement tracking and micro-sleep detection.
¢ Skin Conductance Sensor (e.g., Empatica E4): for measuring electrodermal activity (EDA)
linked to stress and fatigue.
Key biometric indicators included:
e HRYV (ms): Lower values indicate reduced parasympathetic activity.
e Skin Conductance Level (uS): Elevated levels indicate stress or arousal.
¢ EEG Alpha-Theta Ratio: Lower ratios suggest drowsiness.
¢ Reaction Time (ms): Measured via a custom app (data based on PVT test).
¢ Postural Sway (RMS mm): Indicates neuromotor instability under fatigue.

Thresholds for fatigue state classification were based on evidence from prior studies and vendor
calibrations (e.g., HRV <45 ms, EEG alpha-theta ratio < 1.5, reaction time > 300 ms).
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Figure 3. Wearable Sensor Setup and Data Streams

3.4 Data Collection Procedure
Each participant in the biometric group was monitored for 8-hour shifts (day or night), five times per
week for 4 weeks (totaling 20 shifts per person).

Devices synchronized using Bluetooth Low Energy (BLE) and uploaded encrypted data to a
cloud-based analytic platform.

Contextual variables were recorded via mobile app: shift timing, subjective workload (NASA-
TLX scale), and caffeine intake.[11]

Self-reported fatigue ratings were also recorded every 2 hours using the Karolinska Sleepiness
Scale (0 = very alert, 9 = very sleepy).

For the control group, only self-reported fatigue assessments and performance logs were recorded using
identical time intervals and survey tools, but no wearable data was collected.

All biometric data were time-stamped and synchronized with the hospital's digital clock and staff
schedules. Preprocessing included signal noise reduction, artifact removal (e.g., motion artifacts in
EEQG), and normalization across devices.

3.5 Medical Error Recording

Medical errors were recorded from three convergent sources:

1.

2.

3.

Electronic Health Record (EHR) Reports — medication timing deviations, missed charting,
abnormal lab ordering.

Hospital Incident Reporting System — formal error submissions logged by supervisors or
safety officers.

Direct Observer Logs — trained clinical observers using validated checklists for procedural
adherence and documentation errors during selected shifts.

Each error was classified according to the National Coordinating Council for Medication Error
Reporting and Prevention (NCC MERP) taxonomy.

Table 2. Distribution of Medical Errors by Type and Group

Error Type Biometric Group (n=60) Control Group (n=60)
Medication Dose Omission 8 16

Delayed Charting 10 19

Vital Sign Oversight 4 9
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Wrong Patient Labeling 2 5
Total Errors (per group) 24 49
Mean Errors per Participant 0.4 0.82

3.6 Ethical Considerations

Ethical approval was obtained from the Institutional Review Boards (IRBs) of both participating
hospitals (Approval IDs: HSRP-2025-113A and MEDSAFE-2025-078B). All participants provided
written informed consent and were briefed on the study objectives, procedures, risks, and the voluntary
nature of participation.

Data confidentiality was ensured via end-to-end encryption and secure data storage on password-
protected servers. Participants could withdraw at any time without consequence to employment or
evaluation. Biometric data were anonymized prior to analysis using participant IDs and were not shared
with clinical supervisors or administrators to protect against surveillance bias.

Sample Python Code Snippet: Fatigue Detection Using Random Forest

from sklearn.ensemble import RandomfForestClassifier
from sklearn.model selection import train_test split

from sklearn.metrics import classification_report, roc_auc_score

X bliometric df[[ 'hrv’, slpha theta', ‘eda', 'reaction time', 'm ment entropy']]
y biometric_df[ ' fatigue_ label']
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=4a2
rf RandomfForestClassifier(n_estimators=1060, random_state=42)
rf.fit(X train, y train)
vy pred rf.predict(X_test)
t(classification_report(y test, y pred))
print("AucC:", roc_auc_score(y _test, rf.predict ( ba(X test)[:,1]))

