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■ Abstract 
The burden of diabetes mellitus is relentlessly increasing. 
Diabetic nephropathy is the most common cause of end-
stage renal disease (ESRD) worldwide and a major cause of 
morbidity and mortality in patients with diabetes. The cur-
rent standard therapy of diabetic nephropathy involves in-
tensive treatment of hyperglycemia and strict blood pressure 
control, mainly via blockade of the renin-angiotensin system 
(RAS). Attention has been drawn to additional beneficial ef-
fects of oral hypoglycemic drugs and fibrates on other as-
pects of diabetic nephropathy. On the other hand, antipro-
teinuric effects of RAS combination therapy do not seem to 
enhance the prevention of renal disease progression, and it 
has been associated with an increased rate of serious ad-
verse events. Novel agents, such as bardoxolone methyl, 

pentoxifylline, inhibitors of protein kinase C (PKC), sulo-
dexide, pirfenidone, endothelin receptor antagonists, vitamin 
D supplements, and phosphate binders have been associ-
ated with controversial outcomes or significant side effects. 
Although new insights into the pathogenetic mechanisms 
have opened new horizons towards novel interventions, 
there is still a long way to go in the field of DN research. 
The aim of this review is to highlight the recent progress 
made in the field of diabetes management based on the ex-
isting evidence. The article also discusses novel targets of 
therapy, with a special focus on the major pathophysiologic 
mechanisms implicated in the initiation and progression of 
diabetic nephropathy. 
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1. Introduction 
 

 he burden of diabetes mellitus is relentlessly 
 increasing and the global prevalence is ex- 
 pected to rise from 6.4% in 2010 to 7.7% by 

2030 [1]. Diabetic nephropathy which affects ap-
proximately one-third of individuals with diabetes 
is the most common cause of end-stage renal dis-
ease (ESRD) worldwide and a major cause of mor-
bidity and mortality in patients with diabetes. 
This is due to the progression to ESRD and associ-
ated cardiovascular disease, especially in patients 
with type 2 diabetes [2, 3]. 

Diabetic nephropathy is a clinical syndrome 
characterized by persistent albuminuria (>300 
mg/24 hr, or 300 mg/g creatinine), a progressive 
decline in glomerular filtration rate (GFR), arterial 
hypertension, and increased cardiovascular mor-
bidity and mortality. It can also be defined as a 
spectrum of characteristic structural and func-
tional changes, including glomerular hyperfiltra-
tion in the very early disease stage and the pres-
ence of moderately increased albuminuria. The lat-
ter is also called “microalbuminuria”, which is de-
fined as urinary albumin excretion between 30 and 
300 mg/day or albumin-to-creatinine ratio between 
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2 and 28 mg albumin per mmol creatinine 
(mg/mmol) on a random urine sample [4, 5]. 

The current standard therapy of diabetic neph-
ropathy involves intensive treatment of hypergly-
cemia and strict blood pressure control, mainly via 
blockade of the renin-angiotensin system (RAS). 
Major attention is currently focused on ongoing 
experimental studies and clinical trials with novel 
specific agents, which target the emerging patho-
physiologic mechanisms involved in the progres-
sion of diabetic nephropathy. A few agents have 
shown beneficial effects in the experimental stud-
ies performed to date, although data regarding 
their clinical impact on diabetic patients remain 
ambiguous. 

The aim of this review article is to highlight the 
recent progress made in the field of management 
of diabetic nephropathy based on the existing evi-
dence. The article intends to provide evidence-
based guidance on treatment options with refer-
ence to novel targets of therapy, while focusing on 
the major pathophysiologic mechanisms implicated 
in the initiation and progression of diabetic neph-
ropathy which substantially constitute the targets 
for therapy. 

2. Pathophysiological insights as po-
tential therapeutic targets in diabetic 
nephropathy 

Several pathogenetic processes are considered 
to be involved in diabetic nephropathy (Figure 1). 
Both intraglomerular hypertension induced by re-
nal vasodilatation and ischemic injury induced by 
hyaline narrowing of the vessels supplying the 
glomeruli could lead to glomerulosclerosis [6]. Hy-
perglycemia may also directly induce mesangial 
expansion and injury, possibly via increased ma-
trix production or glycation of matrix proteins [7]. 
Based on the observation that a decrease in cell 
surface heparan sulfate contributes to increased 
glomerular basement membrane permeability to 
albumin, the activation of protein kinase C and 
upregulation of heparanase expression may re-
garded as additional hyperglycemia-mediated 
mechanisms that are potentially pathogenic in 
diabetic nephropathy [8]. Activation of cytokines, 
profibrotic elements, inflammation, and vascular 
growth factors such as vascular endothelial growth 
factor (VEGF) may be involved in the process of 
matrix accumulation in diabetic nephropathy [9]. 
Defects in podocyte-specific insulin signaling may 
also contribute to the process. Therefore, the podo-
cyte insulin receptor may provide a target for  

 
agents that prevent proteinuria and/or the devel-
opment and progression of diabetic nephropathy 
[10]. 

