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■ Abstract 
Patients with diabetes frequently exhibit the combined oc-
currence of hyperglycemia and dyslipidemia. Published data 
on their coexistence are often controversial. Some studies 
provide evidence for suboptimal lifestyle and exogenous hy-
perinsulinism at “mild insulin resistance” in adult diabetic 
patients as main pathogenic factors. In contrast, other stud-
ies confirm that visceral adiposity and insulin resistance are 
the basic features of dyslipidemia in type 2 diabetes (T2D). 
The consequence is an excess of free fatty acids, which 
causes hepatic gluconeogenesis to increase, metabolism in 
muscles to shift from glucose to lipid, beta-cell lipotoxicity, 
and an appearance of the classical “lipid triad”, without real 
hypercholesterolemia. Recently, it has been proposed that 
cholesterol homeostasis is important for an adequate insulin 
secretory performance of beta-cells. The accumulation of 
cholesterol in beta-cells, caused by defective high-density 
lipoprotein (HDL) cholesterol with reduced cholesterol ef-
flux, induces hyperglycemia, impaired insulin secretion, and 
beta-cell apoptosis. Data from animal models and humans, 
including humans with Tangier disease, who are character-

ized by very low HDL cholesterol levels, are frequently as-
sociated with hyperglycemia and T2D. Thus, there is a re-
ciprocal influence of dyslipidemia on beta-cell function and 
inversely of beta-cell dysfunction on lipid metabolism and 
micro- and macrovascular complications. It remains to be 
clarified how these different but mutually influencing ad-
verse effects act in together to define measures for a more 
effective prevention and treatment of micro- and macrovas-
cular complications in diabetes patients. While the control of 
circulating low-density lipoprotein (LDL) cholesterol and the 
level of HDL cholesterol are determinant targets for the re-
duction of cardiovascular risk, based on recent data, these 
targets should also be considered for the prevention of beta-
cell dysfunction and the development of type 2 diabetes. In 
this review, we analyze consolidated data and recent ad-
vances on the relationship between lipid metabolism and 
diabetes mellitus, with particular attention to the reciprocal 
effects of the two features of the disease and the develop-
ment of vascular complications. 
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Introduction 
 

 oth type 1 and type 2 diabetes are character- 
 ized by a high risk of developing chronic  
 complications, with micro- and macrovascu-

lar impairments in multiple organs, including reti-
nopathy, nephropathy, neuropathy, endothelial 
dysfunction, and atherosclerosis. Although the 

pathogenic mechanisms of both forms of diabetes 
are basically different, the symptoms and conse-
quences, including lack of insulin, metabolic dis-
turbances, and impaired lipid balance, are com-
mon features. Both diseases are characterized by a 
highly increased mortality by cardiovascular dis-
eases (CVD), with a direct effect of insulin resis-
tance on lipid metabolism in type 2 diabetes (T2D). 
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In type 1 diabetes (T1D), the mechanisms caused 
by insulin deficiency and dyslipidemia remain 
poorly understood and controversial. 

Despite recent improvements in technology and 
advances in glycemic control, disease manage-
ment, and health education, CVD is the most fre-
quent cause of death in type 1 diabetes, with a ten-
fold higher CVD-related and all-cause mortality 
than in the general population [1]. Although 
chronic hyperglycemia and endothelial dysfunction 
are regarded as the main actors in the develop-
ment of CVD, discordant results are reported con-
cerning the association between dyslipidemia and 
type 1 diabetes. In a Norwegian study, total and 
LDL cholesterol levels were significantly higher in 
T1D patients than in non-T1D subjects. On the 
other hand, numerous studies on type 1 diabetic 
patients, involving juvenile and adult subjects, 
failed to confirm a real increase in cholesterol lev-
els and impaired lipid metabolism. 

Beta-cell dysfunction and insulin re-
sistance contributing to dyslipidemia 
and vascular complications 

Type 1 diabetes and dyslipidemia 

Since the cholesterol turnover is the result of 
hepatic synthesis and intestinal absorption, spe-
cific serum markers of cholesterol absorption have 
been studied in T1D; among them plant sterols, 
cholestanol and cholesterol synthesis, i.e. cho-
lestanol, desmosterol, and lathosterol. The results 
obtained in this field showed that in T1D patients 
the markers of cholesterol absorption were in-
creased, while the markers of cholesterol synthesis 
were decreased compared with control subjects, 
indicating that both high cholesterol absorption 
and low cholesterol synthesis are present in type 1 
diabetic patients [2]. This mechanism has been 
hypothesized to be the result of an upregulation of 
specific genes for the synthesis of key proteins in 
the process of cholesterol intestinal absorption. 
Among these proteins are the Niemann-Pick C1 
Like-1 (NPC1L1) protein which regulates intesti-
nal cholesterol absorption and the ATP-binding 
cassette transporters G5 and G8 (ABCG5 and 
ABCG8) which regulate cholesterol homeostasis 
through the excretion of enterocyte cholesterol into 
the intestinal lumen. In other reports, elevated to-
tal cholesterol (TC) and low-density lipoprotein 
cholesterol (LDL-C) have been demonstrated to be 
significantly higher only in females, suggesting a 
gender difference in lipid control. 

