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 ■ Abstract 
Recent clinical trials, investigating type 1 diabetes (T1D), 
have focused mainly on newly diagnosed individuals who 
have developed diabetes. We need to continue our efforts to 
understand disease processes and to rationally design inter-
ventions that will be safe and specific for disease, but at the 
same time not induce undesirable immunosuppression. T 
cells are clearly involved in the pathogenesis of T1D, and 
have been a major focus for both antigen-specific and non-

antigen-specific therapy, but thus far no single strategy has 
emerged as superior. As T1D is a multifactorial disease, in 
which multiple cell types are involved, some of these patho-
genic and regulatory cell pathways may be important to con-
sider. In this review, we examine evidence for whether 
monocytes, B cells, and innate lymphocytes, including natu-
ral killer cells, may be suitable targets for intervention. 
 

 

Keywords: type 1 diabetes · B cell · NOD · Treg cell · den-
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1. Introduction 
 

 t the time of diagnosis of type 1 diabetes 
 (T1D), many insulin-producing β-cells have 
 been damaged in a process that has taken 

weeks, months, or even years to develop. There are 
multiple genetic loci predisposing individuals to 
disease [1], interacting with unknown environ-
mental factors, in a slow process. It is well known 
that in prediabetes, the presence of one or two 
autoantibodies does not inevitably lead to diabetes, 
but when there are multiple autoantibodies, pro-
gression to diabetes is very likely [2]. Studies in 
animal models of diabetes have pointed to diverse 
cellular pathways that may be involved, and some 
of these have shown distinct parallels with the 
human disease. The potentially long course of time 
over which damage and destruction of pancreatic 
islet β-cells occurs suggests that many approaches 
might be successful if intervention could take place 

at an early time point. However, by the time T1D 
manifests, therapy is likely to be much more chal-
lenging since the immune response has diversified, 
with many cell types and autoantigens recognized 
by memory T cells, even if there is substantial β-
cell function remaining. 

After a long time of research into T1D patho-
genesis, which will help to focus on rational inter-
ventions, we should acknowledge treatments that 
have already made the long journey to the clinical 
trial. Of the various antigen-specific interventions 
that have been aimed at the tolerization of T cells, 
targeting proinsulin by the use of insulin peptide 
[3], or insulin B chain in tolerogenic adjuvant [4], 
have been tested in early-phase trials. GAD-alum 
had reached the phase III clinical trial, but unfor-
tunately clinical efficacy could not be demon-
strated [5-7]. A phase III trial of HSP60 in the 
form of DiaPep277 was reported, at the ADA 72nd 
Scientific Sessions 2012, to show a 2 year reduc-
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tion in the loss of C-peptide on glucagon stimula-
tion [8]. Another study using this approach is un-
derway. Of the non-antigen-specific therapy, anti-
CD3 mAb to target T cells (teplizumab, otelixizu-
mab) was promising in the early trial stages [9-11], 
but stage III trials were terminated as the primary 
end-point was not met [12]. The reasons for this 
are discussed elsewhere in this special review se-
ries of The Review of Diabetic Studies [13, 14]. 
Anti-CTLA4 treatment (abatacept) showed initial 
delay in the loss of C-peptide over the first 6 
months, but thereafter the decline in β-cell func-
tion was parallel to that seen in patients treated 
with placebo [15]. There are currently ongoing tri-
als of anti-thymocyte globulin (ATG) and anti-CD2 
which both target T cells [16]. 

How are we to decide what strategies are use-
ful? For many years, animal models, both the non-
obese diabetic (NOD) mouse and the BioBreeding 
(BB) rat have been used to test therapies. Some of 
these have moved into the clinical field and allow a 
semblance of rationality in the choice of therapy. It 
is clear that strategies for therapy that are suc-
cessful in early stage disease, will not necessarily 
be translatable at this time, as most current clini-
cal focus is on much later points in disease patho-
genesis. We should hold this consideration in 
mind, should preventive measures for diabetes be-
come more of a reality. However, therapies tested 
in disease models, which show promise at later 
phases in the disease models, could be useful. We 
need to build on these studies, with the investiga-
tion of the human immunology, and with the de-
velopment and validation of biomarkers for effi-
cacy. Clearly, having an outcome that will ulti-
mately prevent T cells from causing damage to is-
let β-cells is the major goal. However, this does not 
mean that T cells are the only possible targets, as 
manipulations of other components of the immune 
response may aid in this process. 

2. Monocytes, macrophages, and den-
dritic cells 

Monocytes derive from hematopoietic stem 
cells in the bone marrow. They are precursors to 
both macrophages and myeloid dendritic cells in 
tissues where they are important in inflammation 
and defense against pathogens (reviewed by Auf-
fray and colleagues [17]). There is considerable 
heterogeneity in the monocyte/macrophage subset 
of cells, with many surface markers defining the 
different types [18]. Dendritic cells (DCs) are key 
innate immune cells that direct the fate of T cells. 

