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■ Abstract 
By the year 2000, a draft of the human genome sequence 
was completed. Millions of single-nucleotide polymorphisms 
(SNPs) had been deposited into public databases, and high 
throughput technologies were under development for SNP 
genotyping. At that time, it was predicted that large case 
control association studies would provide far better resolu-
tion and power than genome-wide linkage studies. Type 1 
diabetes was one of the first phenotypes to be examined by 
genome-wide association studies (GWAS), and to date over 
50 genomic regions have been associated with the disease. 

In general, the great majority of these loci individually con-
tribute a relatively small degree of risk, and most loci lie 
outside of coding sequences. The identification of molecular 
mechanisms from these genomic data therefore remains a 
significant challenge. Here, we summarize genetic candi-
date, linkage, and association studies of type 1 diabetes and 
discuss a potential strategy to identify mechanisms of dis-
ease from genomic data. 
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1. Clinical definition of type 1 diabetes 
 

 ype 1 diabetes (T1D) is characterized by 
 failed glucose homeostasis and hypoinsuli- 
 nemia caused by autoimmune destruction of 

the insulin-producing β-cells in the pancreas. Signs 
include osmotic diuresis and loss of weight, and 
symptoms include polyuria, polydipsia, poly-
phagia, and tiredness; potentially fatal complica-
tions include ketoacidosis and hyperglycemic 
coma. The disease is a complex genetic trait, in 
which multiple genetic, environmental, and sto-
chastic factors contribute to risk. Progression from 
the preclinical stage of β-cell autoimmunity (insu-
litis) to established diabetes can take up to a dec-
ade [1-2]. 

2. Familial risk of type 1 diabetes 
Evidence for a genetic contribution to the risk 

of T1D includes increased prevalence of disease in 

first-degree relatives (2.5-6.0% versus 0.1-0.3% in 
the general population of Western countries) with 
a λs of about 15 [3-4]. T1D has a high concordance 
in monozygotic (MZ) twins and intermediate con-
cordance in dizygotic (DZ) twins (27% and 3.8% re-
spectively) [5]. This is associated with a lifetime 
risk for the twin of an affected proband of 44% and 
19% respectively [6]. The prevalence of T1D varies 
markedly between countries and is increasing at a 
rate of about 3% per year [7], a change that is as-
sociated with alterations in autoantibody profiles 
and accelerated onset of disease from the time of 
identification of autoantibodies. These trends are 
consistent with changing environmental effects on 
the pathogenesis of the disease [8-9]. 

3. Association of HLA with T1D 
The major histocompatibility complex (MHC) 

was originally identified in murine allogeneic tu-
mor transplantation experiments [10-11]. Gorer, 
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Lyman, and Snell (1948) demonstrated that vari-
ous mouse backcross strains varied in their resis-
tance to the growth of allogeneic tumors, and that 
this trait segregated with a tail deformity (termed 
“fused”), indicating that the genes were linked. 
Identification of the analogous gene complex in 
humans (termed the human leukocyte antigen 
(HLA) complex) was made when three groups de-
scribed antibodies in sera from multi-transfused 
patients or multiparous women that aggregated 
the leukocytes of many, but not all, donors [12-14]. 

The HLA shows association with T1D (locus 
termed IDDM1; Table 1) [15-22] and accounts for 
approximately 40% of the familial aggregation of 
the disease. The predisposing HLA class II haplo-
types, HLA-DRB1*04, DQB1*03:02 (identified by 
serology as DR4) and DRB1*03:01, DQB1*02:01 
(DR3) are present in 95% of affected individuals. 
DR3/DR4 heterozygotes carry an absolute risk of 
T1D of approximately 5% (compared to a cumula-
tive incidence of ~0.3% in Western communities), 
which rises to about 20% if a haploidentical sibling 
is affected [19, 23]. DQ amino acid sequences di-
rectly correlate to risk of T1D. This association is 
largely dependent on the identity of residue 57 of 
the DQβ chain (Asp is protective and Ala confers 
susceptibility) [24] and 52 of the DQα chain (Arg 
confers susceptibility) [25]. Khalil et al. (1990) re-
ported that of 50 T1D patients, all expressed the 
DQα-52Arg/DQβ-57Ala susceptible heterodimer 
[25]. Remarkably, the NOD mouse model of T1D 
expresses an Aβ chain homologous to DQβ with a 
substitution at position 57 [24]. The hypothesis 
arising from these observations is that disease-
associated HLA class II alleles permit binding of 
disease-inducing peptides. In this regard, the mo-
lecular mimicry hypothesis specifically proposes 
that bi-reactive T cell receptors (TCR) permit the 
priming of T cells by a microbial peptide and effec-
tor activation by autoantigens, both presented 
within the context of specific MHC antigens. 

Atkinson et al. (1994) reported a possible exam-
ple of molecular mimicry in T1D [26]. Stimulation 
of peripheral blood mononuclear cells (PBMCs) 
from people at increased risk of T1D with an over-
lapping panel of synthetic peptides from the T1D-
associated autoantigen glutamate decarboxylase 
(GAD) [27] identified a major determinant (amino 
acids 247-279) that had significant sequence simi-
larity to the P2-C protein of Coxsackie B virus, 
which had been previously associated with the on-
set of T1D [28]. Furthermore, PBMC from indi-
viduals responding to GAD peptides also re-
sponded to a Coxsackie P2-C peptide (amino acids  

 
32-47). Rudy et al. (1995) [29] subsequently identi-
fied a 13 amino acid peptide of another T1D-
associated autoantigen, proinsulin (amino acids 
24-36) [30], which bears marked similarity to a 
peptide of GAD65 (amino acids 506-518). Reactiv-

Abbreviations: 
 

CIITA – MHC class II transactivator  
CLEC16A – C-type lectin domain family 16 
CNV – copy number variation 
CSK – C-terminal Src kinase 
CTLA4 – cytotoxic T lymphocyte antigen 4 
CUE - coupling of ubiquitin conjugation to ER degradation 
DZ – dizygotic  
eQTL – expression quantitative trait loci 
ERBB3 – v-erb-b2 erythroblastic leukemia viral oncogene 
homologue 3 (avian) 
ESR – estrogen receptor 
FAP – fibroblast activation protein 
FGFR3 – fibroblast growth factor receptor 3 
GAD - glutamate decarboxylase 
GCA – grancalcin  
GWAS – genome-wide association study 
HapMap – Haplotype Map (project) 
HLA – human leukocyte antigen 
HOXD8 – homebox D8 gene 
HTS – high throughput sequencing 
IDDM – insulin-dependent diabetes mellitus 
IFIH1 – interferon induced with helicase C domain 1  
IL – interleukin 
INSR – insulin receptor 
KCNH7 – potassium voltage-gated channel and subfamily 
H member 7 
LCK – lymphocyte-specific protein tyrosine kinase 
LD - linkage disequilibrium 
LOD – logarithm of the odds 
LRP5 – low-density lipoprotein receptor-related protein 5 
LYP – lymphocyte tyrosine phosphatase 
MHC – major histocompatibility complex 
MZ – monozygotic  
NAA25 – N(alpha)-acetyltransferase 25 
NF-κB – nuclear factor ‘kappa-light-chain-enhancer’ of ac-
tivated B-cells 
NK – natural killer 
Ns – non-synonymous 
ORF – open reading frames 
PBMC – peripheral blood mononuclear cell 
PTP – protein tyrosine phosphatase 
PTPN22 – protein tyrosine phosphatase, non-receptor type 22 
PVR – poliovirus receptor 
SNP – single nucleotide polymorphism 
SOCS1 – suppressor of cytokine signaling 1 
SUMO4 – small ubiquitin-related modifier 4 
T1D – type 1 diabetes 
T1DGC – Type 1 Diabetes Genetics Consortium 
Treg – regulatory T 
TCR – T cell receptor 
TDT – transmission/disequilibrium test 
TLR – toll-like receptor 
VNTR – variable number tandem repeat 
WTCCC – Wellcome Trust Case Control Consortium 
ZAP70 – zeta-chain-associated protein kinase 70 
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ity to both proinsulin and GAD peptides was sig-
nificantly greater among at-risk subjects than con-
trols. Many other putative examples of molecular 
mimicry in T1D have been described (reviewed in 
[31]). 

4. Association of other candidate 
genes with type 1 diabetes 

Other T1D candidate genes, such as putative 
autoantigens and immune receptors, were exam-
ined for association with T1D because of their bio-
logical relevance to disease. 

4.1 INS 

Insulin is primarily transcribed in the beta-
cells of pancreatic islets and is a major autoanti-
gen in T1D [32]. There are three common poly-
morphisms in strong linkage disequilibrium (LD) 
within the insulin (INS) gene on 11p15: 

 
1. A variable number tandem repeat (VNTR) 
2. -23HphI in the promoter 
3. +1140A/C 

 
The VNTR is the best candidate because it con-

tains binding sites for many transcription factors, 
including Pur1 [33], while there is no obvious func-
tional role for either of the two single-nucleotide 

polymorphisms (SNPs) [34]. The 
shortest alleles of the VNTR locus 
(class I alleles; 26-63 repeats) are as-
sociated with T1D in HLA-DR4-
expressing subjects (OR 1.9; IDDM2) 
[35-38]. Class III alleles (the longest; 
141-209 repeats) of the VNTR are as-
sociated with marginally lower levels 
of insulin mRNA expression in pan-
creata [38], but a 2-3-fold higher ex-
pression in fetal thymus [39]. These 
data are consistent with the hy-
pothesis that protective alleles of the 
INS VNTR are responsible for in-
creased thymic insulin expression, 
driving a more effective induction of 
central tolerance of insulin-reactive T 
cells. 