3.7.3 Regression Analysis: Linking Fatigue to Medical Errors
A multivariate logistic regression model was used to estimate the odds of committing a medical error
during fatigue episodes (KSS > 7 or model-predicted fatigue).[13]
Model Covariates:
Shift type (day/night)
Profession
Biometric fatigue score
Self-reported fatigue

e Workload index
Results:

e Biometric-predicted fatigue (OR = 2.75; 95% CI: 1.65-4.59; p < 0.001)

o Self-reported fatigue (OR =1.32; 95% CI: 0.89-1.99; p = 0.11)

o Night shift (OR = 1.88; p = 0.045)

— Biometric fatigue was a significantly stronger predictor of errors than self-report.

3.7.4 Mediation Analysis
Using PROCESS Macro in SPSS, a mediation model evaluated whether biometric fatigue indirectly
increased medical errors through impaired alertness (reaction time as mediator).
Bootstrapped Indirect Effect:

e Path: Biometric Fatigue — Reaction Time — Error Likelihood

e Indirect Effect: B=0.17,95% CI [0.08, 0.29] (p = 0.002)

— Suggests alertness mediates the relationship between fatigue and errors.

WWW.DIABETICSTUDIES.ORG 447

)


http://www.diabeticstudies.org/

The Review of DIABETIC STUDIES
Vol. 21 No. S11 2025

Results

4.1 Participant Characteristics

A total of 120 healthcare workers were enrolled in the study and evenly randomized into the Biometric
Monitoring Group (n=60) and the Control Group (n=60). The distribution of demographic variables and
baseline fatigue levels was statistically comparable between the groups, confirming effective
stratification.

Table 1. Participant Demographics and Baseline Fatigue

Variable Biometric Group (n=60) Control Group (n=60) p-
value

Mean Age (years) 345+6.2 351+£59 0.61
Gender (F/M) 38/22 40/20 0.68
Profession (Nurse/Physician) 45/15 46/ 14 0.84
Mean Weekly Work Hours 543+ 8.7 55.1+9.2 0.55
Night Shifts (per 4 weeks) 8.1+20 84+19 0.48
KSS Fatigue Score (Baseline, 0-9) 4.8+ 1.3 50+14 0.47

No statistically significant differences were found in demographic or baseline fatigue measures (p >
0.05). This suggests comparability of exposure conditions between groups prior to intervention.

4.2 Sensor Data and Fatigue Profiles

Over 4 weeks, biometric sensors recorded continuous physiological and behavioral fatigue markers.
Data analysis revealed identifiable fatigue patterns that matched shift timing and workload intensity.
Fatigue thresholds were defined using multi-sensor convergence (e.g., HRV < 45 ms, alpha-theta ratio
< 1.5).

Table 2. Summary of Biometric Indicators During Fatigue Episodes

Metric Mean + SD (Fatigued State) Reference Normal Range
Heart Rate Variability (ms) 38.2+6.5 >55 ms

EEG Alpha-Theta Ratio 1.3+£04 >1.8

Skin Conductance (uS) 6.9+12 2-5uS

Reaction Time (ms) 365 £42 <280 ms

Postural Sway RMS (mm) 3.7+0.8 <2.5 mm

71

Figure 4. Fatigue Profiles Across Shifts
Biometric fatigue episodes were most frequent during night shifts (62%) and final two hours of
continuous work blocks. Trends aligned with subjective reports but showed earlier detection.
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Figure: Sample sensor screenshots showing raw HRV and EDA traces during fatigue episodes

4.3 Predictive Accuracy of Wearable Sensors
Wearable sensor data were used to train supervised machine learning models for real-time fatigue

prediction. Model performance was evaluated using ROC curves and confusion matrices.

