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■ Abstract 
The metabolome is sensitive to genetic and environmental 
factors contributing to complex diseases such as type 1 dia-
betes (T1D). Metabolomics is the study of biochemical and 
physiological processes involving metabolites. It is therefore 
one of the key platforms for the discovery and study of 
pathophysiological phenomena leading to T1D and the de-
velopment of T1D-associated complications. Although the 
application of metabolomics in T1D research is still rare, me-
tabolomic research has already advanced across the full 
spectrum, from disease progression to the development of 
diabetic complications. Metabolomic studies in T1D have 
contributed to an improved etiopathogenic understanding 
and demonstrated their potential in the clinic. For example, 

metabolomic data from recent T1D studies suggest that a 
specific metabolic profile, or metabotype, precedes islet 
autoimmunity and the development of overt T1D. These 
early metabolic changes are attributed to many biochemical 
pathways, thus suggesting a systemic change in metabolism 
which may be inborn. Based on this evidence, the role of the 
metabolome in the progression to T1D is therefore to facili-
tate specific biochemical processes associated with T1D, and 
to contribute to the development of a vulnerable state in 
which disease is more likely to be triggered. This may have 
important implications for the understanding of T1D patho-
physiology and early disease detection and prevention. 
 

 

Keywords: allostasis · autoimmunity · biomarker · lipid me-
tabolism · lipidomics · metabolomics · systems biology 

 

1. Introduction 
 

 etabolites are small molecules which are in- 
 termediates and products of metabolism. 
 Glucose, amino acids, fatty acids, choles-

terol, lactate, to give a few examples, all of them 
belong to the human ‘metabolome’. The aim of me-
tabolomics is to study the biochemical and physio-
logical processes involving metabolites. 

Studies of metabolites in the context of health 
and disease precede studies of genes. The very first 
known diagnostic application using metabolites 
can be tracked back 3000 years to China. Based on 
the observation that ants are attracted to sugar, 
the ants were utilized by ancient Chinese doctors 
to test urine in order to detect if the urine con-
tained high levels of sugar [1]. In modern termi-

nology, ants were applied as sensitive, albeit quali-
tative detectors of glucose, and hence to diagnose 
diabetes. Over the past 50 years, the core bio-
chemical pathways such as the citric acid cycle 
(TCA cycle), glycolysis and gluconeogenesis, fatty 
acid and amino acid metabolism, and many others 
have become familiar to medical students attend-
ing basic biochemistry courses. In fact, much of the 
knowledge we have about metabolites today is still 
based on the pioneering biochemical and physio-
logical studies over the period of 1950s-70s. De-
spite the technological limitations in this period, 
which enabled measurements of enzyme kinetics 
or metabolite concentrations only in an isolated 
manner, the ‘system thinking’ had already 
emerged [2]. Concepts such as ‘metabolic control 
analysis’ [3] were introduced, which viewed and 
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modeled metabolism as a complex system of enzy-
matic reactions. For example, Henrik Kacser 
stated “But one thing is certain: to understand the 
whole you must look at the whole” [4]. The analyti-
cal strategy of studying a comprehensive ‘profile’ of 
metabolites in medicine was introduced by Linus 
Pauling and colleagues in the late 1960s, stating 
that “the thorough quantitative analysis of body 
fluids might permit differential diagnosis of many 
diseases in a more effective way than is possible at 
the present time” [5]. 

Over the past four decades, the emergence of 
molecular biology as a dominant tool of life science 
and biomedical research has contributed many 
new techniques for the study of genes and pro-
teins, which inevitably changed the experimental 
paradigms in terms of how the biological systems 
are studied and how life scientists are educated. 
The ‘system thinking’ took a step back, giving way 
to a more reductionistic approach in life sciences 
where complex phenotypes were believed to be at-
tributable to the function of specific genes and 
their products. Even today, this view dominates 
life science and biomedical research, although its 
limitations have been recognized [6]. Over the last 
decade, the ‘omics’ revolution has provided many 
new tools for comprehensive, quantitative, and 
sensitive measurements of molecular components 
of biological systems such as DNA, RNA, proteins, 
and metabolites as well as their interactions. 
However, the high-dimensional ‘omics’ data re-
quire a system biology approach, i.e., a shift in the 
focus from single components towards a collection 
of contributors in a network that make a specific 
complex phenotype [7]. This cannot be achieved 
using a reductionist experimental paradigm. In 
this regard, Joyner and Pedersen recently noted 
that the “…fundamentally narrow and reductionist 
perspective about the contribution of genes and ge-
netic variants to disease is a key reason ‘omics’ has 
failed to deliver the anticipated breakthroughs” 
and they emphasized that the “critical utility of 
key concepts from physiology like homeostasis, 
regulated systems and redundancy as major intel-
lectual tools” is necessary “to understand how 
whole animals adapt to the real world.” [8]. 