More meaningful data are available for high-
density lipoprotein cholesterol (HDL-C) levels. In 
fact, type 1 diabetic subjects show more large and 
less small HDL-C particles than non-diabetic sub-
jects, although observed only in male patients. To 
confirm that there is a gender-related effect on 

Abbreviations: 
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lipid levels in T1D, it has been demonstrated that 
women with T1D have less large and more small 
dense LDL lipoproteins and reduced LDL size, and 
this effect on LDL size was significantly distinct in 
women [3]. Furthermore, in the study, a “mild in-
sulin resistance” in T1D patients was observed, 
specially in adults with a prolonged history of dis-
ease. This effect is probably caused by elevated ex-
ogenous insulin supply, and this may suggest a 
possible role of insulin resistance in impaired lipid 
regulation. However, it must be considered that 
glucose balance also directly impacts triglyceride 
metabolism. In fact, the tight correlation of lipid 
profile with HbA1c levels is heterogeneous across 
the spectrum of values of glycemic control in T1D 
individuals, with triglycerides worsening alongside 
HbA1c quintiles, as observed in a large recent na-
tionwide multicenter survey [4]. All together, these 
data may, in part, explain the different results re-
ported in the literature regarding T1D and lipid 
control, and questioned an unified explanation for 
impaired lipid metabolism in these patients. 
Therefore, it remains unclear whether the ob-
served lipid abnormalities in diabetic patients are 
caused by impaired lipid metabolism associated 
with T1D rather than glucose control, gender, in-
sulin resistance, and non-regular lifestyle of these 
patients, or by all these factors in combination. 

Type 2 diabetes and dyslipidemia 

The relationship between impaired lipid me-
tabolism and T2D is more common. T2D is associ-
ated with early and multidistrict atherosclerotic 
lesions. The importance of the metabolic control 
for the development of diabetic macroangiopathy 
emerged from results of the United Kingdom Pro-
spective Diabetes Study (UKPDS); a reduction of 
1% in HbA1c in patients with good metabolic con-
trol (7.0%) was associated with a significant reduc-
tion (16.0%) of cardiovascular events [5]. 

The close link between T2D and CVD has been 
confirmed by a study by Haffner et al., involving 
more than 1000 diabetes patients with a follow-up 
of 7 years. It showed that T2D patients had an in-
creased risk of developing coronary heart disease 
(CHD), equal to that of a non-diabetic subjects 
with prior history of myocardial infarction [6]. Ac-
cording to international guidelines from the Na-
tional Cholesterol Program-Adult Treatment Panel 
III (NCP-ATP III), the diabetic patient is defined 
as CHD risk equivalent [7]. Consequently, the 
need for an optimal metabolic control should be ac-
companied by adequate control of the lipid profile, 
as confirmed by lipid intervention trials with stat-

ins [8, 9]. In fact, the reduction of low density lipo-
protein cholesterol (LDL-C) below 100 mg/dl in 
diabetic patients without other risk factors, and 
less than 70 mg/dl if any other CVD risk factors 
are present, are recommended. 

Recently, it was reported about the new concept 
of “residual cardiovascular risk” [10]. The analysis 
of the Scandinavian Simvastatin Survival Study 
(4S trial) showed a significant reduction of CV 
events in patients treated with simvastatin, but 
there was still a 20% CVD rate in these subjects 
[11]. There are similar results from other impor-
tant clinical studies such as the Pravastatin or 
Atorvastatin Evaluation and Infection Therapy-
Thrombolysis In Myocardial Infarction study 
(PROVE IT-TIMI), the Incremental Decrease in 
End Points Through Aggressive Lipid Lowering 
study (IDEAL), and the Treating to New Targets 
study (TNT). The studies revealed that a residual 
CVD risk was existent even after treatment with 
statins, with 22.4% of patients in the PROVE IT-
TIMI study, 12.0% in the IDEAL trial, and 8.7% in 
the TNT study [12, 13]. Despite a significant re-
duction of LDL-C levels through the treatment 
with statins, a considerable residual CVD risk re-
mains in T2D patients. These findings suggest 
that other lipoprotein components, such as low 
HDL-C levels and hypertriglyceridemia, may be 
involved in atherosclerotic diseases [14]. To test 
this hypothesis, subjects at LDL-C target (<70 
mg/dl), but with higher levels of HDL-C, were fur-
ther analyzed in the TNT trial. It showed that 
these patients presented a lower incidence of ma-
jor CHD events [15]. This showed that the link be-
tween CVD and lipoprotein levels in T2D patients 
is more complex than previously assumed. 