4.2 PTPN22 

PTPN22, on chromosome 1p13, 
encodes the lymphocyte-specific pro-
tein tyrosine phosphatase LYP, 
which is a negative regulator of TCR 

signaling, via the dephosphorylation of several 
TCR proximal signaling molecules, including the 
SRC family kinases LCK and FYN, ZAP70, and 
TCRζ. A nonsynonymous SNP at position 1858 of 
PTPN22 was reported to be associated with T1D in 
many populations (OR for the heterozygous C/T 
genotype was 1.7) [40-45]. This C1858T SNP re-
sulted in a missense mutation in people bearing 
the T1D risk allele that changed an arginine to a 
tryptophan at position 620 (R620W), resulting in 
the inability of LYP to bind its signaling molecule 
CSK [46], which increases phosphatase activity. T 
cells carrying the LYP-W620 variant show reduced 
production of interleukin (IL)-2 and other cyto-
kines following TCR stimulation [46-47]. 

TCR and immunoglobulin loci were also exam-
ined as candidates, but without consistent evi-
dence of involvement. 

5. Linkage studies of type 1 diabetes 

The availability of dense maps of polymorphic 
genetic markers (microsatellites and SNPs) revolu-
tionized the localization of non-HLA-linked disease 
genes [48-51]. Linkage analyses rely on dispropor-
tionate transmission of alleles to affected and un-
affected progeny. The first genome-wide scans for 
linkage to T1D were performed on large collections 
of T1D families with pairs of affected siblings (sib-
pairs) by microsatellite (variable number of tan-

Table 1. A selection of T1D genes 
 

Method of 
idetification 

Locus Position Putative candi-
date/mechanism 

Candidate HLA 
INS 
PTPN22 

6p21 
11p15 
1p13 

DQB1 
INS promoter VNTR 
C1858T n.s. SNP in PTPN22 

Linkage CTLA4 
CD25 

2q31 
10p11-q11 

CTLA4 splice variant 
cis eQTL in CD25 

Association rs1990760 
rs3184504  
rs2292239  
rs12708716 
rs1893217 
rs763361 
rs11755527 
rs11258747 
rs3825932  
rs229541 
rs3024505 
rs4763879 
rs4788084 
rs7020673 

2q24 
12q24 
12q13 
16p13 
18p11 
18q22 
6q15 
10p15 
15q25 
22q13 
1q32 
12p13 
16p11 
9p24 

IFIH1 
SH2B3 
ERBB3 
CLEC16A 
PTPN2 
CD266 
BACH2 
PRKCQ 
CTSH 
C1QTNF6 
IL10 
CD69 
IL27 
GLIS3 
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dem repeat) analysis in 1994 [52-53] 
(http://www.t1dbase.org). They were some of the 
earliest examples of genome-wide linkage mapping 
in humans, even though, by today’s standards, 
they were relatively underpowered for the identifi-
cation of non-HLA-linked genes. 

In the early studies, an initial genome-wide 
scan was performed on a subset of samples, and 
then additional samples were analyzed at a subset 
of loci. Both Davies et al. (1994) [52] and Hashi-
moto et al. (1994) [53] confirmed linkage to the 
HLA, both by their own statistical thresholds, and 
by those of Lander and Kuglyak (1995) [54], which 
are set to a 5% probability per study of a single 
genomic region exceeding the significance thresh-
old by chance (i.e. a logarithm of the odds (LOD) 
score >3.6). Davies et al. (1994) calculated that the 
HLA contributes about 42% of the familial cluster-
ing of T1D [52]. Neither group found evidence of 
linkage at INS. 

5.1 FGF3/LRP5 

Davies et al. (1994) identified ten other chromo-
somal regions that exceeded a maximized LOD 
score of 1.7 in their screening panel of 96 families 
from the United Kingdom [52]. Analysis of a total 
of 282 pairs (including an additional cohort from 
the United Kingdom and one from the USA) pro-
vided a maximal LOD score of 1.5 at a microsatel-
lite near ESR (IDDM5) on chromosome 6q, and a 
maximized LOD score of 1.3 at FGF3 (IDDM4) on 
chromsome 11q13. Significance at FGF3 (but not 
ESR) was increased by excluding from analysis 
sib-pairs that shared (identical by descent) both 
HLA alleles. Under these circumstances, the US 
cohort (and not the combined dataset) reached 
Lander and Kuglyak’s threshold for suggestive 
linkage (i.e. a LOD score >2.2). Higher resolution 
mapping was performed on families for which both 
siblings were under the age of 17 at the time of di-
agnosis, providing a linkage peak with a LOD of 
3.4 at FGF3. Linkage to T1D at both IDDM4 and 
IDDM5 were subsequently confirmed by Luo et al. 
(1996), with maximized LOD scores of 3.9 and 4.5 
respectively [55]. 

Hashimoto and colleagues carried out a ge-
nome-wide scan on 314 IDDM-affected sib-pairs 
who were Caucasian but of French, American, and 
North African origin [53]. Initially, 61 affected sib-
pairs from French and North American families 
were screened at 321 markers, followed by a 
screen of the rest of the subjects at loci where an 
uncorrected linkage significance of p < 0.05 was 
obtained. Other than the HLA, their most signifi-

cant linkage was to FGF3 with a LOD score of 
2.59. Restriction of the analysis to HLA-DR3-
positive sib-pairs resulted in a LOD of 4.02, ex-
ceeding Lander and Kuglyak’s threshold for sig-
nificant linkage. It should be noted that, while 
both Davies et al. (1994) [52] and Hashimoto et al. 
(1994) [53] provided evidence for linkage to FGF3 
based on a conditional analysis of HLA type, the 
HLA conditions required to obtain significance 
were in opposite directions. Davies et al (1994) [52] 
reported increased significance when affected sib-
pairs with HLA allele sharing were excluded, and 
Hashimoto et al. (1994) [53] reported significance 
when they were exclusively studied. These contra-
dictory findings cannot both be interpreted as 
strengthening evidence of linkage with FGF3 [56]. 
Hashimoto et al. (1994) also reported a region of 
suggestive linkage on chromosome 8p, with a LOD 
score of 2.25 [53]. 

A third group published a T1D sib-pair linkage 
analysis a month later, in which 250 families were 
analyzed [57]. The strongest linkage was obtained 
at a locus near D15S107 on chromosome 15q, with 
a maximum LOD score of 2.54 (IDDM3). The au-
thors found that the strongest evidence of linkage 
came from sib-pairs who did not extensively share 
HLA alleles. Furthermore, in these families, sib-
pair disease concordance was strongly related to 
the proportion of genes the pair shared at 
D15S107. This locus could not be confirmed by Luo 
et al. (1996) using 265 families (i.e. maximized 
LOD was <2.2) [55], nor has it received significant 
support in subsequent studies. 

5.2 Gene/gene interactions 

Genome-wide statistical significance thresholds 
are established on the assumption that a single 
analysis would be performed, not that the samples 
would be reselected to test a series of post-hoc 
analyses. This issue reduces confidence in IDDM4 
and IDDM5. Nevertheless, in these pioneering 
studies, it was far from clear what variables would 
prove relevant. These early studies gave way to 
formal multi-locus analyses that allowed the ex-
amination of multiple factors simultaneously, pro-
viding increased power to detect the effects of 
weaker loci and identifying interactions between 
loci [58-59]. Application of these methods indicated 
that the interaction between IDDM1 and IDDM2 
(HLA and INS) was multiplicative (synergistic). 
This is consistent with the proposed mechanisms 
of action of the two genes, with IDDM2 affecting 
levels of thymic insulin transcription for presenta-
tion in the context of HLA class II molecules, in 
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central tolerance induction. In contrast, the data 
for IDDM1 and IDDM4 were consistent with ge-
netic heterogeneity, a model in which risk is 
caused by any of the multiple alleles and loci [59]. 

5.3 SUMO4 

The IDDM5 locus on chromosome 6q was 
brought into prominence by the cloning of SUMO4, 
a gene in this interval encoding small ubiquitin-
like modifier 4 protein. An SNP (163A->G) in 
SUMO4 results in the substitution of a highly con-
served methionine with a valine residue (M55V) 
within the conserved CUE domain. SUMO4 conju-
gates to IκBα and negatively regulates NFκB tran-
scriptional activity. The M55V substitution is as-
sociated with suppressed activation of heat shock 
transcription factors, over five times greater NFκB 
transcriptional activity, and a two-fold increase in 
IL-12B expression [60-61]. 

This polymorphism was found strongly associ-
ated with T1D―in opposite directions―by two dif-
ferent groups (noted by 62): Bohren et al. (2004) 
claimed that the 163A allele was positively associ-
ated with disease (p < 5 x 10-4) [60], whereas Guo et 
al. (2004) reported that the non-conserved 163G 
allele was disease-associated (p < 2 x 10-7) [61]. 
Furthermore, in the data reported by Guo et al. 
(2004), there was a subset of 92 multiplex British 
families featuring a positive, but not significant, 
association of the 163A allele with disease [61]. 
Subsequently, some very large studies have failed 
to find an association [62], while others confirmed 
the association between SUMO4 M55V polymor-
phism and T1D [63]. Smyth et al. (2005) [62] re-
flected that, given the large numbers of linkage 
studies performed in T1D, even a small p-value 
can provide a false positive risk, and that this risk 
can be compounded by selection biases in the col-
lection of samples, genotyping errors, population 
substructure, and post-hoc subgroup analyses. At 
the time of writing, the most recent meta-analysis 
of SUMO4 polymorphisms in T1D concluded that 
the SUMO4 M55V polymorphism does confer sus-
ceptibility to T1D in Asians, with only a marginal 
association in Europeans [64]. 