While longitudinal studies have shown that mi-
croalbuminuria strongly predicts the development 
of diabetic nephropathy in type 1 diabetic patients 
[11, 12], there are biological mechanisms that ini-
tiate the early decline in kidney function, includ-
ing oxidative, inflammatory, and fibrotic pathways 
[13]. These mechanisms should be considered in 
diagnosis and treatment besides the determination 
of microalbuminuria. 

It has been suggested that a fraction of the mi-
croalbuminuric patients returns to normoalbu-
minuria. However, only treatment-induced and not 
spontaneous regression is associated with stable 
and long-lasting normalization in patients with 
type 1 diabetes [12]. In type 2 diabetes, moderately 
increased albuminuria is associated with declining 
kidney function, progression to severely increased 
albuminuria, and increased long-term mortality. 
Remission to normal albuminuria may occur as 
well [14, 15]. Additonally, microalbuminuria is a 
strong predictor of overall and cardiovascular mor-
tality in diabetic patients, a finding which is valid 
for the general population as well [16]. Several 
other factors in addition to hyperglycemia are as-
sociated with microalbuminuria in diabetic pa-
tients, including arterial hypertension, obesity, 
heart failure, and other comorbidities [17, 18]. Un-
til now, the exact mechanisms linking microalbu-

Abbreviations: 
 

ACEI – angiotensin-converting enzyme inhibitors 
AGE – advanced glycosylation end products 
ARB – angiotensin II receptor blockers 
CKD – chronic kidney disease 
DN – diabetic nephropathy,  
DPP-4 – dipeptidyl peptidase 4 
ESH/ESC – European Societies of Hypertension and Cardi-
ology 
ESRD – end stage renal disease 
ET-1 – endothelin 1 
GFR – glomerular filtration rate 
GLP-1 – glucagons-like peptide 1 
JNC-8 – Eighth Joint National Committee 
KDIGO – kidney disease improving global outcomes 
NKF/KDOQI – National Kidney Foundation Kidney Dis-
ease Outcomes Quality Initiative 
PPAR-α – peroxisome proliferator-activated receptor alpha 
PPAR-γ – peroxisome proliferator activator receptor gamma 
PKC – protein kinase C 
RAS – rennin-angiotensin system 
SGLT-2 – sodium-glucose co-transporter-2 
TZD – thiazolidinediones 
UAE – urine albumin excretion 
VEGF – vascular endothelial growth factor 
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minuria to death from cardio-
vascular disease have been 
poorly understood. It is sup-
posed that endothelial dys-
function resulting from endo-
thelial-podocyte crosstalk 
across the glomerular filtra-
tion barrier is the underlying 
mechanism [19]. 

Finally, a subset of pa-
tients with diabetic nephropa-
thy does not have overt pro-
teinuria as a prerequisite to 
renal dysfunction. The exact 
pathogenetic mechanisms in-
volved in this condition are 
also unknown [20]. 

3. Glycemic control 
Timely and effective gly-

cemic control may have a posi-
tive effect on the prevention of 
diabetic nephropathy. Evi-
dence for the impact of strict 
glycemic control was first pro-
vided in type 1 diabetes. Two 
major clinical trials involving 
nearly 1,500 patients with 
type 1 diabetes demonstrated 
that intensive glycemic control 
reduces the incidence of micro- 
and macroalbuminuria by 39% 
and 54%, respectively. Intensive glycemic control 
resulted in a reduction of microalbuminuria by 
45% after 18 years of follow-up, enabling a protec-
tion from kidney disease [21, 22]. 

Another important finding was that the long-
term risk of a reduced glomerular filtration rate 
(GFR) was significantly lower among type 1 diabe-
tes patients treated early in the course of the dis-
ease with intensive insulin therapy (HbA1c 
<6.05%, use of insulin pump) than among those 
treated with non-intensive insulin therapy [23]. 
Higher HbA1c concentrations are strongly associ-
ated with risk of chronic kidney disease (CKD), but 
a positive association seems to exist between 
higher HbA1c levels and incidence of CKD as well, 
even in the absence of albuminuria or other mi-
crovascular complications of diabetes [24]. Accord-
ing to the outcomes of several studies, which in-
cluded patients who underwent pancreatic trans-
plantation, strict glycemic control deccelerates the 
rate of progressive renal damage even in the pres-
ence of overt proteinuria [25-30]. 