Indeed, diabetic dyslipidemia seems to be very 
special, including increased synthesis of very low-
density lipoproteins (VLDL) and a reduction of cir-
culating HDL-C lipoproteins, in the presence of a 
small increase of total cholesterol [16, 17]. The ele-
vated production of VLDL particles induces a sub-
sequent synthesis of a particular subclass of LDL 
particles, the small dense LDL (sdLDL) that rep-
resent a fraction of LDL with higher atherogenic 
properties [18]. This lipid pattern has been called 
the “lipid triad“, and is characterized by high cir-
culating levels of triglyceride-rich particles, re-
duced synthesis of HDL lipoproteins, and en-
hanced production of atherogenic LDL particles 
[19]. The pathophysiological mechanisms underly-
ing this multiple lipid disorder are very complex 
and only partially understood. A pivotal role seems 
to be played by excess weight, in particular vis-
ceral obesity, and the related insulin resistance 
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[20]. Several studies have confirmed that vis-
ceral/abdominal fat depots differ from the general 
subcutaneous fat mass by a greater lipolytic activ-
ity and reduced response to insulin signaling (i.e. 
insulin resistance). The normal subcutaneous fat 
depots are characterized by low lipolytic activity 
and higher sensitivity to insulin, and tend to re-
lease free fatty acids (FFAs) into the systemic 
bloodstream with a “dilution effect” of these toxic 
molecules. In contrast, in obese patients, the ab-
dominal adipose depots release FFAs which are 
exclusively released into the portal vein and then 
transported to the liver and pancreas, even if the 
proportion of the abdominal fat is small in these 
patients. The excessive FFAs are reassembled in 
the liver to form triglycerides and stored into 
hepatocytes, or released into the bloodstream car-
ried by VLDL, the specific lipoproteins for endoge-
nous triglycerides [21]. 

T2D patients exhibit a lack of insulin effect on 
hepatic lipid metabolism, which normally limits 
the synthesis of VLDL1, and a reduction of the en-
dothelial lipolytic activity of lipoprotein lipase 
(LPL) due to insulin resistance. This scenario in-
duces a dramatic increase of VLDL1 particles, the 
largest lipoproteins rich in triglycerides [22, 23]. 
The excess of VLDL1 in T2D patients is mainly ob-
served in the postprandial period. This impaired 
metabolic pattern is maintained for many hours 
upon food intake, exposing the patient to a pro-
longed period of hypertriglyceridemia and hy-
perchilomicronemia [24, 25]. The consequence of 
this effect is an impaired exchange of cholesterol 
with LDL and HDL particles, with an adverse im-
pact on the synthesis and maturation process of 
HDL particles [26]. 

Cholesteryl ester transfer protein (CETP) and 
hepatic lipase (HL) are pivotal enzymes involved 
in the metabolism of HDL particles and reverse 
cholesterol transport. CETP mediates the ex-
change of cholesterol for triglycerides between 
LDL and HDL and triglyceride-rich lipoprotein 
particles. The effect causes an increased concen-
tration of triglycerides in HDL and LDL particles, 
which makes them favorable substrates for HL. 
This hepatic enzyme catalyses the hydrolysis of 
the abundant triglycerides carried by several lipo-
proteins, modifying the size and density of the spe-
cific carriers. The result of the synergetic activity 
of the two enzymes, CETP and HL, is a character-
istic of the pathophysiology of insulin resistance, 
typical of T2D, with a lower HDL-C level, a pre-
dominance of small, dense HDL, and sdLDL parti-
cles [27-29]. These sdLDL are characterized by a 
reduced ratio in the concentration of choles-

terol/triglycerides. They are less effective in releas-
ing cholesterol molecules to peripheral tissues. 
They also have a smaller diameter than conven-
tional LDL particles (<25.5 nm), and they are the 
major component of atherogenic “pattern B”, asso-
ciated with increased cardiovascular risk. 

The more atherogenic pattern represented by 
the occurrence of sdLDL particles is very frequent 
in T2D and the metabolic syndrome, also in the 
presence of a good metabolic control. This is one of 
the central elements of diabetic dyslipidemia. In 
fact, despite normal or even decreased circulating 
LDL-C levels, small dense LDL particles prevailed 
in up to 50% of T2D patients in a study on LDL 
subfraction profiles in T2D subjects [30]. This lipo-
protein subfraction has a reduced binding affinity 
to the LDL receptor due to a different chemical 
composition and electric charge. The result is a 
greater persistence of circulating cholesterol-rich 
lipoproteins which easily adhere to the endothelial 
surface and are more easily captured in the 
subendothelium space [31]. The prolonged pres-
ence of sdLDL particles in serum enables their 
glycation and oxidation [32]. Thus, they can be 
“picked up” by the scavenger receptor on the 
macrophage which has a much greater affinity for 
oxidized LDL than for non-oxidized LDL. 