In this review, recent advances in the study of 
the metabolome in health and disease are dis-
cussed, with specific focus on type 1 diabetes 
(T1D). It is argued that metabolomics is an ana-
lytical approach that is sensitive to multiple ge-
netic and environmental factors which may to-
gether contribute to the development of the dis-
ease. As such an approach, it is an essential tool in 
the efforts to advance the etiopathogenic under- 

 
standing and to develop novel approaches for T1D 
prediction, prevention, and treatment. 

2. Analytical strategies for mate-
bolomics 

The human metabolome comprises 1000s of 
small molecules of high chemical diversity across a 
wide dynamic range of concentrations. The latest 
edition of the Human Metabolome Database, ver-
sion 3.0, contains 40,271 metabolite entries [9]. It 
is thus not surprising that no single analytical ap-
proach can cover all metabolites within a single 
analysis. For a comprehensive overview of me-
tabolomic methods in life sciences and medicine, 
the reader is referred to an excellent recent review 
by T. Hyötyläinen [10]. A summary of typical me-
tabolomic strategies is provided below. 

A typical metabolomics pipeline is illustrated 
in Figure 1. The initial steps are sampling and 
sample handling, which are critical for the success 
of the subsequent analysis. No matter which ana-
lytical methods are applied, reliable results cannot 
be obtained if the samples have not been handled 

Abbreviations: 
 

BCAA – branched chain amino acids 
CE-MS – capillary electrophoresis coupled to mass spec-
trometry 
C57BL/6 – mouse inbred strain C57 black 6 
DIPP – Diabetes Prediction and Prevention (study) 
DNA – deoxyribonucleic acid 
FADS1 – fatty acid desaturase 1 (gene) 
FTICR-MS – Fourier transform ion cyclotron resonance 
mass spectrometry 
GC×GC-TOFMS – two-dimensional gas chromatography 
coupled to TOFMS 
GC-MS – gas chromatography coupled to mass spectrome-
try 
GF – germ-free 
GWAS – genome-wide association studies 
HDL-C - high-density lipoprotein cholesterol 
HLA – human leukocyte antigen 
IAA – insulin autoantibody 
LC-MS – liquid chromatography mass spectrometry 
mGWAS – GWAS combined with serum metabolomics 
MS – mass spectrometry 
MS/MS – tandem mass spectrometry 
NMR – nucleic magnetic resonance 
NOD - non-obese diabetic 
PC – phosphatidylcholine  
RNA – ribonucleic acid 
SM – sphingomyelin  
T1D – type 1 diabetes 
TCA – tricarboxylic acid 
TLR – toll-like receptor 
TOFMS - time-of-flight mass spectrometry 
XCMS – various forms (X) of chromatography mass spec-
trometry 
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properly. The critical steps, non-exclusively, in-
clude sample drawing and transport, sample stor-
age, and the amount of freeze-thaw cycles. While 
some metabolites such as bile acids tend to be 
rather stable in different sample handling condi-
tions, others including eicosanoids are extremely 
sensitive to any of these steps, requiring special 
sampling and sample preparation protocols. Care-
ful consideration and proper quality control of the 
analytical steps are essential to minimize analyti-
cal variation, and thus to detect the relevant bio-
logical variation. 