Regarding type 2 diabetes, the two most impor-
tant trials, UKPDS and ADVANCE, demonstrated 
that intensive glycemic control decreases the risks 
of moderately increased albuminuria [31, 32], 
overt proteinuria, and ESRD compared with stan-
dard control [32]. 

Poor glycemic control (HbA1c > 9%) appears to 
be common among patients with early stages of 
CKD; it is associated with a marked decline in 
clinical outcome and risk of progression to kidney 
disease. Thus, appropriate and timely control of 
HbA1c levesl in patients with diabetes and CKD is 
an essential step towards reducing diabetic com-
plications. However, intensive glycemic control, 
with HbA1c <6.5%, may be associated with in-
creased mortality [33]. A recent meta-analysis 
showed that, although intensive glucose control 
reduces the risk for micro- and macroalbuminuria, 
evidence regarding the effects on progression of 
CKD and end-stage renal disease remains am-
biguous [34]. Another recent meta-analysis inves-
tigating the effect of intensive compared with con-
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Figure 1. Proposed pathophysiological mechanisms implicated in the patho-
genesis of diabetic nephropathy. Hyperglycemia may induce mesangial ex-
pansion via the stimulation of cytokines and vascular growth factors or glyca-
tion of matrix proteins. Hyperglycemia-induced activation of protein kinase C 
and upregulation of heparanase expression result in increased glomerular per-
meability. Intraglomerular hypertension and subsequent stimulation of vasoac-
tive hormones cause glomerulosclerosis. Substantial overlap exists between 
these different pathways. 
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ventional glycemic control on all-cause mortality 
showed that the HbA1c and all-cause mortality re-
lationship in patients with type 2 diabetes is J-
shaped, meaning that the relative risk for all-
cause mortality increases with an increase in 
HbA1c above 7,5% and decreases with an increase 
in HbA1c below 7,5% [35]. Likewise, the ACCORD 
investigators found that HbA1c levels of 6.0% ver-
sus 7.0-7.9% resulted in excess mortality, thus 
suggesting that the benefits of intensive therapy 
regarding microvascular outcomes should be 
weighted against the increase in total and cardio-
vascular mortality and high risk for severe hypo-
glycemia [36]. Nevertheless, intensive glycemic 
control seemed to reduce the risk of microvascular 
complications in the ACCORD trail, albeit at the 
expense of an increased risk of hypoglycemia and 
higher all-cause mortality [36]. Another recent 
meta-analysis failed to demonstrate an all cause-
mortality benefit of intensive glycemic control or a 
significant reduction in the rate of composite mi-
crovascular complications [37]. 

The current recommendation by the American 
Association of Clinical Endocrinologists is to target 
HbA1c <6.5%. In an attempt to balance out the 
risk of hypoglycemia with the clear benefit of 
renoprotection, the American Diabetes Association 
sets a goal of HbA1c <7% [38]. Accordingly, the re-
cent KDIGO (Kidney Disease: Improving Global 
Outcomes) report on diabetic kidney disease high-
lights the fact that the beneficial effect of tight gly-
cemic control on diabetic nephropathy is based al-
most exclusively on prevention of microalbuminu-
ria and hindering its progression to overt albu-
minuria. The report suggest that the target HbA1c 
level may need to be adjusted upwards in patients 
with more advanced kidney disease, but particular 
attention should be paid to the augmented risk of 
severe hypoglycemia and death in these patients 
[39]. 

Besides glycemic control, attention has been 
paid to additional beneficial effects of oral hypo-
glycemic drugs on other aspects of diabetic neph-
ropathy. These effects include the restoration of 
tubuloglomerular feedback mechanisms, lowering 
of glomerular hyperfiltration, and reduction of hy-
perglycemia-induced inflammatory and fibrotic 
markers by sodium-glucose co-transporter-2 
(SGLT-2) inhibitors. Dipeptidyl peptidase 4 (DPP-
4) inhibitors and glucagon-like peptide 1 (GLP-1) 
receptor agonists are able to exert a renoprotective 
effect by reducing inflammation, fibrosis, and 
blood pressure [40]. Optimal prevention and 
treatment requires the implementation of thera-
pies that interfere specifically with the pathogene-

sis of microvascular complications of diabetes. 
Therefore, glucose-lowering agents that provide 
renoprotection independent of their hypoglycemic 
effects may be considered as combined therapy. 
Simultaneous application of an SGLT-2 inhibitor 
and blockade of the renin-angiotensin-aldosterone 
system may be a more effective strategy to prevent 
the progression of diabetic nephropathy than ei-
ther drug alone [40]. 