The modification of physiological properties of 
LDL to form sdLDL particles, together with the 
abovementioned structural impairments of HDL 
cholesterol, constitutes an increased CVD risk pro-
file in T2D patients. However, several studies sug-
gest that abnormalities in HDL cholesterol consti-
tute a CVD risk factor epidemiologically independ-
ent of the LDL profile in T2D patients [13]. Nor-
mally, HDL particles possess several anti-
atherogenic properties independent of the well-
known reverse cholesterol transport from the arte-
rial wall to the liver excretion [33]. In particular, 
the following properties of HDL particles have 
been demonstrated: 

 
1. Anti-oxidative properties due to 

paraoxonase, glutathione, and selenoper-
oxidase enzymes 

2. Anti-inflammatory properties by blockade 
of endothelial tumor necrosis factor alpha 
(TNF-alpha) production, cytokine-
mediated expression adhesion molecules, 
and serum amyloid A protein 

3. Anti-thrombotic properties by inhibition of 
platelet aggregation by thromboxane and 
platelet activating factor 

4. Vasodilatory action by upregulation of en-
dothelial NO synthase (eNOS) [34, 35]. 
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When we study the properties and effects of 
HDL-C particles, we should take into account that 
low HDL-C levels are often accompanied by hyper-
triglyceridemia, especially in individuals with in-
sulin resistance. To determine the relevance of 
these two lipid components, i.e. HDL-C and 
triglycerides, for CVD protection, different aspects 
need to be considered. First, in a sub-analysis of 
intervention trials designed to reduce triglycerides 
in high-risk populations (Veterans Affairs HDL In-
tervention Trial - VA-HIT, and Bezafibrate Infarc-
tion Prevention study - BIP), pharmacological in-
tervention realized positive effects only in patients 
with visceral obesity and triglycerides/HDL ratio 
of >5.18 (personal data). Second, intervention tri-
als, aimed at pharmacologically increasing HDL-C 
levels using CETP-inhibitors, have failed to realize 
cardiovascular prevention. All together these find-
ings suggest that the vascular protective action of 
HDL is not only quantitative but, probably, it de-
pends on the quality and composition of HDL par-
ticles. This was also demonstrated in a study by 
Khera and colleagues, where patients in secondary 
prevention (including 23% with T2D) had a re-
duced cholesterol efflux capacity independent of 
their HDL levels [36]. In agreement with this find-
ing, recent data by another group showed that 
HDL particles obtained from T2D patients were 
characterized by a decreased paraxonase-1 activ-
ity, inversely correlated to HbA1c levels [37]. 

For the treatment of diabetic dyslipidemia, the 
NCP-ATP-III guidelines propose non-HDL choles-
terol as another therapeutic target in individuals 
with insulin resistance and high triglyceride con-
centrations. Non-HDL cholesterol, easily calcu-
lated by total cholesterol minus HDL-C, represents 
the concentration of cholesterol within all lipopro-
tein atherogenic particles such as LDL, IDL, and 
VLDL. It is an important measure of these parti-
cles in the presence of high triglyceride levels. The 
use of non-HDL-C has been demonstrated to be a 
better predictor of CVD events than LDL-C alone, 
particularly in patients with insulin resistance 
and/or diabetes [38, 39]. For this reason, it is rec-
ommended that non-HDL-C should act as secon-
dary target of therapy after targeting LDL-C levels 
in patients with increased Trg (>200 mg/dl), be-
cause the LDL-C level calculated by the Friede-
wald formula cannot be applied in the presence of 
hypertriglyceridemia [40]. 

Circulating levels of LDL-C are the result of the 
regulation of hepatic synthesis, intestinal absorp-
tion, and biliary excretion. Also, these cholesterol 
levels are influenced by its intracellular pool and 

the uptake of cholesterol by the activity of the spe-
cific membrane receptor for LDL lipoproteins. 
However, the regulation of lipid metabolism in 
diabetes is extremely complex, involving different 
carrier lipoproteins and enzymatic systems, which 
are only partially explored. In T2D, an increase in 
hepatic synthesis of cholesterol and, at the same 
time, a reduction of intestinal absorption have 
been observed [41]. Furthermore, other studies in 
T2D patients, involving gene expressions of spe-
cific intestinal lipids carriers (such as NPC1L1, 
ABCG5 and ABCG8, and the microsomal triglyc-
eride transfer protein, which packages the chy-
lomicron particles by assembling cholesterol, 
triglyceride, and apolipoprotein B48), revealed im-
portant alterations in the expression of intestinal 
genes that regulate cholesterol absorption and chy-
lomicron synthesis [42]. In contrast, type 1 diabe-
tes is associated with enhanced intestinal absorp-
tion and a reduction in hepatic synthesis of choles-
terol. Thus, the regulation of lipid metabolism in 
diabetes is extremely complex, involving different 
carrier lipoproteins and enzymatic systems, which 
are not yet well understood. These mechanisms 
may affect the efficacy of lipid-lowering therapy, 
and the achievement and long-term maintenance 
of therapeutic goals. In addition, recent investiga-
tions propose another type of interaction between 
lipids and glucose metabolism, namely the role of 
lipid dysregulation as primary trigger for beta-cell 
impairment. These investigations are presented in 
the next section. 

