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■ Abstract 
Dyslipoproteinemia is highly prevalent in diabetes, chronic 
kidney disease, and diabetic kidney disease (DKD). Both 
diabetes and chronic kidney disease (CKD) are associated 
with hypertriglyceridemia, lower high-density lipoprotein, 
and higher small, dense low-density lipoprotein. A number 
of observational studies have reported that dyslipidemia 
may be associated with albuminuria, renal function impair-
ment, and end-stage renal disease (ESRD) in the general 
population, and especially in CKD and DKD patients. Dia-
betic glomerulopathy and the related albuminuria are the 
main manifestations of DKD. Numerous animal studies sup-
port the finding that glomerular atherosclerosis is the main 

mechanism of glomerulosclerosis in CKD and DKD. Some 
randomized, controlled trials suggest the use of statins for 
the prevention of albuminuria and renal function impairment 
in CKD and DKD patients. However, a large clinical study, 
the Study of Heart and Renal Protection (SHARP), does not 
support that statins could reduce ESRD in CKD. In this arti-
cle, we analyze the complex association of dyslipoproteine-
mia with DKD and deduce its relevance from animal studies, 
observational studies, and clinical trials. We show that spe-
cial subgroups could benefit from the statin treatment. 
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1. Introduction 
 

 yslipoproteinemia is highly prevalent in dia- 
 betes, chronic kidney disease (CKD), and 
 diabetic kidney disease [1-3]. Dyslipopro-

teinemia is associated with the development of 
CKD and renal function impairment in the general 
population and in diabetic patients [4-7]. When re-
nal function declines or proteinuria increases, 
dyslipoproteinemia becomes severe [8, 9]. How-
ever, it is unclear whether dyslipoproteinemia 
causes end-stage renal disease (ESRD), and 
whether the treatment of dyslipoproteinemia could 

prevent ESRD. Recently, the Study of Heart and 
Renal Protection (SHARP) failed to support that 
statin treatment can reduce ESRD [10]. The pur-
pose of this review is to describe and analyze care-
fully the complex association of dyslipoproteinemia 
with diabetic kidney disease delineated in animal 
studies, observational studies, and clinical trials. 

2. Diabetic kidney disease versus dia-
betic nephropathy 

Type 2 diabetes is the leading cause of CKD 
and ESRD in most countries as a consequence of 
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the global increase in type 2 diabetes and obesity 
[11]. Our discussion in this article is on type 2 dia-
betes only. Diabetic nephropathy has been catego-
rized based on the values of urinary albumin ex-
cretion as microalbuminuria and macroalbuminu-
ria [12]. However, many data do not support the 
view that albuminuria and renal function impair-
ment are closely linked in the progression of dia-
betic kidney disease [13]. Albuminuria can be de-
tected shortly after the diagnosis of diabetes and 
the prevalence of macroalbuminuria is highly 
variable, ranging from 5% to 20% in patients with 
type 2 diabetes [14, 15]. Moreover, in patients with 
type 2 diabetes in NHANES III (Third National 
Health and Nutrition Examination Survey), low 
GFR (<60 ml/min/1.73m2) was present in 30% of 
patients without albuminuria and retinopathy [16, 
17]. Thus, albuminuria and diabetic nephropathy, 
which is defined by albuminuria, are not consis-
tently correlated with renal function impairment. 

Patients with type 2 diabetic nephropathy have 
more structural heterogeneity than patients with 
type 1 diabetic nephropathy [18-20]. Type 1 dia-
betic nephropathy is characterised by glomerular 
hypertrophy, increased glomerular basement 
membrane width, diffuse mesangial sclerosis, hya-
linosis, microaneurysm, podocyte damage and hya-
line arteriosclerosis [20, 21]. Tubulointerstitial fi-
brosis and tubular atrophy and dedifferentiation 
are also observed [20]. In diabetic nephropathy, 
tubulointerstitial fibrosis and atrophy may be pre-
sent in patients with minimal or mild glomerular 
lesions [22]. In type 2 diabetic patients who un-
derwent kidney biopsy, the prevalence of non-
diabetic renal disease could be 45% to 57% in dif-
ferent reports, depending on selection criteria and 
population [23, 24]. The term “diabetic nephropa-
thy” should be replaced by diabetic kidney disease 
(DKD), diabetic CKD, or diabetes and CKD. The 
terms “diabetic glomerulopathy” or “diabetic neph-
ropathy” should be reserved for biopsy-proven kid-
ney disease caused by diabetes, or for basic stud-
ies. 