Table 3. Predictive Accuracy Metrics by Model

Model AUC  Accuracy Sensitivity Specificity F1 Score
SVM 0.86 81.0% 81.3% 84.2% 0.83
Random Forest 0.89  85.5% 84.6% 86.3% 0.85
LSTM Neural Net 091  88.3% 88.1% 87.9% 0.87
1.0
0.8
,i':l 0.6
r;- 0.4
0.2
> =t 1 r..y.»‘ ‘ { f
0.0 0.2 0‘4 0.6 0.8 1.0
False Positive Rate

Figure 5. ROC Curves of Fatigue Detection Models

Confusion Matrix — LSTM Model (Test Set)
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Predicted Fatigue Predicted Alert

True Fatigue 112 15

True Alert 17 108
The LSTM model demonstrated the highest predictive performance with 88.3% accuracy.
Misclassification occurred primarily in borderline physiological states (e.g., moderate HRV with
borderline EEG).
4.4 Association Between Fatigue Detection and Medical Errors
Medical error incidence was analyzed over the study period, with particular attention to the relationship
between fatigue episodes and timing of errors.

Table 4. Medical Error Frequency by Group

Error Type Biometric Group Control Group
Medication Omission 8 16
Delayed Charting 10 19
Missed Vital Abnormality 4 9
Incorrect Labeling 2 5
Total Errors 24 49
Mean Errors per Person 0.4 + 0.7 0.82 +1.0
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Figure 8. Comparative Error Rates: Biometric vs. Contro
1
Regression Analysis Output:
¢ Biometric fatigue predicted 2.75x higher odds of an error occurring (OR =2.75; 95% CI: 1.65—
4.59; p<0.001).
o Self-reported fatigue was not a statistically significant predictor (OR = 1.32; p=0.11).
The biometric monitoring group demonstrated significantly lower error rates, particularly in medication
administration and documentation. Alerts provided 15-20 minute advance warnings in most instances,
enabling proactive action or supervision.[14]
4.5 Subgroup Analyses
Further stratified analysis revealed nuanced insights based on profession and shift timing.

Table S. Subgroup Comparison — Error Rates and Fatigue Episodes

Subgroup Fatigue Events  Errors Avg. Reaction Time Error Rate per
(n) (n) (ms) Shift
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Nurses — Night 94 21 373 +£ 38 0.60
Shift
Nurses — Day 64 10 341 £33 0.29
Shift
Physicians — Night 42 7 356 + 30 0.28
Physicians — Day @ 34 3 326 £26 0.11
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Figure 4. Heatmap — Reaction Time by Shift Type and Role (Darker cells indicate higher fatigue-
induced delays)

Nurses on night shifts experienced the highest number of fatigue episodes and error rates, followed by
physicians on night shifts. Daytime shifts consistently showed lower biometric and error values across
both roles.

Discussion

5.1 Principal Findings

Continuous multimodal wearables (PPG-derived HR/HRV, actigraphy, and skin conductance) were
able to detect clinically significant fatigue states with high discrimination across a sizable prospective
sample of clinicians and shifts. In comparison to an a priori composite fatigue gold standard, our best
late-fusion model, which combines time-windowed HRV features with activity-context and previous
shift history, outperformed self-reports and single-channel baselines, achieving an AUC of 0.89 and an
F1 of 0.83. With only slight deterioration on high-motion services (such as ED nights), the model's
performance was strong during both day and night duty, and calibration held steady following temporal
validation. Significantly, detection was not just correlational; combining the algorithm with unit-level
escalation rules and just-in-time "biometric alertness" nudges was linked to lower avoidable error rates
at the shift level, especially for medication-related and near-miss documentation errors.[15]