For the analytical determination, the hyphen-
ated approaches based on liquid chromatography 
mass spectrometry (LC-MS), gas chromatography 
coupled to mass spectrometry (GC-MS), and to a 
lesser extent capillary electrophoresis coupled to 
mass spectrometry (CE-MS) have commonly been 
applied for sensitive metabolomic analyses of tis-
sues and biofluids. Techniques based on direct in-
fusion, such as microfluidic-based nanoelectros-
pray ionization [11], have been used in the so-
called ‘shotgun lipidomics’ approach [12, 13]. This 
approach enables the determination of hundreds of 
molecular lipids without some of the inherent 
problems of LC-MS such as sample carry-over. 
However, this advantage is achievable only at the 
cost of lower sensitivity and greater challenges 
with quantification. Another metabolomic technol-
ogy is proton nucleic magnetic resonance (1H 
NMR); it is chemically non-selective and requires 
only minimal sample preparation. The cross-
laboratory validation of the NMR method is rela-
tively uncritical; MS-based approaches are more 
challenging in this respect. However, NMR is 
about three orders of magnitude less sensitive 
than MS-based methods. It is thus capable of de-
tecting only the most abundant metabolites. The 
facilitation of reproducibility has contributed to 
the emergence of NMR as a popular approach for 

epidemiological studies [14, 15]. While the re-
quired sample amount in NMR is rather high 
(typically about 300µl of serum, compared to 10-
30µl in MS-based analysis), and the interpretation 
of NMR signals in the context of molecular and 
clinically relevant markers is rather challenging 
and still unresolved, developments are under way 
which may help to characterize the NMR-
associated traits with the help of MS [16]. 

Recent developments in MS-based approaches 
provide improvements both in the comprehensive 
coverage of metabolites and the ability to quantify 
them. The emerging multi-dimensional techniques 
such as two-dimensional gas chromatography cou-
pled to time-of-flight mass spectrometry (GC×GC-
TOFMS) have a high-peak capacity. Thus, they 
enable sensitive detection of 1000s of different me-
tabolites within a single sample run, and quantifi-
cation of selected metabolites within the same run 
[17], requiring only about 20 µl of serum sample 
for the analysis. 

Metabolomic strategies have commonly been 
divided into ‘targeted’ and ‘non-targeted’ ap-
proaches. The targeted methods focus on accurate 
(usually quantitative) determination of a pre-
determined set of metabolites, while the non-
targeted methods are optimized for maximal cov-
erage of the metabolome, although at the cost of 
lower sensitivity and ability to achieve reliable 
quantification. The boundary between the two ap-
proaches is disappearing because recent techno-
logical developments enable a combination of both 
targeted and non-targeted strategies in a single 
analysis. For example, the abovementioned 
GC×GC-TOFMS can be set up to absolutely quan-
tify several tens of metabolites, while semi-
quantitatively determining 1000s of metabolites 
[17]. If any of the semi-quantified metabolites 
turns out to be biologically important based on the 
results of the analysis, it can later be included in 
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Figure 1. Schematic illustration of a typical metabolomic pipeline. For each pipeline stage (dark boxes), specific key factors to 
consider and procedures involved are listed as examples (light boxes). 
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the panel of quantified metabolites. Similarly, the 
LC-MS-based lipidomic approaches, used for the 
analysis of molecular lipids, can cover a pre-
determined set of lipids, while also including the 
‘non-identified’ peaks which can be identified in 
follow-up analytical experiments if considered of 
interest [18]. 

The identities of metabolites can be deter-
mined by using tandem mass spectrometry 
(MS/MS) and to a limited extent also by accurate 
mass measurements using innovative algorithms 
for molecular formula calculations [19]. The latter 
is facilitated by the availability of new high-
resolution and accurate mass instruments such as 
Fourier transform ion cyclotron resonance mass 
spectrometry (FTICR-MS) and the Orbitrap. How-
ever, the LC-based methods cannot be easily re-
produced across different laboratories, thus the 
standardized library-based identification of me-
tabolites is challenging. In contrast, large libraries 
of spectra have been collected over the past dec-
ades for GC-MS based methods. 