3. Dyslipoproteinemia versus hyper-
lipidemia as a cause of diabetic kid-
ney disease 

Diabetic kidney disease develops in 40% of pa-
tients with diabetes, even in some whose glucose 
levels are well maintained. Microalbuminuria 
alone may not provide optimal identification of pa-
tients with type 2 diabetes at higher risk of renal 
impairment [13]. The potential initiation and pro- 

 
gression factors for DKD, besides hyperglycemia 
and albuminuria, are heavily researched [25]. 
Lipid-related nephrotoxicity has been proposed as 
a cause for the progression of renal disease [26]. 

Lipoproteins are composed of lipids and apopro-
teins. Historically, the term “dyslipidemia” was 
created to refer to abnormal levels of cholesterol, 
triglycerides (TG), or both. In 1965, Fredrickson et 
al. translated hyperlipidemia into hyperlipopro-
teinemia by developing a lipoprotein classification 
system based on eletrophoretic migration of the 
four major lipoprotein classes [27]. Dyslipopro-
teinemia includes disorders of lipid levels, abnor-
malities in lipoprotein structure, and abnormal 
lipoprotein composition or density [28]. Thus, we 
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use the term “dyslipoproteinemia-associated neph-
ropathy“ to describe the direct or indirect effect of 
lipoprotein on the kidney. 

4. Dyslipoproteinemia is prevalent in 
DKD and CKD 

Before the widespread use of statin, dyslipopro-
teinemia was frequently detected in diabetes. In 
the Framingham Offspring Cohort (1983-1987), 
subjects with diabetes were more likely to have 
hypertriglyceridemia, lower high-density lipopro-
tein (HDL)-cholesterol, higher very-low-density 
lipoprotein (VLDL)-cholesterol, lower apo A1, and 
higher small dense low-density lipoprotein (LDL) 
particles than those without diabetes [2]. Observa-
tional studies in type 2 diabetes have revealed (i) 
the association of hypercholesterolemia with the 
development of diabetic kidney disease, (ii) the de-
cline in renal function, and (iii) ESRD [4-6]. 

Dyslipoproteinemia is also prevalent in CKD. 
In the Framingham Offspring Cohort (1998-2001), 
patients with CKD were more likely to have hy-
pertriglyceridemia, higher TG-rich lipoprotein 
remnants, lower HDL-cholesterol levels, and 
higher lipoprotein(a) (Lp(a)) than those without 
CKD [1, 29]. Total and LDL-cholesterol levels are 
usually within normal limits or slightly reduced in 
these individuals. In the NHANES III study, par-
ticipants with CKD also had higher levels of apo B 
and lower levels of apo A than those with normal 
renal function [30]. 

Whether dyslipoproteinemia in DKD is more 
severe than dyslipoproteinemia in CKD without 
diabetes, or in diabetes without CKD, is not well 
understood. In the Pravastatin Pooling Project, in 
which baseline lipids were divided by both CKD 
and diabetes, the CKD+/diabetes+ group had the 
lowest HDL- and LDL-cholesterol and highest TG 
levels [3]. 