5.4 CTLA4 

In an analysis of affected sib-pairs lacking high-
risk HLA-DR3/4 haplotypes and expressing homo-
zygous high-risk class I VNTR alleles, an addi-
tional susceptibility gene was located on chromo-
some 2q31 near HOXD8 (IDDM7; maximum LOD 
4.8) [65]. This region is homologous to that on 
proximal mouse chromosome 1 where the Idd5 

T1D gene was subsequently identified in diabetes-
prone NOD mice [66], and contains the disease 
candidate genes CTLA4 and CD28 that encode re-
ceptors on T cells involved in control of T cell acti-
vation. CTLA4 (at 2q33) was considered a strong 
candidate because it mediates T cell apoptosis and 
negatively regulates T cell activation [67]. 

The candidature of CTLA4 was supported by a 
subsequent linkage analysis in 48 Italian families, 
by transmission/disequilibrium test (TDT) in 187 
Italian families (138 of which had only a single af-
fected child) and 44 Spanish families, and a popu-
lation-based case/control association study of 966 
patients and 1058 controls from Belgium [68]. 
Similar studies in British, Sardinian, and Ameri-
can families did not find an association between 
this gene and T1D [68]. On the basis of CTLA4 be-
ing 10 cM distal of the IDDM7 linkage peak 
(D2S152), and the lack of disequilibrium between 
D2S152 and CTLA4 in the association study, the 
locus at 2q33 was designated IDDM12 [68]. In an 
association study of multiple ethnic groups, strong 
deviation for transmission of an A->G polymor-
phism in the first exon was seen in Italian, Span-
ish, French, Mexican-American, and Korean popu-
lations, while British, Sardinian, and Chinese 
showed none [69]. A meta-analysis of 33 independ-
ent studies showed an odds ratio of 1.45 for the G 
allele, with a greater effect in cases with onset <20 
years (odds ratio 1.61) [70]. 

Ueda et al. (2003) examined expression levels of 
the two major isoforms of the most disease-
associated SNP (CT60) [71]: the full-length se-
quence and a soluble isoform (s-CTLA-4) that lacks 
exon 3 [72]. The disease-susceptible genotype was 
associated with lower expression of sCTLA-4 in a 
gene dose-dependant manner. Similarly, sequence-
dependent variation in Ctla4 isoforms were identi-
fied in T1D-susceptible NOD mice, and differential 
expression of one appeared to mediate the allelic 
variation in T1D risk that maps to this chromoso-
mal region [72-74]. CTLA-4 is expressed constitu-
tively on regulatory T (Treg) cells and is thought, 
at least in part, to mediate their immunosuppres-
sive activities [75] as interaction of CTLA-4 with 
CD80 or CD86 inhibits human T cell activation 
[76]. Soluble CTLA-4 also has this activity [72], 
and a knock-down transgene for sCTLA-4 exacer-
bated T1D in an NOD congenic strain that ex-
presses the wild-type Ctla4 allele [77]. 

5.5 CD25 

The 10p11-q11 region (designated IDDM10 in 
unpublished data by Todd (1995) [78], with maxi-
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mum LOD of 2.03) [53] contains the putative can-
didate genes GAD2 and CD25 (IL2RA). GAD2 
(10p11) encodes the islet cell specific (65 kDa) form 
of GAD65, an autoantigen in T1D. Association 
analysis of a highly polymorphic dinucleotide re-
peat physically linked to the gene did not support 
a significant role for GAD2 allelic variation in ge-
netic susceptibility to T1D [79]. In contrast, CD25 
(10p15), which encodes the IL-2 receptor α chain, 
was examined using a tag SNP approach and a 
large sample size (7,457 cases and controls and 
725 multiplex families), with results consistent 
with a role in TID [80]. 

CD25 plays a critical role in the development 
and maintenance of Treg cells and may play a role 
in Treg cell expression of CD62L, which is required 
for their entry into lymph nodes [81]. In associa-
tion studies, T1D was associated with two inde-
pendent groups of SNPs, spanning overlapping re-
gions of 14 and 40 kb, encompassing the first in-
tron of CD25 and the 5’ introgenic region [82-83]. 
The T1D susceptibility genotypes were also associ-
ated with lower circulating levels of soluble IL2RA 
(s-IL2RA) [82]. Dendrou and colleagues (2009) con-
firmed gene-phenotype correlation at the RNA 
level [84]: Individuals with one or two protective 
alleles (G) at rs12722495 showed an increase in 
CD25 levels (27%) on their CD4+memory T cells 
when compared with homozygous susceptible indi-
viduals (AA) or to those with protective 
rs11594456 or rs2104286 alleles [84]. A gene dos-
age effect at rs12722495 was also apparent; while 
heterozygotes had a 22% increase, homozygotes 
had an increase of 33%. In addition to the changes 
in CD4+memory T cells, the protective haplotype at 
rs12722495 also correlated with phenotypic 
changes in naive T cells and in stimulated CD14+ 
CD16+ monocytes. 

5.6 Other loci 

Other putative diabetes susceptibility loci, ini-
tially identified using linkage studies, were local-
ized to the following chromosomes: 

 
1. 18q12-q21, designated IDDM6, maximum 

LOD 3.7 [78, 85]; 
2. 6q27, designated IDDM8, maximum LOD 

3.4 [55, 78, 86]; 
3. 3q22-q25, designated IDDM9 in unpub-

lished data by Todd (1995) [78], maximum 
LOD 2.4 in DR3/DR4 heterozygotes [87-88]; 

4. 14q24-q31, designated IDDM11, maximum 
LOD 4.0 (4.6 in families without evidence 
of HLA linkage to T1D) [89]; 

5. 2q34-q35, designated IDDM13, maximum 
LOD 3.3[90]; 

6. 6q21, designated IDDM15, after applica-
tion of an extension of identity-by-descent 
methods as adjacent to HLA, p < 5x10-5 
[91]. 

 
The latter locus brings to a total four putative 

loci on chromosome 6q: IDDM1/HLA, IDDM15, 
IDDM5, and IDDM8, in that order from centro-
mere to telomere over a distance of about 100cM. 

5.7 Linkage analyses of combined datasets 
and the limits of linkage analyses 

By 1998, very large collections of families with 
T1D were being analyzed, but with only moderate 
success. Mein et al. (1998) studied 356 affected sib-
pair families from the United Kingdom, but found 
significant linkage only to three regions: 
IDDM1/HLA, IDDM10/CD25 (10p13; maximum 
LOD 4.7), and 16q22-24 (maximum LOD 3.4) [87]. 
Remarkably, most of the previously reported loci 
were excluded by exclusion mapping at a λs of 3 
and a LOD of -2. Similarly, a two-staged analysis 
of 616 multiplex families from the United Kingdom 
and the USA identified only IDDM1/HLA (maxi-
mum LOD 34.2) as significant by multipoint 
analysis, and a single previously unreported locus 
on 1q as of suggestive significance (LOD 3.31) [56]. 
The data were consistent with a locus distal from 
the HLA, at IDDM15 (6q21), with a maximum 
LOD 3.8, but proximity to the HLA requires cor-
rection for LD, resulting in an adjusted LOD of 
2.27. On chromosome 2q, previous studies had 
proposed three loci, IDDM7, IDM12, and IDDM13, 
but Concannon et al. (1998) reported a maximum 
LOD of 1.07 in this region, and little evidence for 
distinct loci [56]. By multipoint analysis, even 
modest contributions to T1D (λs ≥ 1.5; LOD < -2) 
could be excluded for IDDM3, IDDM4, IDDM6, 
IDDM9, and IDDM10. In an identity-by-descent 
(IBD) analysis of previously reported loci (other 
than IDDM1/HLA and IDDM2/INS), only 
IDDM7/IDDM12/IDDM13 and IDDM15 had LOD 
scores greater than 1; negligible support was found 
for six of the previously reported loci: IDDM3, 
IDDM4, IDDM6, IDDM9, IDDM10, and IDDM11. 

In an attempt to further increase the power of 
linkage analyses, multinational consortia were 
formed, allowing the analysis of combined data-
sets. The Type 1 Diabetes Genetics Consortium 
(T1DGC) was established for this purpose in 2002. 
Concannon et al. (2005) performed, under the aus-
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pices of the T1DGC, a combined linkage analysis of 
four datasets [92], including three previously pub-
lished [56, 87], providing a total sample of 1,435 
families with 1,636 affected sib-pairs. By multi-
point linkage analysis, only the HLA was signifi-
cant (IDDM1; LOD 116; λs of 3.35), and four other 
regions showed suggestive significance (i.e. uncor-
rected p < 7.4x10-4): 

 
1. 2q31-33 (IDDM7/IDDM12/CTLA4; LOD 

3.34; λs of 1.19); 
2. 6q21 (IDDM15; LOD 22.39; λs of 1.56); 
3. 10p14-q11 (IDDM10/CD25; LOD 3.21; λs 

of 1.12); 
4. 16q22-24 (LOD 2.64; λs of 1.19). 