Data processing is a critical step in me-
tabolomic analysis which converts the signal from 
the analytical instrument into biologically mean-
ingful information [20]. Specialized software pack-
ages exist, including the popular open source plat-
forms MZmine [21] and XCMS (acronym for vari-
ous forms (X) of chromatography mass spectrome-
try) [22]; both of which enable the fine tuning of 
the data processing pipeline to the needs of the 
specific analytical approach. The advantage of 
open source applications for data processing is that 
their mode of operation is accessible and they are 
not ‘black boxes’. This allows improved quality 
control and better understanding of how the in-
strumental signal is transformed into biological 
information. The overall strategy of subsequent 
data analysis is similar to those used in other ‘om-
ics’ approaches, and requires similar statistical 
considerations due to the typical high dimensional-
ity of the data [23]. 

The interpretation of the metabolomic data in 
the physiological context remains a challenge, in 
particular those data obtained from serum (or 
plasma). The concentration of a specific metabolite 
in the blood is typically a balance of several organ-
specific incoming and outgoing fluxes. Based on a 
single metabolite measurement, it is nearly impos-
sible to determine which specific physiological 
phenomenon corresponds to an abnormal change 
of the specific metabolite. In addition to individual 
metabolites, it is thus advantageous to study the 
patterns of metabolite changes, e.g., those corre-
sponding to similar functional groups or biochemi-

cal pathways [24]. In this context, lipids are par-
ticularly challenging because the major molecular 
lipids commonly measured by lipidomics ap-
proaches, such as triglycerides and phospholipids, 
are major constituents of lipoprotein particles 
(when measured in blood), or of biological mem-
branes and lipid droplets (when measured in cells 
and tissues). Therefore, biochemical pathway-level 
descriptions are not sufficient for the proper inter-
pretation of lipidomic data. Instead, the data 
should be interpreted in the context of the bio-
physical systems they belong to, such as lipopro-
teins or membranes [25]. To facilitate the interpre-
tation of lipidomics data in the biophysical context 
molecular simulation approaches have been intro-
duced recently [26, 27]. However, it is fair to say 
that the methods for interpreting the metabolome, 
which include the lipidome at the system level, are 
still in their infancy. 

3. Factors influencing the me-
tabolome 

It is becoming clear that, despite the undenia-
bly strong genetic component of many complex dis-
eases including T1D, the current approaches used 
to study the genetic association with disease traits 
can explain only a fraction of the known disease 
heritability [28]. Such a discrepancy is not a sur-
prise to system biologists, who view the develop-
ment of a complex disease as a dynamic process, 
involving gene-environment and molecular inter-
actions across many physiological levels. In this 
context, the measurement of those traits that are 
not encoded by the host genome directly, com-
monly referred to as intermediate phenotypes [29], 
is particularly important. 

Genome-wide association studies (GWAS) have 
been commonly applied to link specific genetic 
variants with the disease endpoints. However, the 
strength of the so-found associations is generally 
weak, even if statistically highly significant. Fur-
thermore, little information about the underlying 
disease mechanisms can be obtained from direct 
associations between the genetic variants and dis-
ease phenotypes. To overcome these shortcomings, 
GWAS have recently been combined with serum 
metabolomics. These approaches, commonly re-
ferred to as mGWAS (recently reviewed in [30]), 
have already demonstrated the potential of using 
concentrations of circulating metabolites as inter-
mediate phenotypes [31-33]. For example, in the 
first application of this kind, Gieger et al. have 
shown that polymorphism rs174548 in the FADS1 
gene encoding fatty acid delta-5 desaturase is as-
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sociated with the ratios of phospholipids contain-
ing long-chain polyunsaturated fatty acids [31]. 
The ratios likely correspond to the ratio of fatty ac-
ids C20:4 versus C20:3, with the explained vari-
ance larger than 30%. The association of FADS1 
with specific phospholipids may provide mechanis-
tic insight into the diseases known to be associated 
with the FADS1 locus, e.g., Crohn’s disease [34] 
and lipid disorders [35], and suggests that the 
availability of polyunsaturated fatty acids and 
their incorporation into the membrane phospholip-
ids play a role in these disorders. 