5. Lipid metabolism in diabetes and 
CKD 

Both diabetes and CKD are associated with hy-
pertriglyceridemia, lower HDL-cholesterol, higher 
VLDL-cholesterol, average levels of LDL-
cholesterol, but higher levels of small dense LDL 
cholesterol. However, diabetes and CKD have a 
different lipid metabolism [8]. In insulin resistance 
and type 2 diabetes, increased production of TG-
rich lipoproteins predominates. Hepatic VLDL 
synthesis is increased, driven by an increased flux 
of free fatty acids. Smaller, denser LDL particles 

and a decrease in HDL2 subspecies are related to 
the increase of hepatic lipase activity [31]. In CKD 
without nephrotic syndrome, decreased disposal of 
TG-rich proteins predominates [8]. Inhibition of 
lipoprotein lipase impairs the removal of VLDL 
and chylomicron remnants, and leads to increased 
levels of intermediate-density lipoproteins (IDL) 
[32]. HDL fails to mature normally, and reverse 
cholesterol transport is inhibited [33]. In CKD 
with nephrotic syndrome, both an increased pro-
duction and a decreased catabolism of LDL-
cholesterol results in increased total cholesterol 
and LDL-cholesterol levels as well as an increase 
in small dense LDL particles [34]. Both proteinu-
ria and hypoalbuminemia can separately contrib-
ute to impaired lipoprotein catabolism in these pa-
tients [9]. 

It is possible that serum lipid levels do not re-
flect the tissue lipid load in some situations. In re-
sponse to inflammation such as CKD, tissue lipid 
redistribution from circulation to tissue (renal and 
vascular) and tissue (adipocytes) to tissue (renal 
and vascular), and cell lipid accumulation due to 
increased cellular cholesterol influx and reduced 
efflux, may occur [35, 36]. Both mechanisms may 
result in a lower circulating cholesterol levels in 
patients with chronic inflammatory diseases. 

6. Glomerular atherosclerosis 

In the kidneys of diabetic humans, intraglome-
rular lipid deposits were first described in 1936 by 
Kimmelstiel and Wilson [37]. Intraglomerular lipid 
accumulations were shown to consist mainly of 
free and esterified cholesterol, and secondarily of 
triglycerides and phospholipids in animal models 
[38]. Lipid accumulation was found in 60% of the 
mesangial matrix and subendothelial area and in 
20% of the intramembranous area and intracellu-
lar area in human glomerular disease [39]. 

The histologic features of focal segmental 
glomerulosclerosis and diabetic nodular glomeru-
losclerosis, including glomerular accumulation of 
serum proteins, lipids, and macrophages, resemble 
the patterns of the lesions seen in atherosclerosis 
[38, 40]. Also, the developing atherosclerotic and 
glomerulosclerotic lesions seem to share certain 
pathophysiologic mechanisms, including endothe-
lial cell injury, macrophage infiltration, hyperlipo-
proteinemia, and hypertension (glomerular hyper-
tension) [41]. In 1982, Moorhead proposed that 
“glomerular atherosclerosis” is the mechanism of 
glomerulosclerosis, which shares common patho-
genetic mechanisms with atherosclerosis. 
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7. Cell model of glomerular athero-
sclerosis: the role of mesangial cells 
and oxidized LDL 

Glomerular mesangial cells and vascular 
smooth muscle cells are closely related in terms of 
origin, histochemistry and contractility [42]. 
Glomerular injury could direct circulating lipopro-
teins into the mesangium [43]. Lipid deposition 
can stimulate mesangial cell activation and prolif-
eration, similar to smooth muscle cell proliferation 
in atherosclerosis [44]. Mesangial cells release 
chemokines and express adhesion molecules which 
recruit monocytes to the mesangium [45], where 
they are transformed into resident macrophages 
that secrete proinflammatory mediators [46]. The 
macrophages also ingest lipids to become foam 
cells [46]. 

Oxidative modification of LDL (oxLDL) plays a 
pathogenic role in the progression of atheroscle-
rotic lesions [47]. LDL and oxLDL are present in 
the lesions of glomerulosclerosis [48]. OxLDL ex-
erts cytotoxic, proinflammatory and immunogenic 
properties [49]. OxLDL, but not native LDL, can 
be cytotoxic by inducing apoptosis. OxLDL could 
be proinflammatory by the production of superox-
ide, cytokines, chemokines and thrombotic factors 
[50, 51]. The oxLDL produces a number of neo-self 
determinants that can elicit immune responses 
such as anti-oxLDL antibody [49]. Lipid and free 
fatty acid themselves could be causes of lipotoxic-
ity. Fatty acids enter deleterious pathways such as 
ceramide production, which causes apoptosis [51]. 