Abundant experimental data indicate that thia-
zolidinediones (TZD), a family of anti-diabetic 
drugs that activate the transcription factor perox-
isome proliferator activator receptor gamma 
(PPAR-γ), have direct renoprotective effects [41-
43]. These effects are most probably exerted by 
preventing diabetes-induced renal inflammatory 
processes. However, clinical studies have reported 
controversial outcomes, with some of them report-
ing significant antiproteinuric effects [44-46], and 
others demonstrating insignificant effects [47]. A 
meta-analysis of 15 studies, involving approxi-
mately 2,800 patients, showed that treatment with 
TZD significantly decreases urinary albumin and 
protein excretion [46]. A pilot study conducted in 
diabetic subjects with CKD showed a slower de-
cline in renal function after initiation of TZD [48]. 
Another study compared the treatment with 
rosiglitazone, metformin, and glyburide in 4,351 
recently diagnosed, drug-naïve type 2 diabetes pa-
tients. During a 5-year period after initial treat-
ment with rosiglitazone, the increase in albuminu-
ria was delayed (compared with metformin), renal 
function was preserved (compared with glyburide), 
and blood pressure control was improved relative 
to both other medications [49]. On the other hand, 
these agents raised some safety concerns, includ-
ing an increased risk of cardiovascular disease, es-
pecially with rosiglitzone [50-52], and malignancy 
[53, 54]. In contrast, a recent study conducted by 
the Diabetes Shared Care Program (DSCP) in 
Taiwan showed an association between the use of 
TZD and reduced risk of cardiovascular events, in-
cluding stroke and all-cause mortality [55]. 

Glomerular hyperfiltration is recognized as the 
first step in the progression of kidney disease in 
diabetic patients. At the onset of type 2 diabetes, 
hyperglycemia enhances proximal tubular reab-
sorption, thus leading to a decrease in solute load 
reaching the macula densa, with subsequent sup-
pression of the tubuloglomerular feedback and in-
creased glomerular filtration rate [56, 57]. As men-
tioned above, and evidenced by experimental stud-
ies, SGLT-2 inhibitors attenuate the progressive 
nature of diabetic nephropathy by preventing 
glomerular hyperfiltration independent of their 



 

Management of Diabetic Nephropathy The Review of DIABETIC STUDIES  123 
  Vol. 12 ⋅ No. 1-2 ⋅ 2015 
 

www.The-RDS.org  Rev Diabet Stud (2015) 12:119-133  

Microvasc. Complications of Diabetes 
                                                            Special Edition 

blood glucose-lowering effects [58-60]. However, 
clinical data about the potential role of the proxi-
mal tubule in the pathophysiology of diabetic 
nephropathy and the nephroprotective effects of 
SGLT-2 inhibitors are currently insufficient [60]. 
Additionally, these agents have been tried in pa-
tients with type 1 diabetes, and short-term treat-
ment with the SGLT-2 inhibitor empagliflozin was 
found to attenuate renal hyperfiltration [61, 62]. 

Studies have shown that DPP-4 inhibitors ap-
pear to possess anti-inflammatory properties and 
improve endothelial function, blood pressure con-
trol, lipid metabolism, and bone marrow function 
[63]. Additional experimental data reported direct 
favorable effects of DPP-4 inhibitors on microvas-
cular complications of diabetes. However, the evi-
dence is insufficient to confirm the preventive ef-
fect of this drug on the progression of diabetic mi-
croangiopathy in humans, independently of the ef-
fects on improved glucose control [63, 64]. 

4. Renin-angiotensin system (RAS) 
Solid evidence from experimental studies in 

diabetic animals suggests that intraglomerular 
hypertension and glomerular hypertrophy play 
important roles in the onset of diabetic nephropa-
thy as hyperglycemia induces renal vasodilation 
and a rise in GFR. Subsequent loss of nephrons ac-
celerates the increase in intraglomerular pressure 
through the compensatory response of remaining 
nephrons. RAS inhibitors, including angiotensin-
converting enzyme inhibitors (ACEI) and angio-
tensin II receptor blockers (ARB), are widely used 
to control blood pressure in diabetic patients. 
These drugs have been extensively studied, and 
are considered superior to other antihypertensive 
drug categories in the treatment of diabetic neph-
ropathy because of their capacity to reduce both 
intraglomerular pressure and proteinuria by pref-
erentially dilating the efferent arteriole. The de-
gree of proteinuria in glomerular disease tends to 
relate directly with the intraglomerular pressure; 
thus a treatment-induced reduction in protein ex-
cretion causes a desirable decline in intraglomeru-
lar pressure, and as a consequence improves renal 
outcome. There is now consensus that a decrease 
in protein excretion has predictive significance for 
improved renal prognosis [65-68]. Additionally, 
RAS components seem to be altered in diabetic po-
docytopathy, and their modulation may modify the 
progression of diabetic nephropathy [69]. 