Dyslipidemia contributing to diabe-
tes and vascular complications 

Beta-cell dysfunction is one of the principal 
pathogenetic factors occurring in the development 
of T2D. A well-known mechanism associated with 
a significant decline in beta-cell performance is 
glucolipotoxicity. This term defines the chronic ex-
posure to high concentrations of glucose and free 
fatty acids, typically occurring in T2D patients, 
may have a synergetic effect in the impairment of 
insulin secretion. However, new data emerged in 
recent years, focusing on lipid disorders as facili-
tating factor in the development of defective insu-
lin secretion and altered glucose metabolism (Fig-
ure 1). This aspect of lipid metabolism and glucose 
intolerance has been explored by our group, show-
ing that subjects with excess of visceral fat, associ-
ated with high cholesterol levels, presented a dif-
ferent response to oral glucose tolerance test 
(OGTT). These individuals were characterized by 
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overweight/obesity, with 
a high waist circumfer-
ence, and a poor glycemic 
profile. In addition, they 
had high total cholesterol 
levels which were associ-
ated with abnormalities 
in fasting glucose me-
tabolism compared to 
lean or overweight sub-
jects with normal waist 
circumference [43]. 

Several studies ad-
dressed the role of LDL-C 
and low HDL-C levels as 
independent risk factors 
for beta-cell dysfunction. 
To this end, various re-
searchers have clearly 
described specific recep-
tors for LDL-C, namely 
LRPs, present in pancre-
atic islets, and they 
showed that LDL-C par-
ticles are incorporated in 
the metabolic pathway of 
beta-cells in a highly se-
lective manner [44, 45]. 
However, this increased 
bioavailability of LDL-C 
in the pancreatic cell me-
tabolism seems to have a 
cytotoxic effect, and may 
cause increased beta-cell 
apoptosis. This negative 
effect on beta-cell sur-
vival may be explained 
by the binding of the ex-
cessive cholesterol to the 
increased dimerization of 
the enzyme NO synthase 
(NOS), which downregulates the activity of glu-
cokinase, thereby reducing the intra-cytoplasmic 
metabolism of glucose. 

It is possible that cholesterol may also act in 
the exocytosis of insulin cytoplasmic granules of 
beta-cells. Since cholesterol is a constituent of cell 
membranes, it may alter the potassium channels 
and then impair the control of glucose-induced in-
sulin secretion, if available in excess. Further-
more, beta-cell performance seems to be impaired 
in the presence of oxidized LDL particles, which is 
a typical feature in T2D patients, as reported 
above. This seems to be correlated with a decrease 
in insulin secretion and glucose-induced reduction 

of mRNA levels for preproinsulin. In this regard, 
observations from in vitro studies show that both 
treatment of cell cultures either with inhibitors of 
the c-Jun N-terminal kinase (JNK) pathway pro-
tein or with high concentrations of HDL particles 
are capable to prevent this toxic effect of oxidized 
LDL on insulin secretion and beta-cell survival. 
Several studies reported a close link between 
genes involved in the control of lipid metabolism 
and the development of impairment glucose con-
trol, thereby confirming the important impact of 
lipid metabolism on beta-cell activity. 

The most convincing evidence is related to ATP-
binding cassette member A1 (ABCA1), a particular 

↑ Beta-cell apoptosis
↓ Insulin
Beta-cell dysfunction

Genetic background
Hypercaloric diet, SFA-rich
Sedentary lifestyle

↑ Gluconeogenesis
↑ VLDL
Dysglycemia

↑ FFAs oxidation

High lypolisis
FFAs released via portal system

Insulin resistance, hyperglycemia, type 2 diabetes

Pancreas

Muscle

Visceral
fat

High Trg
High Trg
↑ VLDL-1
↑ sdLDL

Reduced HDL-C
“Lipid triad”

High circulating FFAs
Liver

↑ TC
High LDL-C
Low HDL-C

↑ Uptake of cholesterol
↓ Cholesterol efflux
from beta-cells

 
 