8. Animal and human models of dysli-
poproteinemia-associated glomerulo-
sclerosis 

Several proposed mechanisms of dyslipopro-
teinemia-associated glomerulosclerosis are dis-
cussed. They are discussed in the following sec-
tions. 

8.1 High-cholesterol diet rat model of hyperlip-
idemia with or without hemodynamic factors 

Rats fed a diet high in cholesterol develop a 
higher incidence of glomerulosclerosis after several 
months [52]. The severity of the hypercholes-
terolemia correlates with proteinuria and is ac-
companied by lipid deposits in glomeruli [53]. 
These rats have increased glomerular capillary 
pressure, afferent arteriolar resistance, and single 
nephron filtration fraction [54]. This model aug-

ments the glomerular lesions in combination with 
other insults such as uni-nephrectomy, hyperten-
sion, diabetes or obesity [44, 55]. Some studies 
found that glomerular hemodynamic factor is 
pathogenetic in this model [55]. The contribution 
of hypercholesterolemia to the progression of renal 
disease seems more important than its role in ini-
tiating renal disease [56]. 

8.2 Insulin-resistant rat model of hyperlipo-
proteinemia independent of hyperglycemia 

Increased TG-rich lipoproteins in insulin resis-
tance could be associated with glomerulosclerosis. 
The obese Zucker rats develop hyperlipoproteine-
mia, hyperinsulinemia, insulin resistance, and 
obesity but not hyperglycema up to one year of age 
[57]. Albuminuria and spontaneous focal glomeru-
losclerosis are noted at an early age, despite nor-
mal glomerular capillary pressures and nephron 
plasma flows [58]. Hypertriglyceridemia occurs 
prior to the development of renal disease and con-
tributes to the observed proteinuria and glomeru-
lar injury [59]. Treatment with statin reduces both 
serum cholesterol and triglyceride levels and also 
decreases albuminuria, interstitial fibrosis and 
glomerulosclerosis [58, 60]. 

8.3 Limitations of animal models 

We should notice that the composition, struc-
ture, and function of lipoproteins differ between 
humans and rats [28]. The rat lacks cholesteryl es-
ter transfer protein and Lp(a) [28, 61]. In humans, 
VLDL secreted by the liver contains ApoB-100 
while, in rat, VLDL secreted by rat liver may also 
contain ApoB-48, which could be taken up by vari-
ous tissues including mesangial cells [28]. There is 
also gender difference in the models [62]. 

The lipid profiles of rats are different from that 
of humans with very low LDL and higher HDL 
[61]. A 4-6 fold increase in serum cholesterol is 
needed to aggravate pre-existing renal injury [63]. 
In animal models with less pronounced increases 
in serum cholesterol, other renal injury was ap-
plied to exacerbate the disease [64]. This kind of 
approach could make it difficult to differentiate be-
tween hemodynamic and dyslipoproteinemic effect. 

8.4 Abnormal lipoprotein structure and glome-
rulosclerosis 

Hyperlipidemia alone does not necessarily re-
sult in glomerulosclerosis. Familial type III hyper-
lipoproteinemia, characterized by elevated levels of 
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triglyceride, cholesterol, and xanthomas, has 
rarely been associated with glomerulopathy [65, 
66]. ApoE2/2 homozygosity (familial type III hy-
perlipoproteinemia-associated glomerulonephropa-
thy) and mutant ApoE (lipoprotein glomerulopa-
thy) could be associated with glomerulosclerosis 
[65-67]. Abnormal structure of ApoE isoforms may 
cause aggregated deposits in the glomerulus [68]. 