 
LOD scores above 1 were found at IDDM2/INS, 

and 5 other regions: 3p13-14, 9q33-34, 12q14-12, 
16p12-q11.1, and 19p13. The 19p13 region con-
tains the insulin receptor gene (INSR). In 2009, 
the T1DGC published a linkage analysis of 2,496 
multiplex families; again, only the HLA was sig-
nificant at a genome-wide significance level 
(IDDM1; LOD 213), with significance at 
6q21/IDDM15 resulting from an effect partly due 
to LD with HLA. Suggestive linkage was found at 
CTLA4 (IDDM7/IDDM12; LOD 3.28), INS 
(IDDM2; LOD 3.16), and two regions on chromo-
some 19: 19p13 (INSR; LOD 2.84) and 19q13 (LOD 
2.54) [93]. The sample size of this study provided 
unprecedented power to detect linkage, but pro-
vided little support for the majority of loci previ-
ously implicated in T1D. 

Although the relative risk ratio of disease in 
siblings of patients of T1D is about 15, the contri-
bution of HLA is a λs of 3.6 and that of non-HLA-
linked loci individually significantly lower (gener-
ally less than 1.5). As the strength of the effect of 
the inheritance of any individual T1D susceptibil-
ity allele on disease phenotype is only modest, they 
are difficult to detect by linkage analysis. Genome-
wide linkage analysis of thousands of affected sib-
pair families would be required to robustly detect 
all genes with effects on familial clustering similar 
to the INS locus [94]. A consequence of this is that 
recruitment must, by necessity, require interna-
tional collaboration and pooling of samples across 
geographic boundaries. This would however result 
in a loss of the ability to detect susceptibility genes 
associated with local differences in the genetic 
population structure or environmental conditions. 
An additional limitation of genome-wide linkage 
analysis is that the resolution at which a locus is 
identified is limited by the relatively low frequency 
of recombinations occurring between generations. 

Even with large collections of families, a genome-
wide linkage scan is unlikely to map a locus to less 
than a 5cM resolution, which is generally insuffi-
cient to identify the causal gene. As a consequence 
of these two factors, even in the case of loci that 
were identified by linkage, replication at genome-
wide levels of significance by linkage was difficult, 
and robust confirmation generally required a posi-
tional candidate approach and a candidate-specific 
association study. By the mid 2000’s, association 
studies had confirmed likely roles for HLA, INS, 
PTPN22, CTLA4, and CD25. 

6. Genome-wide association studies 
(GWAS) of type 1 diabetes 

Genome-wide linkage analyses are limited in 
resolution by the recombination frequency observ-
able over a few generations, and in power by the 
relatively low number of multiplex families avail-
able. By the year 2000, a reasonable draft of the 
human genome sequence was completed, millions 
of SNPs had been deposited into public databases, 
and high throughput technologies were under de-
velopment for SNP genotyping. It was predicted 
that case control association studies involving 
thousands of patients and population-based con-
trols would provide far better resolution and power 
for the identification of disease-associated genes 
[95]. In contrast to linkage studies, association 
studies can detect alleles with much more modest 
effects on risk as long as those alleles are rela-
tively common and the sample size is sufficiently 
large [96]. In each region of the genome, prese-
lected SNPs are chosen that are expected to repre-
sent the total genetic variation in LD with the 
markers (termed tag SNPs). Kruglyak (1999) es-
timated that in whole genome association studies, 
LD was unlikely to extend beyond an average dis-
tance of 3kb in the general population [97]. This 
implies that a minimum of 500,000 SNPs would be 
required for whole genome analysis. 

Smyth and colleagues (2006) performed a 
multi-locus case-control association study of T1D 
using >6,500 coding, non-synonymous (ns) SNPs 
[98]. Although not discussed in the paper, the ra-
tionale for studying nsSNPs, was the expectation 
that most alleles affecting common, complex dis-
eases would alter the coding sequence, and there-
fore the causal variants might be amongst the 
markers selected [99]. The study was under-
powered with ~2,000 cases and 1,700 control sam-
ples, and, described as an “interim analysis”, was 
not corrected for multiple hypothesis testing. The 
most significantly associated SNP was the previ-
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ously published and confirmed C1858T SNP in 
PTPN22 [40]. 

6.1 IFIH1 

The next two most significantly associated 
SNPs reported in Smyth and colleagues (2006) 
were in CAPSL (5p13), which is adjacent to IL17R, 
and on chromosome 2q24.3 in IFIH1 (interferon 
induced with helicase C domain 1; also known as 
MDA5 or Helicard; risk associated SNP rs1990760) 
[98]. The association with rs1990760 was 
strengthened by genotyping an additional ~2,500 
cases and ~4,500 controls and by examining an in-
dependent collection of parent-child trios. The 
IFIH1 protein functions as a pattern recognition 
receptor for viral dsRNA. Additional SNPs in the 
region were typed and the region boundaries were 
found to include three other genes: fibroblast acti-
vation protein (FAP), grancalcin (GCA), and a po-
tassium voltage-gated channel and subfamily H 
member 7 (KCNH7). Liu and colleagues (2009) 
confirmed the association of these genes within the 
IFIH1 LD block, and identified a significant geno-
type-expression correlation between IFIH1 and 
four SNPs within (rs1990760 and rs2111485) and 
at the 3’ end of the IFIH1 gene (rs13422767 and 
rs2111485) [100]. Here, the most significant p-
values were obtained for two SNPs within the 
IFIH1 gene (p = 8 × 10-8 and 4 × 10-6 for rs1990760 
and rs2111485, respectively). With the benefit of 
hind-sight, variation in any, or a combination, of 
these genes could possibly affect T1D. 

The Wellcome Trust Case Control Consortium 
(WTCCC; 2007) published a major genetic mile-
stone in 2007: a genome-wide association study 
(GWAS) of seven complex diseases (bipolar disor-
der, coronary artery disease, Crohn’s disease, 
rheumatoid arthritis, T1D and type 2 diabetes), 
with about 2,000 cases per disease, and a shared 
group of ~3,000 controls, typed at 500,568 SNPs 
using the Affymetrix GeneChip500k Mapping Ar-
ray Set [101]. Prior to the genome-wide analysis of 
the data set, the authors examined associations at 
loci previously identified, and confirmed by asso-
ciation. For T1D, they confirmed associations for 
HLA, CTLA4, PTPN22, CD25, and IFIH1; INS 
could not be tested because a suitable SNP was not 
identified. It is sobering to note that the p-values 
obtained for these “proof of principal” associations 
only exceeded the genome-wide significance level 
for HLA and PTPN22. Even more concerning was 
the finding that, even after raising the threshold 
for significance 500-fold, the only other previously 
reported genetic region identified was CD25. The 

study did, however, identify three new loci signifi-
cantly associated with T1D: 12q13, 12q24, and 
16p13. In a follow-up study, the WTCCC geno-
typed an additional 4,000 cases and 5,000 controls  
(total 6,000 affected, 6,200 controls) and confirmed 
significance for 12q24 (gene SH2B3), 12q13  
(ERBB3), 16p13 (CLEC16A), and 18p11 (PTPN2) 
[102]. 

6.2 SH2B3 

At 12q24, the most highly associated SNP lay 
within exon 3 of SH2B3, although the marker is in 
the middle of a >1.2Mb LD block that encodes sev-
eral other proteins, including NAA25 (N(alpha)-
acetyltransferase 25), which is encoded by 
C12orf30. SH2B3 is a key negative regulator of cy-
tokine signaling and plays a critical role in hema-
topoiesis. 

6.3 ERBB3 

Remarkably, SH2B3 binds the receptor tyrosine 
kinase ERBB3 (v-erb-b2 erythroblastic leukemia 
viral oncogene homologue 3 (avian)), the gene for 
which lies in 12q13 and contains a highly associ-
ated SNP in its sixth intron. The genotypes associ-
ated with T1D produce lower ERBB3 mRNA ex-
pression and reduced ERBB3 expression on TLR-
activated dendritic cells and monocytes and a 
lower ability to stimulate T cell proliferation [103]. 
This locus was subsequently  independently identi-
fied in the T1DGC and Canadian replication co-
horts by Hakonarson et al. (2008) [104]. 

6.4 CLEC16A 

The most strongly associated SNP in 16p13 is 
located within intron 18 of CLEC16A, although the 
LD block is flanked by two potentially stronger 
candidates: CIITA (activator of MHC class II tran-
scription) and SOCS1 (suppressor of cytokine sig-
naling). Independently of the WTCCC, a Canadian 
group identified the same locus in a combined 
TDT/case-control association study with 483 fam-
ily trios and 563 patients and 1,146 controls of 
European ancestry [105]. At a genome-wide level 
of significance, they confirmed association at HLA, 
PTPN22, and INS, and identified a novel locus at 
16p13, where three noncoding variants were in 
strong LD. The minor allele was protective with an 
odds ratio of ~0.65. Confirmation was obtained by 
TDT on 549 T1DGC (Type 1 Diabetes Genetics 
Consortium) families and additional 390 Canadian 
trios. In their hands, the locus resides in a LD 
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block that contains the single gene: CLEC16A. 
CLEC16A is expressed on B lymphocytes, natural 
killer (NK) cells, and dendritic cells [105], but is of 
unknown function; it is unlikely to be a lectin be-
cause its C-type lectin domain is only 20 amino-
acids long. 

6.5 PTPN2 

PTPN2 encodes a phosphatase that dephos-
phorylates STAT1. STAT1 regulates immune sig-
naling, including in the IL-2 pathway. Sequencing 
failed to identify any coding variants or mutations 
likely to affect splicing; the two most significantly 
associated SNPs were located in introns 3 and 7. 
In addition, Smyth and colleagues revisited some 

loci that interested them in their association study 
of nsSNPs [98]. By combining data from the origi-
nal study, follow-up typing of 2,700 patients, 3,500 
controls, and 2,997 family trios, genome-wide sig-
nificance levels were reached for PTPN22, IFIH1, 
and CD226. 