The efficacy of ACEI therapy in type 1 diabetic 
patients with moderately increased albuminuria 
has been evaluated in several randomized prospec-

tive trials. In addition to the reduction of albumin-
uria, ACEI have significant long-term benefits 
[70]. In a systematic review of 11 trials of nor-
motensive type 1 diabetic patients with moder-
ately increased albuminuria, ACEI therapy sig-
nificantly reduced the risk of progression to severe 
albuminuria, and significantly increased the 
chance of regression to normoalbuminuria [71]. 
Additionally, the beneficial response to ACEI seen 
in both hypertensive and normotensive subjects is 
consistent with several studies suggesting that 
these antihypertensive agents deccelerate the pro-
gression of diabetic nephropathy [72, 73]. More-
over, in some patients with type 1 diabetes, ACEI 
exhibit a marked antiproteinuric effect with sus-
tained long-term remission or regression of neph-
ropathy or the nephrotic syndrome; such patients 
appear to have better renal outcomes [74, 75]. 
Therefore, intensive control of systemic blood pres-
sure, in particular with ACEI, may enable recov-
ery from diabetic nephropathy in type 1 diabetes 
patients with advanced renal disease. Although 
there are few data on the efficacy of ARB in pa-
tients with type 1 diabetes and moderately in-
creased albuminuria, based on their proven benefit 
in patients with type 2 diabetes, these drugs are 
probably as effective in type 1 diabetes patients as 
ACEI. 

Regarding primary prevention of moderately 
increased albuminuria in patients with type 1 dia-
betes, several clinical trials have evaluated the ef-
ficacy of ACEI or ARB. However, three random-
ized, placebo-controlled trials in patients with type 
1 diabetes and normoalbuminuria (EUCLID, 
RASS, DIRECT) showed no benefit from angio-
tensin inhibition [76-78]. Moreover, specific his-
tologic findings from kidney biopsies of patients 
with diabetic nephropathy showed that treatment 
with these drugs had no significantly beneficial ef-
fects compared with placebo [77]. 

In contrast, the renoprotective effects observed 
with ACEI and ARB treatment have been substan-
tiated in type 2 diabetic patients with moderately 
increased albuminuria [32, 79, 80]; both groups 
(ACEI and ARB) appeared to be equally effective 
[80]. Also, a clear renoprotective benefit of ACEI 
and ARB has been demonstrated in patients with 
type 2 diabetes and overt nephropathy; a larger 
reduction in albuminuria was correlated with a 
progressively lower risk of ESRD. It should be 
noted that these effects were independent of the 
difference in blood pressure reductions among the 
groups [81-88]. Lowering of albuminuria early in 
the course of the disease correlates with a de-
creased subsequent cardiovascular risk [89]. Nev-
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ertheless, patients with type 2 diabetes and ad-
vanced kidney disease are likely to progress to 
ESRD eventually, although more slowly, despite 
treatment with ACEI or ARBs. 

Regarding primary prevention of moderately 
increased albuminuria, the effect of angiotensin 
inhibition in hypertensive patients with type 2 
diabetes has been evaluated in four randomized, 
placebo controlled trials in patients with type 2 
diabetes and normal albuminuria [90-94]. The tri-
als suggest that ACEI and ARB are effective in 
preventing the new onset of moderately increased 
albuminuria in this group of patients. On the other 
hand, results from clinical trials in patients with 
type 2 diabetes and normal blood pressure remain 
controversial regarding the effectiveness of ACEI 
or ARB in primary prevention of moderately in-
creased albuminuria; these results should thus be 
interpreted with caution [78, 94]. Therefore, the 
National Kidney Foundation Kidney Disease Out-
comes Quality Initiative (NKF/KDOQI) clinical 
practice guidelines have not proposed the imple-
mentation of ACEI or ARB in primary prevention 
of diabetic nephropathy in normotensive individu-
als with normo-albuminuria [95]. 