Abbreviations: 
 

Ab – antibody 
ADA – American Diabetes Association 
APC – antigen-presenting cell 
ATG – anti-thymocyte globulin 
BAFF – B cell activating factor 
BB – BioBreeding 
BCMA – B cell maturation antigen 
BCR – B cell receptor 
BLyS – B lymphocyte stimulator 
BMDC – bone marrow-derived dendritic cell 
CCR5 – C-C chemokine receptor type 5 (CD195) 
CD11b – complement receptor 3 
CTLA-4 – cytotoxic T lymphocyte antigen 4 
DC – dendritic cell 
ER – endoplasmic reticulum 
FO – follicular 
Foxp3 – forkhead box P3 
GAD – glutamic acid decarboxylase 
GM-CSF – granulocyte-macrophage colony-stimulating fac-
tor 
HLA – human leukocyte antigen 
HSP60 – heat shock protein 60 
IAA – insulin auto-antibody 
IDIN – IRF7-driven inflammatory gene network 
IFNγ – interferon gamma 
Ig – immunoglobulin  
IL – interleukin 
iNKT – invariant natural killer T 
iNOS - inducible nitric oxide synthase 
i.p. – intraperitoneal 
IRF7 – interferon regulatory factor 7 
KIR – killer cell immunoglobulin-like receptor 
lip-Cl2MDP – liposome-encapsulated dichloromethylene 
diphosphonate 
mAb – monoclonal antibody 
MAP – mitogen-activated protein 
MHC – major histocompatibility complex 
MLR – mixed leukocyte reaction 
MZ – marginal zone 
MZB - marginal zone B (cell) 
NCR – natural cytotoxicity receptor 
NF-κB – nuclear factor kappa B 
NK – natual killer 
NKT – natural killer T 
NO – nitric oxide 
NOD – non-obese diabetic 
NOR – non-obese resistant 
PAMPS – pathogen-associated molecular patterns 
PBMC – peripheral blood mononuclear cell 
PLN – pancreatic lymph node 
RNA – ribonucleic acid 
siRNA - small interfering RNA 
SLC11A1 – human solute carrier family 11 member A1 
T1D – type 1 diabetes 
T2MZB – type 2 marginal zone B (cell) 
TCR – T cell receptor 
TGF-β – transforming growth factor beta 
TLR – toll-like receptor 
TNF-α – tumor necrosis factor alpha 
Treg – T regulatory 
ZnT8 – zinc transporter 8 
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The many subsets of DCs all have an input into 
activating immune responses [19]. As antigen-
presenting cells (APCs), DCs have a central role in 
early innate immune responses and directing the 
adaptive immune response. Thus, they may have a 
number of roles in disease processes, and are po-
tentially important targets for therapy. 

2.1 Genetics 

Interestingly, there is a genetic association in 
the diabetes susceptibility locus Idd5.2 in the NOD 
mouse, which encodes Slc11a1 (formerly called 
Nramp1). This gene codes for a lysosomal mem-
brane protein that is involved in acidification 
within lysosomes, and therefore it is important in 
antigen presentation by APCs such as DCs. Silenc-
ing of the gene using lentivirus, encoding siRNA 
for the Slc11a1 gene, reduced diabetes incidence in 
an NOD mouse cohort, and recapitulated the effect 
of a natural mutation of Idd5.2 [20]. In humans, 
the orthologous region SLC11A1 encodes an evolu-
tionary highly conserved protein. Although asso-
ciations with a variety of immune-mediated dis-
eases have been reported, a recent study did not 
observe changes in SLC11A1 expression at the 
RNA level in whole blood samples from patients 
with T1D. However, the study did not exclude the 
possibility that genetic effects of polymorphisms in 
the gene may be seen in purified monocyte or 
macrophage populations [21]. In rats, Heinig and 
colleagues have identified an interferon regulatory 
factor 7 (IRF7)-driven inflammatory gene network 
(IDIN) [22]. In humans, there is a conserved 
equivalent of the rat IDIN genes expressed in 
monocytes [22]. IRF7 regulates the type 1 inter-
feron response that has been linked to T1D. The 
genes encode proteins that are highly expressed in 
cells of the immune system, and the investigators 
suggested that these genes may regulate the in-
nate immune response in macrophages, contribut-
ing to the risk of T1D. 