Diabetes mellitus is often associated with type 
III hyperlipoproteinemia. ApoE2 allele, a lipopro-
tein in chylomicron, VLDL and HDL, is defective 
in binding to ApoE receptors and associated with 
type III hyperlipidemia [69, 70]. Many studies sug-
gest that ApoE2 allele is a risk factor for the de-
velopment of diabetic nephropathy in patients 
with either type 1 or type 2 DM [71, 72]. In the 
general population of the Atherosclerosis Risk in 
Communities (ARIC) study, ApoE2 allele predicts 
chronic kidney disease progression, independent of 
diabetes, lipid, and nonlipid risk factors but does 
not predict hospitalization or ESRD [73]. ApoE2 
may affect CKD progression through modulation of 
circulating lipid levels and through regulation of 
mesangial and glomerular function [69]. 

9. Dyslipoproteinemia and tubu-
lointerstitial fibrosis 

In glomerular diseases, correlations between 
histologic variables of tubulointerstitial injury and 
a decline in renal function have been noted since 
1970 [74]. The rate of deterioration of renal func-
tion correlates best with the degree of renal tubu-
lointerstitial fibrosis, better than the degree of 
glomerular injury in type 2 diabetes [75, 76]. The 
prevalence of tubulointerstitial fibrosis may be as 
high as 40%, as seen in a study of microabluminu-
ric type 2 diabetes [19]. 

Dyslipoproteinemia-associated nephropathy is 
also proposed in tubulointerstitial disease, in 
which luminal apoprotein precipitates initiate or 
aggravate tubulointerstitial disease [26]. Focal 
staining of neutral lipids and oxidized lipoproteins 
was seen in tubular epithelial cytoplasm. However, 
the mechanism is not well studied. 

9.1 Dyslipoproteinemia-associated tubu-
lointerstitial fibrosis 

Some findings indicate that dyslipoproteinemia 
could directly contribute to tubulointerstitial fibro-
sis. Interstitial fibrosis and tubular atrophy have 
been documented in hypercholesterolemic rats 
without primary glomerular disease [77, 78]. In 

obese Zucker rats, the extracellular matrix deposi-
tion in the interstitium was evident at 3 months, 
while macrophage infiltration was noted at 6 
months [79]. However, we should note that the 
animals in some of the studies had very high se-
rum cholesterol levels [77]. 

9.2 Dyslipoproteinemia superimposed on 
glomerular injury-associated tubulointerstitial 
fibrosis 

Animal models of the hypercholesterolemic rat 
showed parallel severity of glomerulosclerosis and 
tubulointerstitial fibrosis [44, 58, 59, 80]. Tubu-
lointerstitial injury may be secondary to glomeru-
lar injury in glomerular diseases [81]. Glomerular 
proteinuria may increase the protein load of the 
tubular cells, and misdirection of the glomerular 
filtrate into the interstitium may induce the inter-
stitial inflammation [81, 82]. Protein filtered by 
the glomeruli and reabsorbed by proximal tubular 
cells induce expression of inflammatory and fibro-
genic mediators, especially TGF-β [83]. The filtered 
oxLDL may cause tubular cell apoptosis in diabetic 
nephropathy [84]. However, it is largely unknown 
whether glomerular injury or proteinuria in the 
presence of dyslipoproteinemia further exacerbates 
tubulointerstitial fiborsis. 