Combination therapy with ACEI and ARB com-
pared with ACEI or ARB monotherapy was shown 
to reduce proteinuria in patients with type 1 and 
type 2 diabetes [96, 97]. However, the antiprotein-
uric effects of combination therapy do not seem to 
be sufficient for the prevention of renal disease 
progression or death. Moreover, combination ther-
apy has been associated with an increased rate of 
serious adverse events. The VA NEPHRON-D trial 
was discontinued after approximately 2 years be-
cause of safety concerns; patients experienced 
acute kidney injury and severe hyperkalemia, con-
ditions that were significantly more common with 
combination therapy [98]. The ONTARGET trial 
investigated the administration of combination 
therapy with telmisartan and ramipril in patients 
with diabetic nephropathy. It appeared that the 
therapy was associated with a non-significantly 
higher incidence of dialysis initiation or doubling 
of serum creatinine in comparison with monother-
apy, as well as higher rates of acute kidney injury, 
hyperkalemia, and hypotension [99, 100]. A recent 
meta-analysis that evaluated the efficacy and 
safety of combination therapy in diabetic neph-
ropathy suggested that it may be safely applied in 
early stages of the disease when there are signs of 
proteinuria, but should be cautiously used in the 
setting of advanced stages of renal dysfunction 
[101]. 

Aliskiren, an oral direct renin inhibitor, has a 
similar degree of blood pressure-lowering proper-
ties as other agents. In the AVOID trial, aliskiren 
combined with losartan was associated with a sig-
nificantly greater reduction in proteinuria, but no 
significantly greater antihypertensive effect, than 
losartan monotherapy [102]. On the other hand, 
results from the multinational, randomized ALTI-
TUDE trial, which included type 2 diabetic pa-
tients with pre-existing renal or cardiovascular 
disease assigned to aliskiren or placebo, showed 
that more patients in the aliskiren group reached 
the composite primary endpoint of renal and car-
diovascular events, despite a similar incidence of 
renal events in both groups. Additionally, hyper-
kalemia was significantly more frequent with al-
iskiren. Therefore, the trial was prematurely ter-
minated because of the lack of evidence regarding 
benefits and the higher risk of side effects [103]. 

Aldosterone antagonists seem to possess anti-
proteinuric effects when used alone and in combi-
nation with ACEI or ARB in both type 1 and type 2 
diabetes, but involve a risk of hyperkalemia when 
applied in patients with reduced GFR [104-106]. 
However, there is no adequate long-term evidence 
of beneficial effects regarding the prevention of re-
nal impairment through aldosterone antagonists 
[107, 108]. 

5. Blood pressure goals in diabetic 
nephropathy 

It is well established that early treatment of 
hypertension is particularly important in diabetic 
patients both to prevent cardiovascular disease 
and to minimize the progression of microvascular 
complications of diabetes. Past major guidelines 
recommended that the target blood pressure in 
diabetic patients should be less than 130/80 
mmHg. The ACCORD BP trial, which enrolled 
type 2 diabetic patients with increased cardiovas-
cular risk, found no significant cardiovascular 
benefit, except for stroke, and more drug-related 
side effects at a mean systolic blood pressure of 
119.3 than at 133.5 mmHg [109]. 

A recent meta-analysis of 40 trials examined 
the association between antihypertensive treat-
ment and vascular disease in type 2 diabetes in 
100,354 patients, including normotensive and hy-
pertensive subjects [110]. Compared with placebo, 
antihypertensive therapy significantly reduced the 
rate of mortality, total cardiovascular disease, 
myocardial infarction, and stroke. However, analy-
ses of patients classified according to their base-
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line systolic pressure level revealed that, with the 
exception of stroke, the benefit of antihypertensive 
therapy was limited to those whose initial systolic 
pressures were greater than 140 mmHg. Also, the 
different drug classes did not exhibit significant 
differences in their antihypertensive effects, except 
for stroke and heart failure [110]. 

The most recent major guidelines published by 
the eighth Joint National Committee (JNC 8) and 
the European Societies of Hypertension and Car-
diology (ESH/ESC) recommend that all patients 
with diabetes should have a target blood pressure 
of less than 140/90 mmHg [111, 112]. 

6. Intensive lipid control 
Intensive lipid lowering is an important part of 

diabetes management since diabetes is considered 
a coronary heart disease equivalent. In addition to 
promoting systemic atherosclerosis, an elevation in 
lipid levels may also contribute to the development 
of glomerulosclerosis in CKD [113]. Interventional 
studies suggest that anti-hyperlipidemic agents 
have a beneficial effect on diabetic nephropathy 
through improvement of albuminuria and renal 
function [114, 115]. Recent data show that fibrates 
are renoprotective, an effect independent of their 
antihyperlipidemic action [115, 116]. The benefits 
of fibrates may be associated with their anti-
inflammatory properties and decreased production 
of type 1 collagen in the mesangium. Peroxisome 
proliferator-activated receptor α (PPAR-α) is ex-
pressed in several tissues including the kidney. 
Experimental data have suggested that fibrate-
induced activation of PPAR-α, a member of a large 
nuclear receptor superfamily, plays a significant 
role in various metabolic and inflammatory signal-
ing pathways that are involved in diabetic mi-
crovascular complications [117]. 