The signals' patterning aligns with established physiology. Activity-aware features helped distinguish
between mental and physical exhaustion, while HRV features characteristic of lowered parasympathetic
tone (e.g., elevated LF components, reduced RMSSD) increased monotonically with time-on-task and
correlated with reaction-time slowing. Low-movement periods prior to important tasks and wearable-
captured micro-sleep proxies identified high-risk times where errors were concentrated. Night shifts
and early-career employees, where subjective fatigue under-recognition is prevalent and current staffing
countermeasures are weakest, exhibited the largest relative gains, according to subgroup analyses. The
findings collectively bolster the study's main argument: objective, ongoing biometric monitoring is
more accurate than self-report at detecting impending alertness lapses and is linked to fewer errors at
the point of care when combined with practical safety measures.[16,17]
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External validity is strengthened by the pragmatic design of the study. We minimised protocol
interference, employed commercial-grade devices on busy inpatient services, and anchored results in
standard patient safety data (structured observer logs, incident reports, and EHR discrepancies).
However, residual confounding (e.g., concurrent safety campaigns) may occur because this is an
observational intervention with unit-level alerting, and the composite error measure combines events
with different actiologies. To measure causal effects and improve the trade-off between sensitivity and
alarm fatigue at scale, future randomised cluster-crossover deployments will be crucial.[18]

5.2 Comparison with Existing Literature

Our results are consistent with a large body of research that links higher adverse event rates and poorer
safety climates to clinician burnout and fatigue. Burnout is linked to higher rates of nosocomial
infections, falls, medication errors, adverse events, and a poorer safety culture, according to a 2024
JAMA Network Open meta-analysis of 85 studies (n = 288,000 nurses). This highlights the system-
level effects of alertness impairment (and the need for upstream prevention) rather than just individual
restoration.[19]

Wearable objective physiology provides a credible link between preventative action and subjective
fatigue. According to a recent systematic review, HRV is a valid autonomic indicator of cognitive
weariness because it tracks mental fatigue with time-on-task, particularly when there are decreases in
vagal-indexed metrics like RMSSD and characteristic shifts in LF components. These findings are
supported by our HRV signatures and their correlation with impairments in reaction time. Although
our protocol focused on non-intrusive sensors, the directionality we observed is consistent with current
EEG-based drowsiness detection literature, which reports strong alignment between theta—alpha
dynamics and behavioural sleepiness. EEG features like the theta—alpha ratio rise with drowsiness.[20]
Beyond isolated modalities, multi-sensor, machine-learning approaches analogous to ours have
demonstrated high performance for fatigue detection in other safety-critical domains. An explainable,
multimodal drowsiness system (EEG/ECG/EOG) recently validated subject-independent performance
and highlighted the value of interpretable features for trustworthy deployment—paralleling our
emphasis on transparent risk scores and human-factors integration. In the wild, a 2024 PNAS Nexus
study showed that a network of body-worn sensors with ML can continuously stratify physical fatigue
across tasks, supporting feasibility of scalable, multimodal monitoring pipelines. [21]

Evidence specific to clinical staff and wearable validity is also emerging. In nurses, PPG-based
wearables can approximate HR/HRV against ECG in real-world work, though motion artifacts require
careful handling—consistent with our noise-robust preprocessing and activity-aware features.
Observational and modeling work continues to implicate shift work, sleepiness, and chronic fatigue in
higher incident risk; our subgroup gains at night and under high workload converge with those findings.
[22]

5.3 Practical Implications

For implementation, hospitals should integrate biometric alertness monitoring into existing safety
architectures rather than treating it as a standalone tool. At the point of care, the optimal unit of action
is the team, not just the individual: shift-level dashboards that surface rising fatigue risk (with context
such as workload, admissions, and task acuity) enable charge nurses and attending physicians to
reassign high-risk tasks, insert micro-breaks, or schedule brief relief coverage before medication
preparation, handoffs, or procedures. A two-tiered alert design—personal silent nudges (device
vibration or app cards) followed by supervisor-visible flags if risk persists—balances autonomy with
accountability and helps prevent alert fatigue. Risk scores must be interpretable: exposing which
features (e.g., RMSSD drop, extended low-activity bouts near 03:00, cumulative night-shift debt) drove
a flag supports clinician trust and targeted remediation.[23]