10. Dyslipoproteinemia and renal 
function progression in observational 
studies 

A number of observational studies have re-
ported that dyslipidemia is associated with albu-
minuria, renal function progression and ESRD in 
the general population, CKD patients and DKD 
patients [7]. Some details about these studies 
should be noted. Firstly, the metabolism of lipopro-
teins and lipids are altered interdependently in 
both diabetes and CKD. For example, triglycerides 
are strongly associated with small, dense LDL and 
a decrease in the HDL-2. Studies found the asso-
ciation between triglycerides and renal dysfunc-
tion without the adjustment of lipoproteins should 
thus be interpreted carefully [28]. Secondly, there 
is a decreased trend in the association of CKD and 
albuminuria with high cholesterol. The prevalence 
ratio for CKD associated with high cholesterol de-
creased from 1.58 in NHANES 1988-1994 to 1.2 in 
NHANES 1999-2004 [85]. Studies in the earlier 
period may not be up to the current standard of 
treatment. 
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In the general population, hyperlipidemia is as-
sociated with albuminuria, elevated creatinine but 
not with ESRD. In the Gubbio Population Study 
with 1567 nondiabetic adults and a mean total 
cholesterol of 230 mg/dl, relative risk for microal-
buminuria was 1.95 per 40 mg/dl increase in total 
cholesterol [86]. In the Physician Health Study in-
volving 4483 healthy males with an initial 
creatinine <1.5 mg/dl and a mean total cholesterol 
of 234 mg/dl at 1982, total cholesterol >240 mg/dl 
was associated with an increased risk of elevated 
creatinine ≥1.5 mg/dl after 15 years [7]. The ARIC 
study revealed that elevated triglycerides and de-
creased HDL-cholesterol were associated with an 
increased risk of rise in serum creatinine [87]. 
However, in the Kaiser Permanente cohort study, 
involving 177,570 individuals attending a health 
check-up with a mean total cholesterol 222 mg/dl 
at 1964-1973, hypercholesterolemia is not associ-
ated with an increased risk for ESRD after 25 
years [88]. 

In the nondiabetic CKD population, studies 
have shown that hyperlipidemia might be associ-
ated with renal function progression and ESRD. In 
the Modification of Diet in Renal Disease study in-
cluding 840 nondiabetic CKD patients with a 
mean total cholesterol of 215 mg/dl, lower HDL-
cholesterol predicted a faster decline in GFR [89, 
90]. A few studies on glomerulonephropathy have 
also shown that dyslipoproteinemia was associated 
with the progression of renal function [91-94]. In 
our CKD stage 3-5 cohort study consisting of 1931 
nondiabetic patients with a mean total cholesterol 
of 194 mg/dl, higher total and LDL-cholesterol and 
lower HDL-cholesterol were associated with higher 
risk for ESRD and rapid renal function decline 
[95]. 

In the patients with type 2 diabetes with or 
without CKD, numerous studies have shown that 
hyperlipidemia is associated with albuminuria and 
probably with renal function progression and 
ESRD. Analyses of the 5102 UKPDS participants 
without albuminuria or with normal plasma 
creatinine (a mean total cholesterol of 208 mg/dl) 
showed that higher LDL-cholesterol and triglyc-
erides were associated with albuminuria but not 
associated with GFR <60 ml/min or doubling of 
plasma creatinine [96]. In the RENAAL study in-
cluding 1513 DKD patients with a mean total cho-
lesterol of 228 mg/dl, the relative risk (RR) of 
reaching the primary composite end point or 
ESRD among patients in the upper quartile of to-
tal and LDL-cholesterol was significantly higher 
[4]. In our cohort study consisting of 1472 DKD pa-
tients with a mean total cholesterol of 198 mg/dl, 

higher total and LDL-cholesterol and lower HDL-
cholesterol were associated with higher risk for 
ESRD and rapid renal function decline [95]. 

11. Statin treatment and renal out-
comes in randomized controlled tri-
als 

Statins that inhibit HMG-CoA reductase have 
been demonstrated to activate eNOS, maintain 
glomerular filtration rate and renal cortical blood 
flow and ameliorate glomerular lesions. Several 
meta-analyses with different selection criteria 
about the clinical trials of statin treatment on re-
nal outcomes had been published [97-100]. 