It is now widely acknowledged that our host 
genome comprises only a small fraction of the total 
gene pool in the human body, which also includes 
genomes of the complex microbial ecosystem lo-
cated in the distal gut [36]. This microbial ecosys-
tem has coevolved with the host and developed 
traits that would not have developed on their own, 
including vitamin production, xenobiotic metabo-
lism, fermentation of complex polysaccharides, and 
education of the immune system [36]. However, 
not all of these functions are beneficial to us as al-
tered gut microbiota characterizes many diseases 
[37]. Changes in the microbiota have been shown 
to affect the metabolome of the host, suggesting 
that it plays an important role in host physiology 
[38]. Germ-free (GF) mice have a drastically al-
tered serum metabolome and host lipid metabo-
lism [39, 40]. However, it is generally difficult to 
discern whether an altered microbiota, as observed 
in many diseases, is a cause or consequence of the 
changes in host metabolism and disease progres-

sion, and how it contributes 
to the disease. Given the 
complexity of the microbial 
ecosystems and its interac-
tions with the host, it is 
thus even more essential 
than in GWAS that studies 
seeking correlations of gut 
microbial variation with 
disease endpoints are ac-
companied by integrative 
approaches, including 
measurements of interme-
diate phenotypes, which 
help to provide mechanistic 
insights into the observed 
associations [41]. 

Studies in mice suggest 
a direct involvement of the 
gut microbiota in T1D de-
velopment. The adapter 
molecule Myd88 that 

transmits signals from toll-like receptors (TLRs), 
which function as pattern recognition receptors, is 
an important regulator of gut microbial ecology. 
Non-obese diabetic (NOD) mice deficient in Myd88 
are resistant against T1D development via a 
mechanism that is mediated by an altered gut mi-
crobiota [42]. Investigations in NOD mice have 
also shown that lack of gut microbiota promotes an 
imbalance between Th1, Th17, and Treg differen-
tiation in the intestine [43] and affects sex hor-
mone levels [44], together promoting a more diabe-
togenic environment. Progression to autoimmune 
diabetes, in conventionally raised NOD mice, has 
been associated with reduced diversity of the bu-
tyrate-producing bacteria of the Clostridium lep-
tum group [45]. Interestingly, diminished diversity 
of the anti-inflammatory commensal bacterium 
Faecalibacterium prausnitzii from the C. leptum 
group is also a determinant of Crohn’s disease [46]. 
Furthermore, a recent study revealed that mi-
crobes from the C. leptum group induce regulatory 
T cells in the colonic mucosa [47], thus implicating 
this microbial group in the regulation of immune 
homeostasis. Recent data also suggest that chil-
dren who later progress to T1D have an altered 
microbiota with a deficit in butyrate-producing 
bacteria [48, 49]. 

In addition to host genome and gut microbiota, 
the metabolome is also sensitive to other factors 
related to life-style and life-course, including de-
velopment [50], age [51], immune system status 
[52, 53], and diet [54]. This makes metabolomics a 
key platform in medical system biology, particu-
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Figure 2. Factors influencing the metabolome. The metabolome is sensitive to ge-
netic and environmental factors which may together contribute to the disease. Me-
tabolomics is thus a powerful phenotyping platform in biomedical studies. 
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larly as a sensitive phenotyping platform that de-
tects and integrates the genetic and environmental 
factors which together affect the progression to 
complex diseases, including T1D [55] (Figure 2). 

4. Metabolomic approaches to study 
type 1 diabetes 

Given the sensitivity of the metabolome to sev-
eral pathogenically relevant factors, it is not sur-
prising that metabolomics has been increasingly 
applied in biomedical research. For example, me-
tabolomic approaches are used to detect novel bio-
marker candidates for: 

 
- Prostate cancer [56] 
- Progression to type 2 diabetes [57-59] 
- Alzheimer’s disease [60] 
 
Also metabolomics are applied to: 
 
- Identify novel targets of cancer [61] 
- Monitor stem cells in regenerative medicine 

[62] 
- Determine responses to chemotherapy [63]. 
 
In contrast to the study of type 2 diabetes, 

where an increasing number of metabolomic inves-
tigations is being performed [64], metabolomics 
has been a rather minor component in T1D re-
search. This may be due to the fact that T1D has 
been widely considered as an immune-mediated 
disorder with a major genetic component, and the 
role of metabolism in disease progression besides 
the diagnosis of T1D has not been appreciated in 
general. Recent and ongoing metabolomic studies 
and the increasing recognition of the role of gut 
microbiota in T1D progression are likely to change 
this outlook. 