Biometric data streams can enhance current staffing and incident-learning systems at the enterprise
level. Proactive risk stratification for units and time blocks is supported by connecting de-identified
fatigue indices to EHR quality signals (medication verification overrides, barcode scanning misses,
unsigned orders). Even without identifying specific people, safety leaders can then modify staffing, re-
distribute admissions, or stagger breaks where risk clusters. Effective governance is crucial. IRB/ethics
and joint management-labor committees must supervise the codification of explicit policies on consent,
opt-outs, data minimisation, retention, and non-punitive use. Biometric monitoring offers the objective
substrate that fatigue-risk-management systems have historically lacked, which is why national bodies
are emphasising these systems more and more as part of safety programs.[24]
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5.5 Future Directions and Recommendations

Priority should be given to three options. First, dynamic rosters that specifically reduce anticipated
fatigue at crucial times should replace static duty-hour restrictions in Al-driven adaptive scheduling. In
order to suggest staffing and break schedules that lower risk without inflating headcount, reinforcement-
learning or simulation-optimization techniques can take into account forecasted admissions, clinician
skill mix, circadian science, and learnt fatigue response curves. It is necessary to conduct studies
comparing the safety and satisfaction results of Al-optimized schedules with best-practice human
scheduling.[25]

Second, "closed-loop" safety interventions may be made possible by close integration with the EHR
and clinical communication tools. Examples include context-aware smart prompts that postpone non-
urgent inbox tasks during high-risk windows, team-aware routing that transfers time-sensitive
verifications to colleagues who have had a chance to rest, and pre-procedure "green-light" checks that
take into account alertness score and recent micro-breaks. Explainability and human-in-the-loop
overrides must be incorporated in order to avoid automation bias and guarantee that clinical judgement
is respected. Experience with digital health implementations shows that impact at scale is determined
by usability and trust, not just AUC.[26]

Third, large-scale randomized and hybrid effectiveness—implementation trials are needed. Cluster-
crossover designs across hospitals can estimate causal effects on preventable harm, examine
heterogeneity (e.g., ICU vs. med-surg), and quantify any unintended consequences (e.g., workload
shifts, alarm fatigue). Parallel qualitative work should evaluate acceptability, privacy perceptions, and
professional identity. Hardware and algorithm portfolios should expand to include low-burden EEG in
subcohorts to refine drowsiness phenotyping, and to leverage ongoing advances in multimodal
wearables for robust, real-time inference under motion. Establishing open datasets and benchmarking
standards—analogous to recent “in-the-wild” multimodal fatigue studies—will accelerate
methodological convergence and regulatory review, paving the way for interoperable, trustworthy
clinical-grade alertness monitoring. [27]

Conclusion

This study demonstrates that wearable biometric monitoring provides a reliable and objective method
for detecting fatigue among healthcare workers and offers meaningful potential for reducing medical
errors. By integrating multimodal signals such as heart rate variability, skin conductance, actigraphy,
and cognitive performance markers, the system detected fatigue episodes with high predictive accuracy,
outperforming conventional self-report measures. Importantly, real-time alerts linked to these biometric
indices were associated with lower error incidence, particularly in medication administration and
documentation tasks, where lapses in attention have immediate implications for patient safety.

The findings underscore that fatigue in clinical practice is not merely an individual challenge but a
systemic risk that compromises care quality. Traditional strategies such as shift regulations and
subjective assessments, while valuable, remain inadequate in addressing the dynamic physiological
changes that precede cognitive decline. The deployment of wearable sensor—based monitoring thus
provides a pragmatic and scalable approach, allowing early identification and timely intervention.
Future work should prioritize randomized trials, integration with electronic health records, and Al-
driven scheduling systems to maximize clinical utility. Ultimately, biometric monitoring represents a
transformative tool for advancing patient safety and workforce resilience in healthcare environments.
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