Figure 1. The interdependent link between dyslipidemia, beta-cell dysfunction, and type 
2 diabetes. Cholesterol is a Janus-faced element in the development of dyslipidemia, dia-
betes, and vascular complications. Wrong lifestyle causes an accumulation of visceral fat 
associated with an excessive release of free fatty acids (FFAs) into the blood stream. These 
FFAs enter the portal vein and travel to the liver where they induce hepatic gluconeogene-
sis and elevated synthesis of VLDL lipoproteins. Also, they contribute to reduced glucose 
uptake in muscles and beta-cell lipotoxicity. These mechanisms explain the classic “lipid 
triad” (high VLDL1, high sdLDL, and reduced HDL particles), as observed in insulin resis-
tance and type 2 diabetes. On the other hand, the same wrong lifestyles may impair beta-
cell function through hypercholesterolemia, high LDL-C, and low HDL-C, independent of 
the insulin resistance status. Abbreviations: FFAs - fatty free acids, HDL-C - high-density 
lipoprotein cholesterol, LDL-C - low-density lipoprotein cholesterol, sdLDL - small dense 
LDL, SFAs - saturated fatty free acids, TC - total cholesterol, Trg – triglycerides, VLDL - 
very low-density lipoprotein. 
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protein involved in lipid transfer that removes ex-
cessive cholesterol from the cell to generate HDL 
lipoproteins. Thus, it plays a key role in the rever-
sal cholesterol transfer pathway [46]. In this re-
gard, the Tangier disease is an excellent model of 
HDL-C particle deficiency, as it is characterized by 
a mutation in the ABCA1 protein, which causes an 
impaired function, and eventually an inability of 
the peripheral cells to remove the excessive choles-
terol. The resulting clinical picture is character-
ized by an increased occurrence to cardiovascular 
events in these patients and, surprisingly, reduced 
insulin secretion and hyperglycemia [47, 48]. In 
fact, in a Japanese study, four subjects affected by 
overt Tangier disease underwent OGTT and 
showed progressively increased plasma glucose 
concentrations until the diagnosis of T2D. The cal-
culated insulinogenic index, an index of early beta-
cell secretion during OGTT, was significantly 
lower than in controls [48]. This study suggests 
that the impairment of ABCA1 function may be 
directly involved in defective insulin secretion. It is 
noteworthy that these patients did not present the 
characteristic markers of the metabolic syndrome 
(including visceral obesity, hypertriglyceridemia, 
hypertension, and insulin resistance) nor a posi-
tive family history of diabetes. 

The pathophysiology of the Tangier disease 
model has been confirmed in ABCA1 knock-out 
animals, which exhibited both an increased devel-
opment of cardiovascular lesions and a progressive 
impairment of glucose tolerance [45]. The pre-
served insulin sensitivity demonstrated in these 
animals suggests that the impaired glucose regu-
lation is exclusively linked to a direct toxic effect of 
cholesterol on the beta-cell [44]. The experimental 
data on ABCA1 as a modulator of insulin secretion 
have been confirmed by clinical observations [49]. 
In fact, rosiglitazone, an insulin sensitizer agonists 
of peroxisome proliferator agonist receptor gamma 
(PPAR-gamma), was demonstrated to increase the 
expression of ABCA1 on beta-cells [50, 51]. This 
indirect effect of rosiglitazone on beta-cell per-
formance, together with the improvement of insu-
lin resistance, was able to inhibit the development 
of T2D in subjects at high risk of T2D [52]. 

Tangier disease is not the only model for study-
ing the association between HDL-C defects and 
hyperglycemia in humans. In fact, there are many 
data supporting the importance of ABCA1 gene 
mutations implicated in type 2 diabetes in several 
populations. In Mexican subjects for example, the 
polymorphous R230C variant of the ABCA1 gene 
was associated with hypercholesterolemia, low 

levels of HDL, and the metabolic syndrome. More-
over, in a Japanese population a polymorphism of 
intron 2 of ABCA1 was associated with 3 times in-
creased risk of developing T2D. In the Copenhagen 
Heart Study, very low levels of HDL, increased 
cardiovascular risk, and a double incidence of T2D 
were observed in male carriers of the mutation 
K776N of ABCA1, compared to non-carriers of this 
polymorphism [53-55]. Further data were derived 
from observations in islets lacking beta-cell 
ABCA1. The islets showed an increased expression 
of another related cholesterol transporter, ABCG1, 
suggesting a compensatory mechanism for the lack 
of ABCA1 to maintain a better control of islet cho-
lesterol concentration. Indeed, ABCG1 promotes 
cholesterol efflux to HDL particles and acts at the 
same level with ABCA1 to remove cellular choles-
terol. Finally, in animal models, mice carrying a 
deletion of ABCG1 also presented an impaired glu-
cose-induced insulin secretion [56]. ABCA1 and 
ABCG1 have complementary roles also in macro-
phage function. In addition to a massive lipid ac-
cumulation, loss of both ABCA1 and ABCG1 in 
macrophages leads to increased expression of in-
flammatory cytokines, with increased macrophage 
infiltration in pancreatic islets and enhanced sus-
ceptibility to cell apoptosis [57]. 

Beside Tangier disease, other genetic diseases 
have been proposed to disturb cholesterol metabo-
lism. These considerations have led researchers to 
reexamine how cholesterol may interfere with 
beta-cell function in the context of such genetic 
diseases. One of these diseases involves dysfunc-
tion of the liver X receptor (LXR), an important ac-
tivator of ABCA1. In animal models, LXR dysfunc-
tion caused an excessive accumulation of lipids in 
the pancreatic islets associated with impaired in-
sulin secretion and impaired glucose tolerance. 
Based on this observation, other genetic studies on 
the modification of key proteins for cholesterol me-
tabolism reported that patients with CHD and al-
terations of the liver LDL receptor-related protein 
5 (LRP5) showed high levels of LDL-C, triglyc-
erides, and fasting glucose [58]. Stearoyl coenzyme 
A (stearoyl-CoA) desaturase, the rate-limiting en-
zyme in the synthesis of monounsaturated fatty 
acids, has been found to be pivotal in the regula-
tion of hepatic lipogenesis and lipid oxidation. 
Some mutations of this enzyme have been linked 
to alterations in intracellular lipid metabolism and 
development of obesity, metabolic syndrome, and 
T2D, suggesting a potential role as actor in glucose 
control. In support of this hypothesis, it has been 
demonstrated that stearoyl-CoA desaturase-
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deficient mice have increased energy expenditure, 
reduced body visceral fat masses, decreased insu-
lin resistance, and they are not prone to high fat 
diet-induced obesity and liver steatosis [59]. 