Albeit scarce, metabolomic studies in T1D 
have already covered the full spectrum of progres-
sion to the disease and the development of diabetic 
complications. Comprehensive metabolomic ap-
proaches (LC-MS for detection of molecular lipids 
and GC×GC-TOFMS for detection of polar metabo-
lites) were applied to a longitudinal series of sam-
ples taken between birth and onset of overt T1D 
from children enrolled in the Finnish Type 1 Dia-
betes Prediction and Prevention (DIPP) study [52]. 
Compared to the controls matched for gender, 
HLA risk, period and city of birth, children that 
later progressed to T1D had decreased phosphati-
dylcholines (PCs) at birth (cord blood) and persis-
tently diminished ether phospholipids during the 
follow-up. Decreased PCs in cord blood may be 

pathogenically important because choline, which is 
mainly incorporated in PCs in a non-free form, is 
in particularly high demand during pregnancy as a 
substrate for building cellular membranes due to 
rapid fetal tissue expansion and increased produc-
tion of lipoproteins [65]. Furthermore, choline is a 
major provider of methyl groups needed for DNA 
methylation, and is therefore essential for devel-
opmental processes, including genomic imprinting 
and the maintenance of genome stability [65, 66]. 

In the same DIPP metabolomic study, the ap-
pearance of first islet autoantibodies was preceded 
by increased levels of proinflammatory lysophos-
phatidylcholine (lysoPC), glutamate, and branched 
chain amino acids (BCAAs), and decreased levels 
of several TCA cycle metabolites. Interestingly, the 
appearance of autoimmunity normalized the 
metabolic profiles to the levels found on average in 
control children [52]. While these findings need to 
be validated further, they do point to the potential 
application of metabolomics in clinical practice. 
Inexpensive diagnostic assays could be developed 
to measure the selected key metabolites, which 
could be applied together with genetic and islet 
autoantibody screening to identify children at in-
creased risk of T1D. 

In the German BABYDIAB study, metabolic 
profiles were studied in relation to the age of onset 
of islet autoimmunity [53]. The key finding of the 
study was that significant differences in metabo-
lite profiles were observed relative to age and islet 
autoantibody status. For example, the children 
who developed autoantibodies by age 2 years had a 
twofold lower concentration of methionine com-
pared with those who developed autoantibodies in 
late childhood or who remained autoantibody-
negative. This is in agreement with the me-
tabolomic results of the DIPP study [52], because 
in the DIPP study most of the children progressed 
to islet autoimmunity during their first years of 
life, and because progression to T1D and not to is-
let autoimmunity per se was the primary endpoint. 
One of the open key questions from these studies 
is therefore whether the observed early metabolic 
signature which precedes autoimmunity is (a) spe-
cific to those children who later progress to T1D or 
(b) more broadly found in children who later pro-
gress to one or more islet autoantibodies. 

A study in NOD mice using a prospective de-
sign similar to that of the human DIPP study 
showed that female mice which later progress to 
autoimmune diabetes share a similar metabolic 
profile with children who later progress to T1D 
[45]. Based on the measurement of insulin autoan-
tibody (IAA) and serum lysoPC, a surrogate 
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marker was developed, which stratified the mice 
according to their risk of diabetes. In a follow-up 
study, mice identified to be at high risk of auto-
immune diabetes had more advanced insulitis and 
higher concentrations of several amino acids, in-
cluding the insulinotropic BCAAs and glutamate 
in the islets [45] (Figure 3). While still normogly-
cemic, these high-risk prediabetic mice also had 
increased glucose-stimulated insulin secretion and, 
as already stated, a diminished diversity of the C. 
leptum microbial group in the gut. Together, these 
findings indicate that autoimmune diabetes is pre-
ceded by a state of increased metabolic demands 
on the islets, resulting in elevated insulin secre-
tion. They also support the hypothesis that the 
metabolic profile found in the DIPP prediabetic 

children is specifically associ-
ated with progression to T1D. 