6.6 CD226 

CD226 encodes the immune receptor DNAM-1, 
which is expressed on NK cells, platelets, mono-
cytes, and a subset of T cells. It mediates adhesion 
to vascular endothelial cells via binding the cell 
adhesion molecule nectin-2 (CD112), and NK cell 
cytotoxicity via binding nectin-2 and PVR (CD155) 
on target cells [106-107]. Dendritic cells also ex- 

 
 
Figure 1. Karyotype illustrating major T1D loci. A human karyotype illustrating the 22 autosomes and two sex chromosomes 
with the locations of the major T1D susceptibility genes indicated by color bars. The colors indicate the approximate odds ra-
tios of the risk alleles at each locus. The details of each locus are provided in Table 2. 
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press poliovirus receptor (PVR), and its interac-
tion with DNAM-1 provides T cell costimulation 
that is important during Th1 cell priming [108], 
CD8 T cell priming, and cytotoxicity [109]. 

Another GWAS was published in 2008 [110], 
with seven of its eleven authors shared with the 
WTCCC follow up study [102]. It combined analy-
sis of 3,561 cases and 4,646 controls from Britain 
(1,960 primarily pediatric cases and 2,942 controls 
from the WTCCC) and the US (1,601 adult, gener-
ally elderly, cases from the US Genetics of Kidneys 
in Diabetes study and 1,704 controls from the Na-
tional Institute of Mental Health). Of the previ-
ously identified loci, they confirmed at a genome-
wide level of significance for the following genes: 
HLA, PTPN22, NAA25 (C12orf30), ERBB3, 
CLEC16A, and CTLA4. The combined analysis 
also identified a significant region on 4q27, with 
the most significant SNP located in the gene 
KIAA1109, which lies about 200 kb 3’ of the IL2 
and IL21 cytokine genes, and is of particular in-
terest because it is syntenic with the NOD mouse 
diabetes susceptibility gene Idd3 [111]. 

No other loci reached genome-wide significance. 
However, by combining these data sets with addi-
tional 6,225 cases and 6,946 controls from Britain 
(presumably the original WTCCC cohort) four new 
loci were identified: 6q15 (in the gene BACH2), 
10p15 (PRKCQ), 15q24 (CTSH), and 22q13 
(C1QTNF6). 

6.7 BACH2 

The most strongly associated SNP in 6q15 lies 
within the third intron of BACH2, which encodes 
BACH2, a bZIP transcription factor. Like IFIH1, 
BACH2 has a role in nucleic acid-triggered innate 
antiviral responses, including programmed cell 
death of infected cells [112]. 

6.8 PRKCQ 

The gene PRKCQ lies 79 kb telomeric to the 
most significantly associated SNP in 10p15 and 
encodes protein kinase C, θ (PKC-θ). Like PTPN22, 
PKC-θ is involved in T cell signaling. It is a cal-
cium-independent and phospholipid-dependent 
protein kinase which links TCR activation to NF-
κB translocation by phosphorylation of CARD11, 
Jun activation by phosphorylation of 
STK39/SPAK, and calcium mobilization by regu-
lating inositol 1,4,5-trisphosphate generation. 

6.9 CTSH 

The most significantly associated SNP in 15q24 
is located in intron 1 of CTSH, which encodes 
cathepsin H, a lysosomal cysteine proteinase. The 
LD block contains eight other genes. 

6.10 C1QTNF6 

On chromosome 22q13, the most strongly asso-
ciated SNP lies between C1QTNF6 (C1q and tu-
mor necrosis factor related protein 6) and SSTR3 
(somatostatin receptor 3). The LD block contains 
two other genes. 

A combined meta-analysis, incorporating cases 
from the WTCCC studies [102] and the combined 
British and US GWAS [108], examined a total 
sample set of 7,514 cases and 9,045 reference sam-
ples [113]. At a genome-wide level of significance, 
they confirmed associations with the previously 
identified regions 1p13 (gene of interest PTPN22), 
2q24 (IFIH1), 2q33 (CTLA4), 4q27 (IL2), 6q15 
(BACH2), 10p15 (IL2RA and PRKCQ), 11p15 
(INS), 12q13 (ERBB3), 12q24 (SH2B3), 15q25 
(CTSH), 16p13 (CLEC16A), 18p11 (PTPN2), 21p22 
(UBASH3A), and 22q13 (C1QTNF6). In addition, 
they obtained genome-wide significance for 18 
other loci, including those described in the follow-
ing sections. 

6.11 IL10 

The most significantly associated SNP at 1q32 
(rs3024505) is distal to the IL10 gene. IL10 has 
pleiotropic effects on adaptive and innate immu-
nity. Its ability to inhibit the production of several 
inflammatory cytokines and chemokines, including 
IL1 and TNF, contribute to its anti-inflammatory 
activities. It inhibits expression of MHC class II 
antigens, and the costimulators CD80 (B7) and 
CD86 (B7.2) on monocytes, significantly affecting 
their T cell-activating capacity. In contrast, it en-
hances survival and proliferation of B cells and in-
creases antibody production [114]. 

6.12 CD69 

CD69 is encoded at 12p13. Its expression is in-
duced upon T cell activation and mediates T cell 
costimulation. The most significantly associated 
SNP is in the first intron, which contains a cis-
regulatory element [115]. Significantly, CD69 sup-
presses sphingosine 1-phosophate receptor-1 
(S1P1) function [116]. S1P1 plays a critical role in 
lymphocyte recirculation; its pharmaceutical  

Table 2. T1D susceptibility genes illustrated in Figure 1 
 

Chromosome Locus Marker Candidate gene Odds ratio Reference  

1 1p13.2 rs2476601 PTPN22 1.70 Zheng et al. 2005 [43] 
1 1q31.2 rs2816316 RGS1 1.12 Smyth et al. 2008 [171} 
1 1q32.1 rs3024505 CD55, IL10 1.19 Barrett et al. 2009 [113] 
2 2p23.3 rs478222 - 1.15 Bradfield et al. 2011 [172] 
2 2q11.2 rs9653442 AFF3 1.11 Barrett et al. 2009 [113] 
2 2q24.2 rs1990760 KCNH7, IFIH1, GCA, GCG, 

FAP 
1.22 Todd et al. 2007 [102] 

2 2q32.3 rs6752770 STAT4 1.11 Barrett et al. 2009 [113] 
2 2q33.2 rs3087243 CTLA4 1.61 Kavvoura et al. 2005 [70] 
3 3p21.31 rs333 CCR5 1.18 Smyth et al. 2008 [171} 
4 4p15.2 rs10517086 - 1.09 Barrett et al. 2009 [113] 
4 4q27 rs2069763 IL2, IL21 1.13 Smyth et al. 2008 [171} 
6 6p21 rs9268645 HLA-DQB1, HLA-DRB1, HLA-

B, HLA-A 
6.85 Todd et al. 2007 [102] 

6 6q15 rs11755527 BACH2 1.13 Denny et al. 1997 [111] 
6 6q22.32 rs9388489 CENPW 1.17 Barrett et al. 2009 [113] 
6 6q23.3 rs6920220 TNFAIP3 1.09 Fung et al. 2009 [173] 
6 6q25.3 rs1738074 TAGAP 1.09 Smyth et al. 2008 [171} 
6 6q27 rs924043 - 1.19 Bradfield et al. 2011 [172] 
7 7p15.2 rs7804356 SKAP2 1.14 Barrett JC et al. 2009 [113] 
7 7p12.2 rs10272724 IKZF1 1.15 Swafford et al. 2011 [174] 
7 7p12.1 rs4948088 COBL 1.30 Barrett et al. 2009 [113] 
9 9p24.2 rs7020673 GLIS3 1.14 Barrett et al. 2009 [113] 
10 10p15.1 rs11594656 IL2RA 2.04 Lowe et al. 2007 [82] 
10 10q22.3 rs1250558 ZMIZ1  1.00 Barrett et al. 2009 [113] 
10 10q23.31 rs10509540 RNLS 1.33 Barrett et al. 2009 [113] 
11 11p15.5 rs689 INS-IGF2, INS 2.25 Todd et al. 2007 [102] 
12 12p13.31 rs4763879 CD69 1.09 Barrett et al. 2009 [113] 
12 12q13.2 rs2292239 ERBB3 1.30 Todd et al. 2007 [102] 
12 12q14.1 rs10877012 CYP27B1 1.22 Bailey et al. 2007 [175] 
12 12q24.12 rs3184504 SH2B3 1.28 Todd et al. 2007 [102] 
13 13q22.2 rs539514 - 1.14 Bradfield et al. 2011 [172] 
13 13q32.3 rs9585056 GPR183 1.15 Barrett et al. 2009 [113] 
14 14q24.1 rs1465788 - 1.16 Barrett et al. 2009 [113] 
14 14q32.2 rs4900384  DLK1  1.09 Barrett et al. 2009 [113] 
15 15q14 rs17574546  RASGRP1 1.21 Barrett et al. 2009 [113] 
15 15q25.1 rs3825932 CTSH 1.16 Denny et al. 1997 [111] 
16 16p13.13 rs12708716 CLEC16A, DEXI 1.54 Hakonarson et al. 2007 [105] 
16 16p11.2 rs4788084 IL27 1.16 Barrett et al. 2009 [113] 
16 16q23.1 rs7202877 - 1.28 Barrett et al. 2009 [113] 
17 17q12 rs2290400 GSDMB, ORMDL3 1.15 Barrett et al. 2009 [113] 
17 17q21.2 rs7221109 - 1.05 Barrett et al. 2009 [113] 
18 18p11.21 rs45450798 PTPN2 1.28 Todd et al. 2007 [102] 
18 18q22.2 rs763361 CD226 1.17 Todd et al. 2007 [102] 
19 19p13.2 rs1051738 PDE4A 1.19 Todd et al. 2007 [102] 
19 19q13.32 rs425105 - 1.16 Barrett et al. 2009 [113] 
19 19q13.33 rs602662 FUT2 1.00 Barrett et al. 2009 [113] 
20 20p13 rs2281808 - 1.11 Barrett et al. 2009 [113] 
21 21q22.3 rs3788013 UBASH3A 1.13 Smyth et al. 2008 [171} 
22 22q12.2 rs5753037 - 1.10 Barrett et al. 2009 [113] 
22 22q12.3 rs229541 IL2RB, C1QTNF6 1.12 Denny et al. 1997 [111] 
X Xp22.2 rs5979785 TLR7, TLR8 1.19 Barrett et al. 2009 [113] 
X Xq28 rs2664170 - 1.16 Barrett et al. 2009 [113] 
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press poliovirus receptor (PVR), and its interaction 
with DNAM-1 provides T cell costimulation that is 
important during Th1 cell priming [108], CD8 T 
cell priming, and cytotoxicity [109]. 