Statins have been widely tested in cardiovascu-
lar disease patients with or without CKD, and 
showed beneficial effects in slowing renal function 
progression. Post hoc analysis of data from the 
Prospective Pravastatin Pooling (PPP) project (in-
cluding 3 randomized, controlled trials (RCTs), 
WOSCOPS, CARE, and LIPID) compared pravas-
tatin 40 mg/dl and placebo in 18,569 subjects (7% 
diabetes and a total cholesterol of 234 mg/dl) at 
high risk for cardiovascular disease (CVD). It was 
shown that pravastatin reduced the adjusted rate 
of kidney function loss by 0.08 and 0.22 ml/min per 
1.73 m2/y in all subjects and in CKD stage 3 pa-
tients, respectively. The pravastatin also reduced 
the risk of acute renal failure, but did not reduce 
the frequency of a ≥25% decline in kidney function 
[101]. A meta-analysis which combined the data 
from PPP and other 3 RCTs (GREACE, HPS, and 
ALLIANCE) including 38311 subjects with CVD or 
at high risk for CVD and a mean total cholesterol 
of 230 mg/dl showed a benefit of statin therapy 
(0.93 ml/min per 1.73 m2/yr slower than the control 
group) [98]. Individual studies (CARE, GREACE 
and ALLIANCE) have also reported that statin 
treatment was more beneficial in patients with 
GFR ≤60 ml/min per 1.73 m2 [102-104]. A post hoc 
analysis of the TNT study, comparing 10 or 80 
mg/dl atorvastatin in 9,656 patients (15% diabetes) 
with coronary heart disease and a total cholesterol 
of 206 mg/dl, showed that high-dose atorvastatin 
had an increase in GFR of 1.68 ml/min per 1.73 m2 
over 5 yr compared with the low-dose group [105]. 

Statins given to the CKD population has bene-
ficial effects on renal function progression, but not 
on ESRD. Early small RCTs of lipid reduction in a 
meta-analysis, including 117 glomeronephritis and 
245 diabetic patients carried out in 1990-2000, 
found that lipid reduction had beneficial effects on 
the decline of GFR [97]. In another meta-analysis, 
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including 3 RCTs, followed up for more than 1 
year, with 101 glomerulonephritis patients with a 
total cholesterol 325 mg/dl, the beneficial effect of 
statins on GFR was 5.35 ml/min per 1.73 m2/yr 
[98]. However, in the recent SHARP study, which 
included 6,247 CKD patients with a mean total 
cholesterol of 189 mg/dl, simvastatin plus 
ezetimibe treatment did not produce significant 
reductions in ESRD, ESRD or death and ESRD or 
doubling of baseline creatinine [10]. 

Statins in diabetic patients with or without 
CKD have a small beneficial effect on renal func-
tion progression, but not on albuminuria. Early 
small RCTs of lipid reduction in 61 diabetic pa-
tients did not show significant benefits [98]. In the 
Heart Protection Study, including 5,963 diabetic 
patients with a total cholesterol of 224 mg/dl and 
5.2% of whom with elevated creatinine, the sim-
vastatin group was associated with a smaller in-
crease in creatinine than the placebo group, with a 
difference of 0.024 mg/dl [106]. The CARDS study 
enrolled 2,838 diabetic patients―970 of whom with 
CKD―with a total cholesterol of 206 mg/dl and no 
previous CVD. Atorvastatin treatment was associ-
ated with a modest improvement in GFR (0.18 
ml/min per 1.73 m2/y). This improvement was more 
apparent in those with albuminuria (0.38 ml/min 
per 1.73 m2/yr) [105]. However, atorvastatin 
treatment did not influence the incidence of albu-
minuria or regression to normoalbuminuria [105]. 
23% of the total participants of the SHARP study 
were diabetic, but no subgroup analysis was re-
ported [10]. 

12. Fibrate treatment and renal out-
comes in randomized controlled tri-
als 

Fenofibrate is a peroxisome proliferator-
activated receptor-α activator with pleiotropic ef-
fects such as reducing levels of pro-inflammatory 
markers. Some meta-analyses about the clinical 
trials of fibrate treatment on renal outcomes have 
been published [99, 107]. 