Together with stearoyl-CoA desaturase, an-
other important protein in hepatic lipid metabo-
lism is the sterol regulatory element-binding pro-
tein-2 (SREBP-2), which is involved in hepatic 
synthesis of cholesterol. Transgenic mice, express-
ing high levels of SREBP-1a, showed an uncon-
trolled synthesis and pancreatic cholesterol accu-
mulation, resulting in a progressive lipid infarc-
tion both in liver and beta-cells. Histological imag-
ines of islets isolated from these transgenic ani-
mals showed insulin granules fewer in number 
and smaller in size, and a significant reduction of 
insulin granule content compared with controls 
[60]. Furthermore, it has been shown that the in-
creased expression of SREBP-2 is associated with 
an inhibition of ABCA1 synthesis. Therefore, two 
potential ways of beta-cell damage and develop-
ment of hyperglycemia have been proposed. Both 
of which can be induced by impaired cholesterol 
metabolism: 

 
1. Reduction in the efflux of cholesterol from 

beta-cells (ABCA1 defect) 
2. Enhanced synthesis and accumulation of 

cholesterol in beta-cells (increased SREBP-
2 activity) 

 
These considerations are derived from in vitro 

data and animal models only. Although it is ex-
pected that these mechanisms can occur in hu-
mans, experimental data cannot always be ex-
trapolated to the human pathophysiology. How-
ever, since HDL-C particles represent the main ac-
ceptor of cholesterol in the reverse cholesterol 
transport, and cholesterol levels have a toxic effect 
on beta-cells, we can draw the conclusion that 
HDL-C lipoproteins may have an adjunctive and 
protective effect on beta-cells. In fact, both labora-
tory data and in vivo studies showed that impaired 
functions of HDL-C particles are associated with 
impaired protection from oxidative stress, a typical 
observation in T2D. The administration of recom-
binant paraoxonase-1, the principal antioxidant 
enzyme on the surface of HDL particles, to strep-
tozotocin-induced diabetic mice showed a marked 
antioxidant and an adjunctive positive effect on in-
sulin secretion [61]. 

Recently, Dullaart and colleagues explored the 
relationship between pancreatic beta-cell function 
and the functionality of HDL-C in well-controlled 
type 2 diabetic patients [62]. The activity of HDL-

C particles, in particular the antioxidative capacity 
of HDL and the cellular cholesterol efflux out of 
cultured fibroblasts, was tested by the inhibition of 
LDL oxidation in vitro, while beta-cell function 
was defined by the homeostasis model assessment 
beta (HOMA-beta). The results showed that both 
HDL antioxidative capacity and cellular choles-
terol efflux were positively correlated with HOMA-
beta measures. These data demonstrated that a 
better functionality of HDL particles may contrib-
ute to the maintenance of a healthy beta-cell func-
tion in subjects with well-controlled T2D. In an in 
vivo study, intravenous recombinant HDL in T2D 
patients has quickly allowed to reduce blood glu-
cose levels, with a simultaneous increase in insulin 
concentrations and beta-cell function and a signifi-
cant improvement of insulin sensitivity [63]. 

Several in vitro and animal studies have shown 
that the effectors responsible for the actions of 
HDL-C on insulin secretion could be attributed to 
the apolipoproteins Apo-AI and Apo-AII. Also, it 
has been demonstrated that HDL-C particles are 
able to activate adenosine monophosphate-
activated protein (AMP) kinase, inducing an up-
take of glucose in skeletal muscles. Thus, it is con-
ceivable that the effect of HDL-C on glucose me-
tabolism is linked to a direct protection of beta-
cells, and to an enhanced glucose uptake in pe-
ripheral muscles. To test the involvement of HDL-
C in glucose metabolism, we recently examined 
whether insulin-resistant subjects with normal 
and impaired glucose tolerance at high risk of de-
veloping T2D (positive first-degree family history 
for T2D and/or overweight/obesity) show a positive 
linear correlation between indices of beta-cell func-
tion and HDL-C concentrations. We found that the 
insulinogenic index for early insulin secretion and 
the insulin secretion sensitivity for total beta-cell 
function were correlated to HDL-C concentrations 
after OGTT in patients with impaired fasting glu-
cose (IFG) and impaired glucose tolerance (IGT), 
but not in subjects with normal glucose tolerance 
(NGT) and normal HDL-C levels [64]. This result 
suggests that low HDL-C levels in patients at risk 
of T2D may play a role in beta-cell dysfunction. 