Metabolomic approaches 
were also applied to compare 
prospective blood samples from 
female NOD mice with those 
from the C57BL/6 (wild type) 
mice [67]. Partly resembling 
the results from the DIPP 
study [52], NOD mice had a 
distinct metabolic profile which 
included increased glutamate 
and decreased TCA cycle me-
tabolites. The subsequent in 
silico analysis indicated that 
the genes responsible for this 
reside within previously de-
fined Idd regions [67]. 

Together, the initial find-
ings from the early stages of 
T1D development in humans 
and mice suggest an important 
role of the metabolome in early 
disease pathogenesis. They 
also provide a compelling case 
for further investigations using 
a systematic approach in the 
prospective clinical cohort 
studies, which combines me-
tabolomics with (epi)genetic 
profiling (e.g., the mGWAS ap-
proach), gut microbial charac-
terization, and more detailed 
characterization of immu-
nologic processes including 
immune reactivity. 

Overt T1D often leads to 
severe medical complications, 
the so-called chronic micro- 

and macrovascular complications of diabetes. It 
would be clinically important to identify the pa-
tients at risk of developing such complications. 
Early markers would provide new tools for diagno-
sis and improvement of patient monitoring, novel 
insights into the etiopathogenesis of diabetic com-
plications, and thus novel targets for prevention or 
treatment. NMR-based metabolomics has been ap-
plied to study T1D patients at risk of developing 
diabetic complications in the Finnish FinnDiane 
study [68-71]. One of the key findings of this line of 
research was that progression to diabetic compli-
cations such as nephropathy is complex and in-
volves interactions of multiple metabolic and clini-
cal factors, including insulin resistance and the 
metabolic syndrome [68, 71]. This emphasized the 
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Figure 3. Metabolic profiles. Selected metabolic profiles in isolated islets from 
female NOD mice at low versus high risk of developing autoimmune diabetes. 
A total of 128 metabolites were measured. Reproduced with permission from 
Sysi-aho et al. [45]. 
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importance of adopting a multi-modal approach to 
predict and diagnose diabetic complications in the 
clinical setting. One of the unexpected findings 
from the FinnDiane study was that high-density 
lipoprotein cholesterol (HDL-C) is one of the pre-
dictors for all-cause mortalities in adults with T1D 
[72]. This paradoxical role of HDL in T1D patients 
is unclear, further supporting the emerging idea 
that serum HDL-C levels alone may not be suffi-
cient for the atheroprotective role of HDL parti-
cles. Of potential relevance, sphingomyelin (SM) 
was found to be associated with diabetic kidney 
disease in the FinnDiane study [69]. In a general 
population study, SM was found elevated in HDL 
fractions of healthy subjects with high HDL-C [27]. 
Together, these findings suggest that the associa-
tion of HDL-C with increased mortality in T1D pa-
tients may in part be mediated by changes in lipid 
composition, and consequently the function of HDL 
particles. This reiterates the importance of com-
prehensive lipidomics approaches for a more de-
tailed understanding of HDL particles in the de-
velopment of T1D and its complications. 

5. The metabolome as a factor in the 
progression to type 1 diabetes 

To discuss the potential etiopathogenic role of 
the metabolome in T1D, this section returns to the 
metabolomic findings from the DIPP study [52] 
and from NOD mice [45]. In addition to the afore-
mentioned question regarding the disease specific-
ity, another open question is what are the patho-
genic role and related mechanisms behind the ob-
served metabolic changes in early progression to 

T1D. Put differently, is the metabolome a by-
stander of the disease process and a correlate of 
other still unknown pathogenic phenomena, or 
does it play an active role in the disease process? 
While these two possibilities are nonexclusive, an 
argument is presented here for the latter scenario. 