The effect of fibrate on renal function has been 
less widely studied than that of statin. Early small 
trials have noted an acute increase in creatinine 
after fibrate treatment. A post hoc subgroup 
analysis of 399 CKD men with coronary disease in 
the VA-HIT study showed that renal function in 
the gemfibrozil group did not differ from the pla-
cebo group after a period of 5 years [108]. Al-
though, the incidence of transient, but unsus-
tained, increases in serum creatinine ≥0.5 mg/dl 

was significantly greater in the gemfibrozil group 
[108]. 

Most of the studies on the effect of fibrate on 
renal function were carried out in diabetic popula-
tions. A meta-analysis, including DAIS, ACCORD, 
and FIELD, performed on 14,385 patients with 
mean total cholesterol of 187 mg/dl and mean tri-
gylceride of 178 mg/dl showed that fibrate therapy 
reduced the risk of albuminuria progression (RR: 
0.86) [107]. Two trials (DAIS and FIELD) includ-
ing 2,152 diabetic patients with albuminuria re-
ported that fibrate therapy significantly increased 
the likelihood of albuminuria regression (RR: 1.19) 
[107]. The incidence of ESRD was low and no dif-
ference was found between the fibrate and control 
group in the ACCORD and FIELD studies [109]. 
There was no report for the DKD subgroups in 
these studies. 

13. Summary of findings from studies 
on diabetic kidney disease 

We retain the following main findings and con-
clusions from the studies on diabetic kidney dis-
ease: 

 
1. Diabetic glomerulopathy and the associated 

albuminuria are present in most, but not all, 
DKD forms. Both glomerulosclerosis and 
tubulointerstitial fibrosis are present in 
DKD. 

2. The glomerular atherosclerosis hypothesis, 
which connects hyperlipoproteinemia, 
oxidative stress, inflammatory cells, and 
mesangial cells, is supported by animal 
models. Association of dyslipoproteinemia 
with tubulointerstitial fibrosis is less 
studied. 

3. Several observational studies suggest that 
dyslipoproteinemia is associated with 
albuminuria in DKD. One RCT (CARDS) 
does not support the hypothesis that statin 
treatment decreases albuminuria. Three 
RCTs (DAIS, ACCORD, and FIELD) support 
the hypothesis that fibrate treatment 
reduces the risk of albuminuria progression. 

4. Some observational studies suggest that 
dyslipoproteinemia is associated with renal 
function progression in DKD. Meta-analyses 
of RCTs on CVD patients demonstrate a 
small benefit of statin treatment. One RCT 
(CARDS) shows a small improvement from 
statin treatment in diabetes patients, which 
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was more apparent in those with 
albuminuria. Fibrate treatment is associated 
with an acute decrease in GFR, and long-
term effects on renal function progression 
are not clear. 

5. Some observational studies suggest that 
dyslipoproteinemia is associated with ESRD 
in DKD. The SHARP study of CKD patients 
treated with simvastatin plus ezetimibe did 
not show significant reductions in ESRD. 
The subgroup analysis of DKD has not yet 
been published. The effect of fibrate 
treatment on ESRD is not clear. 

6. Early studies had higher baseline 
cholesterol and higher targeted cholesterol 
levels than later studies. The SHARP study 
had the lowest baseline cholesterol levels. 
Thus, it could not be excluded that statin 
treatment caused benefits on renal outcome 

in those with high baseline cholesterol 
levels. 

14. Conclusions 
Dyslipoproteinemia could cause glomeruloscle-

rosis and tubulointerstitial fibrosis in animal mod-
els. Dyslipoproteinemia is associated with albu-
minuria, renal function progression and ESRD in 
observational studies of CKD and DKD. In clinical 
trials, the benefit of statin treatment for renal 
function progression is small and evident only in 
the CVD population. There is not enough evidence 
to recommend the use of statin or fibrate in the 
treatment of renal function progression and the 
prevention of ESRD in DKD. Data suggest that 
certain subgroups such as CVD, CKD stage 3-4, 
patients with severe hyperlipidemia, and patients 
with Apo E2 allele may be the candidates for fu-
ture studies in DKD. 
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