2.2 Studies in animal models 

In animal models of autoimmune diabetes, 
macrophages are amongst the earliest cells that 
infiltrate islets in the BB rat [23-25]. Similarly, in 
the NOD mouse, characteristic patterns of den-
dritic-like cells and macrophages infiltrate into is-
lets before lymphocytes [26]. The macrophages in 
NOD mice are reported to have a defect in phago-
cytosis of apoptotic cells [27, 28]. Moreover, they 
have an abnormal inflammatory response, produc-
ing increased amounts of inflammatory cytokines 

that include IL-1β and TNF-α when encountering 
apoptotic cells, compared with non-obese resistant 
(NOR) or C57BL/6 mice [29]. Targeting macro-
phages was one of the earliest therapeutic strate-
gies shown to inhibit diabetes in the NOD mouse. 
Antibody against the complement receptor 3 
(CD11b) expressed on macrophages prevented dia-
betes development in an adoptive transfer system 
in sublethally irradiated NOD mice [30]. Studies 
using silica, or liposome-encapsulated dichloro-
methylene diphosphonate (lip-Cl2MDP) to deplete 
macrophages also protected NOD mice from devel-
oping spontaneous diabetes [31]. The treatment 
reduced IL-12, IL-1β, and TNF-α in splenic macro-
phages, and there was a shift from a Th1 cytokine 
profile to Th2 in splenocytes and a reduction in the 
development of islet-reactive cytotoxic T cells [31]. 

Recent attempts at in situ macrophage-
targeting using siRNA against Alox-15 have shown 
that this therapy is useful when given at an early 
phase in disease, similar to previous studies, but 
not effective when applied after 9 weeks of age 
[32]. 

2.3 Studies in humans 

Macrophages are seen in human islet infil-
trates in post-mortem sections of pancreas ob-
tained from patients with diabetes, both at time of 
onset of disease [33] and later [34]. Furthermore, 
there have been many studies that focused on 
monocytes and their phenotypic changes in T1D. 
Differences in the maturation and function of 
monocyte-derived APCs have been suggested to be 
a reason for defective activation of regulatory cells 
in patients with diabetes [35]. In comparison with 
healthy first-degree relatives of T1D patients, 
there are raised serum cytokines from monocytes 
prior to the onset of diabetes [36]. Furthermore, 
monocytes from patients with T1D have an in-
flammatory phenotype, with increased IL-6 and 
IL-1β production. These cytokines can then stimu-
late the production of inflammatory IL-17-
producing T cells [37]. The conversion to IL-17 
cells in humans and mice appears to be different, 
with differentiation induced by IL-1β and IL-6, but 
not IL-12 or TGF-β, whereas TGF-β is critical for 
driving naïve CD4 T cells towards the Th17 line-
age in mice [38]. 

Toll-like receptors (TLRs) are innate immune 
receptors that are expressed on both immune, es-
pecially APCs, and a variety of other cells in the 
body. They detect pathogen-associated molecular 
patterns (PAMPS). Interest has been generated in 
these receptors in connection with the activation of 
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immune cells in diabetes. Altered surface expres-
sion of TLR2 (recognizes components of gram-
positive bacteria) and TLR4 (recognizes lipopoly-
saccharide) has been reported in monocytes from 
patients with T1D [39]. The monocytes have been 
studied in conditions of raised blood glucose. In-
creased secretion of the chemokine IP-10 was 
found, which is important in the homing of T cells, 
and it is associated with diabetes [40]. It has also 
been suggested that signaling via the TLR path-
ways is aberrant in patients with T1D [41], with 
increased production of IL-1β from monocytes and 
decreased IL-6 from myeloid DCs, following stimu-
lation of monocytes through TLR4. Similar altera-
tions have been observed in autoantibody-positive 
individuals at risk of developing T1D compared 
with those who are autoantibody negative [42]. 

These phenotypic studies have become more 
complex and wide-ranging with our increased 
abilities to investigate a very large range of cellu-
lar constituents in terms of gene expression pro-
files. Using a novel assay to examine gene expres-
sion signatures, Wang and colleagues took sera 
from newly diagnosed patients with diabetes, and 
tested this by incubating it with unrelated periph-
eral blood mononuclear cells (PBMC) to look for a 
gene expression signature induced in the PBMC by 
serum from the new-onset T1D patients [43]. 
Comparison was made with serum taken from 
healthy control subjects and patients with long-
standing diabetes. They found that a unique ex-
pression signature was induced by the serum of 
new-onset patients that was also found in a small 
number of autoantibody-positive siblings, and that 
it was no longer present in long-standing patients 
[43]. Altered genes included IL-1 cytokine family 
members and chemokines amongst other mole-
cules [43]. This has been further elaborated to in-
dicate that the patterns are distinct from other in-
flammatory conditions [44]. The investigators sug-
gested that detection of these changes have the po-
tential to be used as unique disease identifiers 
that could improve disease prediction [44]. 