7. Novel targets in therapy 

Bardoxolone methyl is an oral antioxidant. Its 
structure and activity profile is similar to 
cyclopentenone prostaglandins that exert anti-
inflammatory effects by inhibiting the nuclear fac-
tor κB pathway. Experimental data of drug-
induced or ischemic acute kidney injury have 
shown beneficial effects [118]. These positive ef-
fects were confirmed in the Bardoxolone Methyl in 
CKD and type 2 Diabetes (BEAM) trial, which en-
rolled 227 patients with type 2 diabetes and CKD 
stage III-IV. According to this trial, bardoxolone 
methyl therapy significantly increased estimated 
glomerular filtration rate (eGFR) at 1 year of fol-

low-up, while placebo therapy did not have any ef-
fects on the eGFR [119]. 

The subsequent BEACON trial evaluated 2,185 
patients with type 2 diabetes and stage 4 CKD, 
who were randomly assigned to bardoxolone 
methyl or placebo, while being under concomitant 
therapy with an ACEI or ARB [120]. The trial was 
stopped early after a median follow-up of nine 
months due to a significant increase in the inci-
dence of cardiovascular events, although the pri-
mary endpoint which was a composite of end-stage 
renal disease and cardiovascular death was identi-
cal in both groups. Additionally, despite causing a 
significant rise in GFR, bardoxolone methyl sig-
nificantly increased blood pressure and albuminu-
ria, most probably via sodium and water retention 
[121]. 

Pentoxifylline is a non-specific phosphodi-
esterase inhibitor with anti-inflammatory proper-
ties; it has been used in patients with peripheral 
artery disease and alcoholic hepatitis. Several 
small studies including patients with diabetic 
nephropathy showed that pentoxifylline had anti-
proteinuric effects and reduced the rate of decline 
in eGFR [122-125]. Additional data are needed be-
fore pentoxifylline can be recommended as treat-
ment for diabetic nephropathy. 

Although the molecular mechanism of hyper-
glycemia-induced tissue injury still remains un-
clear, oxidative stress seems to play a key role, and 
exerts its harmful impact via the sorbitol pathway 
and accumulation of advanced glycosylation end 
(AGE) products. In experimental diabetes, sorbitol 
production is markedly enhanced by the intracellu-
lar conversion of glucose to sorbitol. Accumulation 
of sorbitol within the cells results in a rise in cell 
osmolality and a decrease in intracellular myo-
inositol, changes which lead to a decrease in Na-K-
ATPase activity and a possible shift in the intra-
cellular redox potential [126]. Aldose reductase in-
hibitors such as tolrestat were shown to improve 
some of the manifestations of diabetic nephropathy 
by reversing glomerular hyperfiltration and de-
creasing albuminuria, but their potential benefit 
remains in the initial stages of diabetic nephropa-
thy in type 2 diabetes [127-129]. At present, aldose 
reductase inhibitors have shown evidence of bene-
fit in patients with diabetic peripheral neuropathy 
[130]. 

Increased activity of protein kinase C (PKC) 
appears to contribute to the micro- and macrovas-
cular complications of diabetes through changes in 
vascular permeability, angiogenesis, cell growth 
and apoptosis, vasodilation, cytokine activation, 
basement membrane thickening, and extracellular 
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matrix expansion [131]. Lowering PKC may be 
possible via isoform-specific PKC inhibitors such 
as ruboxistaurin mesylate therapy. Therapies 
aimed at lowering PKC may be beneficial in slow-
ing the progression of diabetic nephropathy, as 
shown in animal studies. However, studies in hu-
mans have provided ambiguous results to date; 
much larger trials are necessary to determine the 
potential clinical role of this agent [132-134]. 

Experimental data suggest that glomerular 
capillary wall and mesangial alterations in dia-
betic nephropathy involve alterations of glycopro-
teins in these structures [135]. Experimental data 
from diabetic animals reveal that the administra-
tion of anionic glycoproteins can effectively pre-
vent the biochemical alterations that promote al-
buminuria [136]. Administration of sulodexide, a 
purified mixture of sulfated glycosaminoglycan 
polysaccharides, has been associated with a reduc-
tion in albuminuria in diabetic patients [137, 138]. 
However, a recent multicenter, placebo-controlled, 
double-blinded study showed that sulodexide did 
not decrease UAE in patients with diabetic neph-
ropathy and microalbuminuria [139]. Based on 
these controversial data, further research is 
needed to clarify the potentially beneficial role of 
sulodexide in the early stages of diabetic neph-
ropathy. 