Another GWAS was published in 2008 [110], 
with seven of its eleven authors shared with the 
WTCCC follow up study [102]. It combined analy-
sis of 3,561 cases and 4,646 controls from Britain 
(1,960 primarily pediatric cases and 2,942 controls 
from the WTCCC) and the US (1,601 adult, gener-
ally elderly, cases from the US Genetics of Kidneys 
in Diabetes study and 1,704 controls from the Na-
tional Institute of Mental Health). Of the previ-
ously identified loci, they confirmed the following 
genes at a genome-wide level of significance: HLA, 
PTPN22, NAA25 (C12orf30), ERBB3, CLEC16A, 
and CTLA4. The combined analysis also identified 
a significant region on 4q27, with the most signifi-
cant SNP located in the gene KIAA1109, which lies 
about 200 kb 3’ of the IL2 and IL21 cytokine genes, 
and is of particular interest because it is syntenic 
with the NOD mouse diabetes susceptibility gene 
Idd3 [111]. 

No other loci reached genome-wide significance. 
However, by combining these data sets with addi-
tional 6,225 cases and 6,946 controls from Britain 
(presumably the original WTCCC cohort) four new 
loci were identified: 6q15 (in the gene BACH2), 
10p15 (PRKCQ), 15q24 (CTSH), and 22q13 
(C1QTNF6). 

6.7 BACH2 
The most strongly associated SNP in 6q15 lies 

within the third intron of BACH2, which encodes 
BACH2, a bZIP transcription factor. Like IFIH1, 
BACH2 has a role in nucleic acid-triggered innate 
antiviral responses, including programmed cell 
death of infected cells [112]. 

6.8 PRKCQ 

The gene PRKCQ lies 79 kb telomeric to the 
most significantly associated SNP in 10p15 and 
encodes protein kinase C, θ (PKC-θ). Like PTPN22, 
PKC-θ is involved in T cell signaling. It is a cal-
cium-independent and phospholipid-dependent 
protein kinase which links TCR activation to NF-
κB translocation by phosphorylation of CARD11, 
Jun activation by phosphorylation of 
STK39/SPAK, and calcium mobilization by regu-
lating inositol 1,4,5-trisphosphate generation. 

6.9 CTSH 

The most significantly associated SNP in 15q24 
is located in intron 1 of CTSH, which encodes 

cathepsin H, a lysosomal cysteine proteinase. The 
LD block contains eight other genes. 

6.10 C1QTNF6 

On chromosome 22q13, the most strongly asso-
ciated SNP lies between C1QTNF6 (C1q and tu-
mor necrosis factor related protein 6) and SSTR3 
(somatostatin receptor 3). The LD block contains 
two other genes. 

A combined meta-analysis, incorporating cases 
from the WTCCC studies [102] and the combined 
British and US GWAS [108], examined a total 
sample set of 7,514 cases and 9,045 reference sam-
ples [113]. At a genome-wide level of significance, 
they confirmed associations with the previously 
identified regions 1p13 (gene of interest PTPN22), 
2q24 (IFIH1), 2q33 (CTLA4), 4q27 (IL2), 6q15 
(BACH2), 10p15 (IL2RA and PRKCQ), 11p15 
(INS), 12q13 (ERBB3), 12q24 (SH2B3), 15q25 
(CTSH), 16p13 (CLEC16A), 18p11 (PTPN2), 21p22 
(UBASH3A), and 22q13 (C1QTNF6). In addition, 
they obtained genome-wide significance for 18 
other loci, including those described in the follow-
ing sections. 

6.11 IL10 

The most significantly associated SNP at 1q32 
(rs3024505) is distal to the IL10 gene. IL10 has 
pleiotropic effects on adaptive and innate immu-
nity. Its ability to inhibit the production of several 
inflammatory cytokines and chemokines, including 
IL1 and TNF, contribute to its anti-inflammatory 
activities. It inhibits expression of MHC class II 
antigens, and the costimulators CD80 (B7) and 
CD86 (B7.2) on monocytes, significantly affecting 
their T cell-activating capacity. In contrast, it en-
hances survival and proliferation of B cells and in-
creases antibody production [114]. 

6.12 CD69 

CD69 is encoded at 12p13. Its expression is in-
duced upon T cell activation and mediates T cell 
costimulation. The most significantly associated 
SNP is in the first intron, which contains a cis-
regulatory element [115]. Significantly, CD69 sup-
presses sphingosine 1-phosophate receptor-1 
(S1P1) function [116]. S1P1 plays a critical role in 
lymphocyte recirculation; its pharmaceutical 
downmodulation by the agonist fingolimod se- 
questers lymphocytes in lymph nodes, preventing 
diabetes in NOD mice [117-118]. 
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6.13 IL27 

The most significantly associated SNP at 16p11 
lies in a 30kb intragenic region between NUPR1 
and IL27; it is 5’ of IL27. IL27 causes clonal ex-
pansion of naive CD4 T cells without affecting 
memory cells. It synergizes with IL12 to incite the 
production of IFNγ. 

6.14 GLIS3 

The most significantly associated SNP at 9p24 
is in the first intron of GLIS3. GLIS3 is a nuclear 
protein with five zinc finger domains and modu-
lates transcription. It is involved in the develop-
ment of pancreatic beta-cells, the thyroid, eye, 
liver, and kidney. Mutations in its gene have been 
associated with neonatal diabetes. 

The other regions identified were: 4p15, 6q22 
(associated gene of interest C6orf173), 7p15, 7p12 
(COBL), 10q23 (C10orf59), 14q24, 14q32, 16q23, 
17q12 (ORMDL3), 17q21, 19q13, 20p13, 22q12, 
and Xq28. A summary of significant T1D suscepti-
bility loci is provided in Figure 1 and Table 2. 

7. From location to molecular mecha-
nisms: the missing heritability prob-
lem 

Heritability, the proportion of phenotypic varia-
tion within a population that is explained by ge-
netic variation, has been estimated for T1D on the 
basis of familiar concordance. Family studies, in-
cluding twin studies, allow comparisons of the 
prevalence of disease amongst relatives of affected 
individuals with that in the broader population. 
High-power, high-resolution, genome-wide 
searches for the genetic variants responsible for 
the genetic component of liability (termed suscep-
tibility) to T1D have identified dozens of genetic 
regions that contribute to the risk of disease. With 
the exception of the HLA, generally each locus 
makes a relatively small contribution to the over-
all risk. Comparisons of family-based estimates of 
heritability, with estimates of aggregated (gener-
ally additive) genetic risk, have identified the 
cause of only ~14% of the heritability of T1D [119]. 
This deficiency has been referred to as “missing 
heritability” or the “heritability gap” [120], and is 
common to the GWAS results of almost every com-
plex trait, suggesting a systematic problem [120]. 
Several explanations for this problem have been 
proposed [121-122] and are discussed here. 

7.1 Misdiagnosis 

An assumption underlying genetic studies in 
autoimmune diseases is that each clinical syn-
drome represents a single disease entity, with a 
shared etiology. Diagnostically, the major confu-
sion with T1D is caused by the existence of two 
other diabetes forms: 

 
1. Latent autoimmune diabetes, which is of 

later onset; 
2. Type 2 diabetes, which does not have an 

autoimmune origin (and therefore lacks 
anti-islet autoantibodies), but is common 
and of increasing prevalence. 

 
The application of new diagnostic methods, 

such as detailed immunophenotyping and new im-
aging modalities, will improve clinical classifica-
tion. 

7.2 Familial environmental differences 

Heritability compares variation in disease 
within families with that in the broader commu-
nity, and assumes that these differences are due to 
genetic inheritance. In reality, inheritance consists 
of a great deal more than genome. Many other fac-
tors are more common to family members than to 
the broader community, including prenatal envi-
ronment, geographic location, domestic environ-
ment, diet, diurnal patterns, hobbies, work activi-
ties, socioeconomic status, etc. It is therefore obvi-
ous that the component of liability attributed to 
“heritability” incorporates a great number of envi-
ronmental causes. 