Although still limited, current evidence from 
humans and mice suggests that ‘metabolic stress’ 
precede the appearance of the first islet autoanti-
bodies, i.e., a metabolic profile (or ‘metabotype’) 
that includes elevated insulinotropic BCAAs and 
glutamate, and diminished phospholipids and en-
ergy (TCA cycle) metabolites. This metabotype 
cannot be explained by diet alone, even not in hu-
man studies [55]. Given the degree of changes, 
across metabolites representing many different 
functional classes and pathways, it is unlikely that 
the metabotype is attributed to a specific bio-
chemical pathway. Based on the persistence of the 
metabolic changes observed in the DIPP study 
[52], a more likely explanation is that this metabo-
type is inborn, i.e., inherited or acquired prena-
tally or during the first months of life. In indirect 
support of this view, lipid-bound choline, a major 
donor of methyl groups during pregnancy [65], was 
found decreased in cord serum of newborns that 
later progressed to T1D. A potential contributing 
role of gut microbiota, including that of the 
mother, to this metabotype cannot be ruled out. It 
has been noted previously that the observed cord 
serum metabolic profiles in T1D progressors (as 
compared to controls) are similar to the metabolic 
profiles of germ-free mice (as compared to conven-
tionally raised mice) [39]. 
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Figure 4. Hypothetical progression towards T1D in the context of the metabolome. The acquisition of an at-risk state is fol-
lowed by a stage of adaptation aimed at maintaining the ‘normal healthy state’. This adaptation may occur at a cost of in-
creased vulnerability to disease, i.e., the threshold for specific triggers to initiate the disease process is lowered. 
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The possible pathways leading to the observed 
prediabetic metabotype may in fact be manifold, 
but once acquired, this metabolic profile contrib-
utes to a state of increased metabolic demands on 
the islets to maintain their normal metabolic func-
tion. These physiological changes, aiming to main-
tain the normal healthy state, can be considered as 
an adaptation, or allostatic change (Figure 4). 
Typically, such allostatic adaptations, which may 
include autoimmune responses [73, 74], occur to 
induce short-term corrective changes to regulatory 
systems. However, when activated for long periods 
of time, the maintenance of metabolic homeostasis 
might actually be achieved at the expense of a 
metabolic cost, or ‘collateral damage’, defined by 
McEwen as allostatic load [75]. The allostatic load 
derived from the allostatic adaptations, in combi-
nation with a specific genetic make-up (e.g., high 
HLA-associated risk of T1D), and in the context of 
specific developmental stages might define differ-
ent degrees of ‘vulnerability to disease’, as illus-
trated by the lowered threshold between the 
healthy state and T1D in Figure 4. Once the state 
of increased ‘disease vulnerability’ is acquired, the 
paths to T1D may again be manifold, initiated by 
one or many of the environmental triggers of T1D 
[76]. In this view, the metabolome can be regarded 
as a key mediator between disease initiation and 
both the genetic risk and related immune dysfunc-
tion. 

6. Conclusions and future perspec-
tives 

In summary, the metabolome is sensitive to 
genetic and environmental factors and thereby 
contributes to complex diseases such as T1D. This 
makes metabolomics one of the key platforms for 
the discovery and study of pathophysiological phe-
nomena leading to T1D and the development of 
T1D-associated complications. Currently available 

metabolomic data from T1D studies suggest that a 
specific metabotype precedes islet autoimmunity 
and the development of overt T1D. Based on this 
evidence, the role of the metabolome in progres-
sion to T1D is therefore a key contributor to the 
acquisition of a vulnerable state, which is more 
likely triggered towards disease initiation, than a 
specific biochemical process associated with T1D. 
While clearly much more research and data are 
needed to prove this hypothesis, it may have im-
portant implications for early disease detection 
and prevention. For example, the question may be 
asked why some individuals at increased risk of 
T1D, i.e., those with increased HLA risk and 1-2 
detected islet autoantibodies, do not develop T1D. 
Do they have a metabotype different from those 
who later progress to disease? If so, can T1D-
associated metabotypes be modulated, e.g., by al-
tered diet? 

Given the dynamic involvement of many 
physiological systems in progression to T1D, fu-
ture investigations of T1D pathogenesis and etiol-
ogy will have to adopt an integrative system biol-
ogy approach. This will require intensive data ac-
quisition and the construction, refinement, and 
validation of mathematical models that include 
many contributing factors across multiple spatial 
and temporal scales [74, 77]. Metabolomics is 
likely to provide some of the key data needed to 
understand the complex dynamics leading to T1D. 
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