However, genetic studies, which analyzed spe-
cific mutations in the HDL-C gene, have shown 
equivocal results in subjects with insulin resis-
tance, raising the question whether low levels of 
HDL-C particles are a consequence or a determi-
nant of metabolic damage. In this regard, Euro-
pean carriers of mutations for HDL particles, who 
had an excessive visceral fat mass and a pheno-
type typical of insulin resistance, showed ex-
tremely low levels of HDL-C and increased levels 
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of triglycerides [55]. However, in another human 
model of genetic defects for HDL cholesterol, low 
levels of these particles were observed to be asso-
ciated with reduced glucose tolerance, even in sub-
jects with normal weight and without the anthro-
pometric characteristics of insulin resistance [65]. 
Also, mutations have been described in several en-
zymes involved in lipid control; for example poly-
morphisms in the CETP enzyme were associated 
with changes in enzyme activity, lipid concentra-
tions, and risk of developing T2D, as observed in 
the Telde Study [66]. Taken together, these obser-
vations suggest that variable levels of HDL-C are 
associated with different phenotypes, confirming 
the hypothesis that low HDL-C may be a determi-
nant and not a consequence of the state of insulin 
resistance. 

The observation of a low incidence of T2D in pa-
tients with familial hypercholesterolemia caused 
concern about the importance of cholesterol in glu-
cose metabolism. However, this apparent contra-
diction actually confirms the hypothesized patho-
genic mechanism of cholesterol; if available in ex-
cess, it is an inducer of beta-cell dysfunction and, 
consequently, of impaired glucose metabolism. In 
fact, patients with severe hypercholesterolemia 
present a downregulation of LDL receptors on 
beta-cells, reducing the uptake of cholesterol by 
beta-cells, and thus preventing beta-cell apoptosis. 

Some concerns appeared in the literature after 
publication of a meta-analysis performed on large 
statin trials [67]. Note that statins, the inhibitors 
of 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-
CoA) reductase, are the most important drugs for 
the control of cholesterol synthesis and reduction 
of total and LDL cholesterol levels. Their use has 
been associated with an increased incidence of 
T2D [68]. However, with exception of the WO-
SCOP study, where the use of pravastatin was as-
sociated with a reduction of approximately 30% in 
the incidence of new cases of T2D, therapy with 
high doses of statins mostly corresponded to a 
slight increase in T2D incidence, e.g. in the JUPI-
TER study, with rosuvastatin, by around 0.6%. 

Recently, a systematic review and meta-
analysis concluded that the use of statins does not 
account for a significant impact on insulin sensi-
tivity without a real “class effect” in patients with-
out diabetes mellitus [69]. In particular, pravas-
tatin alone seems to improve insulin sensitivity, 
while atorvastatin, rosuvastatin, and simvastatin 
rather cause an impairment in insulin resistance. 
The reason for this apparent discrepancy is not 
clear at present. It may be related to the observa-

tion that certain statins at high doses exert a 
negative regulation on insulin secretion in vitro, 
irrespective of their cholesterol-lowering effect 
that, in some way, counterbalance the “positive ef-
fect” consisting of cholesterol depletion in beta-
cells. Another recent paper proposed an alterna-
tive explanation, focusing on the role of the num-
ber of diabetic risk factors such as hypertriglyc-
eridemia, obesity, hypertension, and hyperglyce-
mia present in patients with CHD as modulator of 
the diabetogenic effect of atorvastatin [70]. 

Concluding remarks 
In this review, we intended to elucidate the 

various and interdependent mechanisms associ-
ated with impaired lipid regulation in the common 
forms of diabetes mellitus. In type 2 diabetes, the 
available data confirm the well-established pivotal 
association of visceral fat, insulin resistance, and 
FFAs with the “lipid triad”, i.e. (1) increased 
plasma triglyceride levels, (2) decreased HDL-
cholesterol concentrations, and (3) the presence of 
small, dense LDL particles. Whereas, the interre-
lation of dyslipidemia and type 1 diabetes is con-
troversial. A series of qualitative abnormalities of 
lipoproteins are described in T1D patients, includ-
ing  increased cholesterol/triglyceride ratios within 
VLDL, increased triglycerides in LDL and HDL 
cholesterols, compositional changes in the periph-
eral layer of lipoproteins, glycation of apolipopro-
teins, increased oxidation of LDL, and increased 
sdLDL particles. All of these  abnormalities are 
potentially atherogenic. In addition, HDL-C parti-
cles from T1D patients have reduced antioxidative 
and vasorelaxant properties, and it is assumed 
that they are less effective in promoting choles-
terol efflux from cells. 

The link between T2D and dyslipidemia may be 
considered a Janus-faced relation. While the im-
pact of diabetes on abnormalities in lipid metabo-
lism is well-established, recent data provide evi-
dence for a reverse direction, assigning a key role 
for hypercholesterolemia and low HDL-C levels in 
the development of beta-cell dysfunction. However, 
more targeted studies are needed to better under-
stand the link between dyslipidemia and diabetes. 
It will be important to understand how lipid disor-
ders can be metabolically dangerous for beta-cells 
to define the optimal therapy. 
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