Epidemiological approaches have identified 
multiple associated environmental factors that are 
neither homogenously distributed in populations, 
nor corrected for in heritability estimates, such as 
socioeconomic status, urban/rural location [123-
126], and dietary habits [127-128]. For some dis-
eases, it is possible to estimate the contribution of 
such factors by comparing disease prevalence in 
monozygotic twins raised together with that of 
those raised separately. In the case of T1D, the 
prevalence of the disease is sufficiently low as to 
virtually exclude this form of analysis. Progress in 
our understanding of the genetic etiology of T1D 
therefore remains heavily dependent on rigorous 
epidemiological studies. The incorporation of epi-
demiological data into genome-wide studies is 
computationally simple, but remains to be applied 
systematically. 
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7.3 Gene/environment interactions 

Our genetic understanding of complex diseases 
is strongly influenced by the modeling performed 
by Falconer [129-130], which assumed that large 
numbers of genetic and environmental factors each 
contribute a small risk in an additive fashion. Fal-
coner’s model has proved robust in the calculation 
of familial risk for T1D [131]. Nevertheless, it is 
likely that loci exist for which the phenotypic ef-
fects of allelic variation are dependent on the pres-
ence or absence of one or more environmental fac-
tors, or for which environmental risk factors are 
synergistic. The resolution of this issue will re-
quire the incorporation of epidemiological data 
into computationally demanding genome-wide in-
teraction analyses (GWIA). 

7.4 Epistasis: gene/gene interactions 

Similar in effect to gene/environment interac-
tions, epistasis can diminish the apparent effects 
of causal variations. For example, many biochemi-
cal pathways show significant degrees of redun-
dancy and, as a result, multiple genes with shared 
activity may need to be affected for a phenotype to 
be observable. Epistasis can be identified by 
GWIA, but this generally requires larger data sets, 
is computationally challenging, and currently 
lacks clear guidelines for significance thresholds 
[132]. A greater understanding of the molecular 
mechanisms involved in autoimmunity is likely to 
facilitate identification of synergism and redun-
dancies, but as a generalization, this is dependent 
on identifying the functional variants responsible 
for conferring risk. 

7.5 Epigenetic inheritance 

Methylation of cytosine bases in DNA is a 
mechanism of epigenetic marking. It can be ana-
lyzed on a genomic scale at single base-pair resolu-
tion [133]. As far as we know, the primary mecha-
nism by which epigenetic marking affects pheno-
type is by modulating transcript expression levels. 
The effects of epigenetic inheritance can therefore 
be assessed more broadly by mRNA analyses using 
microarrays or high throughput sequencing (HTS). 
These methods depend on the knowledge of the 
relevant transcripts. Some may be indicated by the 
locations of risk-associated SNPs, which frequently 
lie in untranslated sequences either side of protein 
coding open reading frames (ORF), or else in in-
trons. In many cases, however, it is unclear which 
protein coding region(s) should be targeted for 
transcription studies. 

The possibility that epigenetic modifications are 
responsible for missing heritability was discussed 
by Slatkin (2009) [134]. He points out that their 
effects depend on the frequency of gain, and the 
rate of loss, of inherited epigenetic marks, which 
we are currently unable to estimate. His numerical 
analyses indicated that unless epigenetic marks 
persist for many generations, they are unlikely to 
contribute much to missing heritability, although 
they may well contribute to causality. 

7.6 Inheritance of copy number variations 

Copy number variations (CNVs) of chromoso-
mal segments up to 2Mb are widespread across the 
human genome [135], and affect function either 
through haploinsufficiency or by gene duplication, 
which enhances message levels. CNV can affect 
phenotypes and cause rare Mendelian disease 
traits such as Charcot-Marie-Tooth disease [136] 
and hereditary neuropathy [137]. It has also been 
shown to be associated with multiple complex dis-
eases. 

Two GWAS of CNVs have been performed for 
T1D [138-139]. Both studies identified signifi-
cantly associated CNV at the HLA. The WTCCC 
reported two additional CNVs significantly associ-
ated with other complex diseases, but commented 
that all three loci had been previously identified by 
GWAS of SNPs, indicating that SNPs in LD with 
CNV could act as tags for them just as SNPs can 
be used to tag other causal variations. Previous 
SNP-based GWAS therefore had indirectly ex-
plored CNVs for associations with disease. The 
consortium concluded that common CNVs that can 
be typed on existing platforms are unlikely to con-
tribute greatly to the genetic basis of common hu-
man diseases. Grayson’s much smaller 2010 study 
identified eleven CNVs that differed in frequency 
by 1.5-fold between twenty patients with T1D and 
twenty healthy controls, and varied between ten 
pairs of monozygotic twins discordant for T1D. 
Replication studies of an independent sample (73 
patients and 73 controls) failed to validate any of 
these candidates [139]. 

7.7 Ineffective haplotype tagging 

As a generalization, most risk SNPs identified 
by GWAS are just tagging SNPs in LD with the 
causal variants, which are yet to be identified. 
Their value in risk assessment is only as strong as 
their association with the causal variant(s). In 
2001, analyses by Daly et al. (2001) [140] and Jef-
freys et al. (2001) [141] suggested that the human 
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genome consists of discrete haplotype blocks of 
tens to hundreds of kilobases, each with limited 
diversity, separated by recombination hot spots. 
The International HapMap Project is testing the 
haplotype block model of LD by identifying com-
mon haplotypes in four racial groups from differ-
ent parts of the world, and by identifying tag SNPs 
that uniquely identify these haplotypes 
(http://hapmap.ncbi.nlm.nih.gov/whatishapmap.ht
ml.en). If successful, genotyping of the 300,000 to 
600,000 tag SNPs in individuals could identify 
their haplotype blocks and therefore the majority 
of the sequence of their genome. As HapMap data 
have become available, they have been applied to 
GWAS on the assumption that tag SNPs ade-
quately represent the genetic diversity of an indi-
vidual [142]. This assumption may not be true, as 
the maximum opportunity for diversity lies in the 
recombination hot spots. The assumption can only 
be tested by whole genome sequencing of patients 
and controls, or targeted resequencing of haplo-
type blocks, including the flanking recombination 
hot spots. With current technologies, whole ge-
nome sequencing results in ~300,000 private mu-
tations (de novo mutations or familial mutations) 
and a similar number of sequencing errors. Inter-
pretation will require improved computational 
methods for management of errors and better 
methods for identifying regulatory sequences. 

The possibility that ineffective haplotype tag-
ging is responsible for missing heritability in 
GWAS studies was analyzed by Spencer et al. 
(2011) [143]. They concluded that under plausible 
assumptions, the majority of the per-allele relative 
risk (RR) estimated from GWAS data will be close 
to the true risk at the causal variant. Neverthe-
less, some per-allele RRs could be considerable un-
derestimates; for an estimated RR in the range 
1.2-1.3, there is a ~38% chance that it exceeds 1.4, 
and a 10% chance that it is over 2. Although these 
effects mean that the amount of heritability ex-
plained by known risk loci is probably larger than 
current projections, this factor is unlikely to ex-
plain much of the missing heritability. 

7.8 Rare variants 

The GWAS approach relies on the use of con-
tingency table analyses to identify significant de-
viations from expected allele frequencies. These 
tests are most useful when frequencies are in the 
mid range; they perform badly with very low ex-
pected frequencies. The GWAS approach requires 
a compromise, which is implied in the “common 
disease, common variant” hypothesis, in which it is 

postulated that common diseases are largely at-
tributable to common alleles present in >1-5% of 
the population. It could be argued that the herita-
bility gap indicates that the hypothesis is found 
deficient, and that much of the heritability of T1D 
is conferred by rare alleles, the identification of 
which will require larger study populations. Popu-
lation genetic theory predicts that variants confer-
ring a large proportion of disease risk will be asso-
ciated with decreased reproductive fitness, which 
should act to reduce their frequencies [120]. This 
raises the hypothesis that some rare alleles will 
confer a large proportion of heritability. Although 
certainly possible, this hypothesis is also one of 
convenience; if the missing heritability is conferred 
by large numbers of rare alleles of weak effect, 
they cannot be practically identified by genetic 
means. Even if missing heritability is explained by 
rare alleles of large effect, it may be difficult to 
identify many of them. Current GWAS studies of 
T1D require large multinational collaborations to 
obtain sufficiently large numbers of samples for 
analysis. As a consequence, loci with contributions 
dependent on local environmental conditions are 
usually undetectable. This will be an even greater 
problem with larger studies. 

The issue of rare variants is related to that of 
ineffective haplotype tagging. High throughput se-
quencing has facilitated complex-trait rare-variant 
association studies. In some cases, fine mapping 
identified multiple independent rare variants that 
contributed to the GWAS association between the 
tagging SNP and disease [144]. Ehret et al. (2012) 
have developed a method for improving the tag-
ging of unobserved causal variants by using a 
combination of SNPs to define a haplotype [145]. 
This multi-SNP association method is capable of 
substantially increasing the amount of variance 
explained (for example from 3% to 13% for height). 
Also, it increases the proportion of loci capable of 
being replicated in a validation study. A detailed 
analysis showed that most of the additional vari-
ability explained is derived from SNPs that are not 
in LD with the lead tagging SNP, confirming that 
allelic heterogeneity contributes to missing herita-
bility. 

7.9 Common variants of low effect 

For almost all complex traits, it has been ob-
served that the greater the power of a GWAS to 
identify genes with low contributions to risk, the 
more genes are found. Extrapolation of these data 
resulted in the hypothesis that virtually all genes 
contribute to a trait, with increasingly large num-
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bers contributing steadily diminishing amounts of 
risk. This has led to the suggestion that substan-
tially larger GWAS will be required to identify the 
majority of heritability. Park et al. (2010) applied 
empirical data to assess the number of loci that 
are likely to be associated with a given complex 
disease, and the distribution of their effect sizes 
[146]. They argue that the distribution of effect 
sizes seen in current GWAS is skewed because of a 
bias in favor of larger effect sizes, for which their 
power is greater. When this bias was corrected for, 
the predicted number of loci discovered increased 
roughly in proportion to sample size, but the pro-
portion of genetic variance explained by these loci 
showed diminishing returns. Their model pre-
dicted that, while increasing the sample size of a 
GWAS for Crohn’s disease from 5,000 patients and 
a similar number of controls by five-fold would in-
crease the number of loci identified by a similar 
factor, it would not even double the proportion of 
heritability explained [146]. 