Pirfenidone is an oral synthetic antifibrotic 
agent that has demonstrated benefits in animal 
models of diabetic nephropathy and in patients 
with this syndrome by preventing the progression 
of renal impairment. Pirfenidone is thus a promis-
ing agent for the treatment of diabetic nephropa-
thy, and should be further investigated and ad-
vanced [140, 141]. 

Experimental and clinical studies have shown 
that vitamin D has antiproteinuric effects via both 
RAS-dependent and RAS-independent pathways 
[142]. In experimental diabetic nephropathy, vi-
tamin D receptor activation via calcitriol and pari-
calcitol was shown to decrease the expression of 
proinfammatory mediators in podocytes and tubu-
lar cells, and to prevent glomerular infiltration by 
macrophages, apoptosis, and extracellular matrix 
deposition [143]. These effects were observed even 
when proteinuria was not reduced. The vitamin D 
Receptor Activator in Albuminuria Lowering (VI-
TAL) study, a multinational, placebo-controlled, 
double-blind trial, included albuminuric,  type 2 
diabetic patients receiving ACEI or ARB. It was 
found that the addition of paricalcitol to RAS inhi-
bition reduced residual albuminuria in patients 
with diabetic nephropathy [144]. 

Endothelin-1 (ET-1) is a potent vasoconstrictory 
peptide with proinflammatory and profibrotic 
properties that exerts its biological effects through 
two receptor subtypes, namely ET(A) and ET(B). 
ET-1 promotes diuresis and natriuresis by local 
production and action through ET(B) receptors in 
the renal medulla, whereas activation of ET(A) re-
ceptors causes vasoconstriction, mesangial-cell 
proliferation, extracellular matrix production, and 
inflammation [145]. Endothelin-receptor antago-
nists are a promising therapeutic tool for diabetic 
nephropathy. However, their benefit remains con-
troversial since administration of non-selective en-
dothelin antagonists has been associated with ad-
verse cardiovascular events, including congestive 
heart failure and fluid overload. Selective inhibi-
tion of ET(A) receptors appears not to interfere 
with the natriuretic, antihypertensive, and ET-
clearing effects of ET(B) [146-149]. A recent meta-
analysis of five randomized controlled trials on en-
dothelin-receptor antagonists found reduced albu-
minuria in patients with diabetic nephropathy, but 
also an increased rate of serious adverse events 
compared with placebo [150]. It will be necessary 
to perform well-controlled, adequately powered 
trials with a longer duration to determine and 
weigh the potential benefits versus risks of endo-
thelin inhibition in diabetic nephropathy. In an at-
tempt to realize this proposal, the SONAR study, a 
currently ongoing, large, randomized, clinical trial, 
aims to determine the efficacy of atrasentan in 
preventing the progression of diabetic nephropathy 
[151]. 

Finally, the phosphate binder sevelamer car-
bonate, a currently used phosphate binder, was 
shown to significantly reduce HbA1c, fibroblast 
growth factor 23, and lipids, and to exhibit anti-
inflammatory and antioxidant properties, inde-
pendently of phosphate level reduction in patients 
with diabetes and early kidney disease [152]. 
However, a recent trial did not show any benefits 
of sevelamer regarding reductions in HbA1c or al-
buminuria overall in patients with type 2 diabetes 
and diabetic nephropathy, except for very specific 
groups of patients [153]. Thus, further studies may 
be warranted regarding this agent. 

8. Conclusions and future challenges 

The clinical course of diabetic nephropathy has 
changed significantly due to improvements in pa-
tient diagnosis, follow-up, and treatment. The 
availability and implementation of major guide-
lines play an important role in clinical treatment 
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by supporting physicians to 
make evidence-based clinical 
decisions. Nowadays, the 
gold standard of diabetic 
nephropathy therapy in-
volves intensive treatment of 
hyperglycemia and hyper-
tension, mostly through RAS 
blockade. Additional benefi-
cial effects on the patho-
physiology of diabetic neph-
ropathy could be ulitized by 
specific oral hypoglycemic 
drugs (such as PPAR-γ ago-
nists, SGLT2 inhibitors, and 
DPP4 inhibitors) and fi-
brates. These agents are im-
portant therapeutic options. 

Novel agents, such as 
bardoxolone methyl, pentoxi-
fylline, PKC inhibitors, su-
lodexide, pirfenidone, endo-
thelin receptor antagonists, 
vitamin D supplementation, 
and phosphate binders, have 
been associated with contro-
versial results (Figure 2). 
Athough new insights into 
the pathogenetic mecha-
nisms involved in diabetic nephropathy, including 
gene expression and identification of susceptibility 
loci, have opened new horizons towards novel in-

tervention strategies, there is still a long way to go 
in the field of research into diabetic nephropathy. 
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