7.10 Missing association 

A specific class of missing heritability is pro-
vided by disease risk loci identified and confirmed 
by linkage, but not identified by association stud-
ies. For example, IDDM4/FGF3 had been con-
firmed by linkage according to the guidelines pro-
posed by Lander and Kruglyak [54], yet showed no 
association with T1D in any of the major GWAS. 
Clearly, this cannot be a result of either misdiag-
nosis or familial environments. It could theoreti-
cally result from gene/environment interactions, 
but Luo et al. examined the proportions of gene 
sharing between individual cohorts sourced from 
Florida, other parts of the USA, and Italy, without 
finding differences [55]. As discussed above, copy 
number variations should be adequately tagged by 
association studies [138], and although IDDM4 
makes a relatively low contribution to susceptibil-
ity (λs = 1.09) [147], large association studies 
should have more power to detect genes than rela-
tively small linkage studies. 

There is evidence that ineffective haplotype 
tagging may contribute to the difficulty in identify-
ing IDDM4 in GWAS studies. Fine mapping by 
transmission disequilibrium testing (TDT) of over 
2000 families pooled from the UK, USA, Norway, 
Sardinia, Romania, Finland, Italy, and Denmark 
indicated that the true IDDM4 linkage peak lies in 
a region more centromeric than FGF3  (containing 
D11S1917 and D11S1337), and identified a two-
marker haplotype that was most strongly associ-
ated with T1D (D11S1917*03-H0570polyA*02) 

[147-148]. Twells et al. (2003) subsequently devel-
oped a comprehensive SNP map of the region con-
centrated on the positional candidate gene LRP5 
[149]. The map included 95 SNPs over 269kb of 
genome, saturating LRP5 with 32 microsatellite 
markers and 12 SNPs. It could identify the risk-
associated D11S1917*03-H0570polyA*02 haplo-
type with a combination of four SNPs. The impli-
cation is therefore that this haplotype could not 
have been identified by a single tag-SNP GWAS 
approach. 

Despite the development of a high-resolution 
map of the region and the incorporation of multi-
locus haplotyping, Twells et al. failed to improve 
the existing strength of the association with T1D. 
Furthermore, analysis of an independent, Finnish 
data set showed no significant deviation of trans-
mission of the risk-associated four-SNP haplotype 
[149]. One potential explanation for these results 
(in addition to the possibility that IDDM4 does not 
represent a genuine disease locus) is that linkage 
of the region to T1D may be mediated by familial 
transmission of rare or private variants. Tumor 
biology provides a useful analogy; although 
BRCA1 and BRCA2 show linkage to breast and 
prostatic cancer, 670 different protein-truncating 
mutations have been reported for BRCA1 and over 
730 for BRCA2 [150]. Some of these mutations, 
such as the 5382insC frameshift mutation in exon 
20 of BRCA1 are relatively common, occurring in 
about 10% of heritable breast cancers; many oth-
ers have only ever been reported once [150]. 

There is no a priori reason why a similar pat-
tern of mutation should not be found for genes con-
ferring susceptibility to autoimmunity. If so, the 
ability of GWAS to identify such loci will be de-
pendent on the dominance of one, or a few common 
mutations. Complete characterization of loci iden-
tified by linkage, but not association, will require 
comprehensive resequencing. 

8. From genes to function 
The GWAS approach tests disease associations 

with individual variants that are unlikely to be 
causal. Many of the applications of GWAS data, 
and many of the strategies for identifying missing 
heritability described above, are dependent on 
identifying the functional variants not just the 
tagging SNPs with which they are in LD. One ap-
proach is to examine protein-coding genes in the 
vicinity of risk SNPs to identify overrepresented 
biological pathways. For example, the recent 
GWAS data obtained for multiple sclerosis were 
analyzed for the enrichment of genes (defined as 
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protein-coding regions nearest to the lead-tagging 
SNP) with similar function, as defined by their 
classification in the Gene Ontology (GO) database 
[151]. The GO terms having the most significant 
enrichment included genes involved in ‘immune 
system processes’ (p = 8.6x10-11, OR = 9.12), par-
ticularly lymphocyte function (p = 3.2x10-11, OR = 
35.96), and especially T cell activation and prolif-
eration (p = 1.85x10-9, OR = 40.85) [152]. 

Similarly, pathway databases, such as the 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [153], can be used to cluster candidate 
genes into higher-level functions, disease proc-
esses, and organism behaviors. Li et al. (2012) 
[154] applied this approach to the Wellcome Trust 
Case Control Consortium (WTCCC; 2007) [101] 
dataset. Significantly over-represented pathways 
in T1D included the Jak-STAT, calcium, MAPK, 
and Wnt signaling pathways, as well as trypto-
phan and pyrimidine metabolism. Once associated 
functions and pathways have been identified, one 
can return to the genomic sequence flanking risk 
SNPs to identify additional putative causal vari-
ants. The sequencing of these SNPs, and their as-
sociated regulatory sequences, in patients and con-
trols can help to validate these candidates. 

These approaches have provided partial suc-
cess, but have made it clear that few causal variants 
affect the amino acid sequence of candidate protein 
coding regions. In many cases, the haplotype block 
in LD with a tagging SNP lies within the first in-
tron, or in regulatory sequences 5’ or 3’ of a pro-
tein-coding gene. Usually, the most important re-
gions that regulate transcription are the promoter 
and the first intron, although many other regula-
tory elements are also required for spatiotempo-
rally and quantitatively correct gene expression; 
enhancer and repressor elements frequently reside 
in introns or up- and downstream of the transcrip-
tion unit [155]. This finding therefore suggests 
that the linked causal variants in these regions are 
likely to be expression quantitative trait loci 
(eQTL), at which polymorphism affects the expres-
sion of one or more transcripts. Indeed, the data 
obtained on candidate genes for several autoim-
mune diseases strongly support the hypothesis 
that most of the genetically encoded risk of disease 
is conferred by eQTL [38, 71, 103, 156-163]. 

The success of eQTL-based approaches is illus-
trated in recent studies which combine genotyping 
and gene expression datasets. For example, Göring 
et al. (2007) reported that, of around 20,000 auto-
somal gene transcripts, 1,345 were regulated by 
nearby (cis) gene variants [164]. With a false dis-

covery rate of 5%, the median genotype-expression 
change was 24.6%. In a dataset combining very 
high density SNP genotyping and gene expression 
profiling of lymphoblast cell lines from 210 unre-
lated individuals, Veyrieras et al. (2008) found 
that, of 11,466 expressed genes, expression levels 
in 6.5% of these were highly associated with indi-
vidual SNPs [165]. The most significantly associ-
ated eQTL was an average of 7.5 kb from the tran-
script, and 99% of cis-eQTLs were found to lie be-
tween 110kb upstream and 40 kb downstream of 
the transcription start site. 

It is likely that eQTLs and splice QTLs will be 
cell subset-specific. Dimas et al. (2009) identified 
eQTL in three cell types (fibroblasts, EBV-
transformed B cells, and T cells) in 75 newborns 
enrolled in a European Gencord project [166]. Of 
1,007 unique eQTLs, only 8.5% were shared 
amongst all three cell types, 12% were shared be-
tween two of three cell types, and 79.5% were cell 
type-specific. It is therefore necessary for cell sub-
sets to be analyzed for gene expression profiles in-
dividually. A significant advantage for T1D is that 
much of the disease risk appears to be conferred by 
genes involved in immune system processes, par-
ticularly leukocyte function, and a wide range of 
leukocytes can be accessed via the peripheral blood 
using commercially available kits that facilitate 
subset purification from whole blood or buffy coat. 
A proof of principle for this approach was provided 
by the integration of SNP genotyping and periph-
eral blood monocyte expression data in which alle-
lic variation at the T1D susceptibility locus 12q13 
(ERBB3; lead SNP rs11171739) was associated 
with differences in expression of two nearby (cis) 
genes, RPS26 and SUOX, and 5 trans genes, in-
cluding MADCAM1 [167]. There is significant evi-
dence that modulation of MAdCAM-1 expression 
affects the pathogenesis of T1D; it is increased in 
expression on vascular endothelium adjacent to 
and within the inflamed islets of NOD mice [168], 
and its blockade reduces the incidence of sponta-
neous diabetes [169] and diabetes transferred by a 
T cell clone in mice [170]. 

Our preferred approach is to identify disease-
associated eQTL in five peripheral blood leukocyte 
subsets: CD4 T cells, CD8 T cells, B cells, NK cells, 
and monocytes. By combining this data set with 
T1DGC GWAS data (www.t1dbase.org), we will be 
able to identify variants that are associated with 
differences in gene expression throughout the ge-
nome, whether in cis or trans. Some of these vari-
ants will also be associated with disease. These 
studies will dramatically increase our knowledge 
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of each of these risk-associated haplotypes that 
contain eQTL; they will reveal the following as-
pects: 

 

1. The transcripts that the haplotypes cause 
to be differentially expressed; 

2. The tissues in which the differential ex-
pression occur; 

3. The direction of differential expression the 
haplotypes confer; 

4. The direction of changes in expression as-
sociated with disease. 

 
With these four critical pieces of information, 

we can generate animal models to test the validity 

of these candidate genes and thus determine the 
molecular mechanisms of their actions. 
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