Using purified CD14+ monocytes, Irvine and 
colleagues showed differences in monocyte gene 
expression patterns in children with newly-
diagnosed diabetes compared with healthy control 
subjects, in addition to the finding of a reduction in 
CD14hiCD16+ monocytes and an increase in 
CD14lo/CD16- monocytes in these patients [45]. The 
differences of gene expression include upregulation 
of endoplasmic reticulum (ER)-nuclear signaling 
pathways, negative regulation of caspase activity, 
together with cell adhesion genes and downregula-

tion of negative regulators of NF-κB, again point-
ing to a distinct molecular signature [45]. 

Thus, currently, there are a variety of observa-
tions that suggest that the monocyte/macrophage/ 
dendritic cell pathways have altered activity in 
T1D. Some of these appear to be intrinsic, i.e. po-
tentially genetically determined, while others may 
be a response to inflammatory and metabolic 
changes. However, there is clearly involvement of 
these cells in the pathogenic process, and this sug-
gests that there may be merit in considering them 
as potential targets for therapy. 

2.4 Potential targets 

Cytokines produced by macrophages. How might 
these important accessory cells be targeted? 
Macrophages are major producers of IL-1β that 
triggers the NF-κB and MAP kinase signaling 
pathways in pancreatic islets. IL-1β is toxic to β-
cells in vitro as shown by a number of studies, par-
ticularly in combination with IFN-γ and TNF-α. 
However, this cytokine cocktail had different ef-
fects on human islets compared to rodent islets 
[46, 47]. Furthermore, IL-1β plays a synergistic 
role with other molecules, inducing nitric oxide 
(NO) that also damages islets [48, 49]. IL-1β 
clearly has a role in a number of inflammatory 
diseases, including arthritis and autoinflammatory 
syndromes. Various means of antagonizing the ef-
fects of IL-1 have been developed, of which IL-1 re-
ceptor antagonist (anakinra) and IL-1 trap (rilona-
cept), a long acting IL-1 blocking agent, have been 
approved for human use. Some of the data from 
animal models have suggested that antagonizing 
IL-1 may be beneficial, and that this could be done 
with either soluble IL-1 receptor or IL1 receptor 
antagonist. However, it was not very effective in 
the NOD mouse, but improved efficacy was seen 
when it was used with low dose anti-CD3 treat-
ment [50]. It has also been shown that knocking 
out IL-1 in NOD mice had little effect on diabetes 
development [51, 52]. However, there has been 
success in the use of IL-1 antagonism in a variety 
of clinical conditions. It has been shown to be safe 
[53]. Two clinical studies were recently completed 
that targeted IL-1, one using IL-1 receptor an-
tagonist (anakinra) and the other using an anti-
body to IL-1 (canakinumab), and neither had 
shown any efficacy when used at the time of diabe-
tes onset (reported at ADA 72nd Scientific Sessions 
2012 and Immunology of Diabetes Society meeting 
2012). It is not known whether there may have 
been a different outcome if these agents could have 
been used at an earlier stage of disease. This sub-
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ject will be addressed in more detail in another re-
view by Thomas Mandrup-Poulsen in this series 
[54]. 
In vivo treatment to generate tolerogenic antigen-
presenting cells. If the cytokine products of macro-
phages cannot be effectively neutralized, another 
option would be to alter the phenotype of the 
monocytes and macrophages by mutually targeting 
the cells. The aim of this approach would be to 
generate APCs that are programmed to tolerize T 
cells and stimulate the production of regulatory 
cells. Given the importance of these APCs in im-
mune responses, this goal of inducing immune tol-
erance to unwanted effects, while at the same time 
maintaining effectiveness in dealing with infec-
tions, is a considerable challenge. 

Vitamin D has an impact on many cells as the 
vitamin D receptor is expressed in nucleated cells. 
The best known effects are on bone and calcium 
metabolism. However, there are also effects on 
immune cells, including DCs and macrophages, 
and these may in turn alter the activation of T 
cells [55]. Treatment of prediabetic NOD mice 
from an early age, with vitamin D and an analogue 
of Vitamin D that did not induce hypercalcemia, 
considerably reduced the incidence of autoimmune 
diabetes. Cells from treated mice could also sup-
press diabetes development induced in an immu-
nosuppressed host by adoptive co-transfer [56, 57]. 
There has been considerable interest in the role of 
vitamin D and its effects in the generation of 
tolerogenic DCs. Mouse DCs, generated in the 
presence of 1,25 dihydroxy vitamin D3, the active 
form, expressed lower levels of MHC class II and 
costimulatory molecules, together with increased 
chemokine receptor CCR5 and antigen-uptake re-
ceptor DEC205, compared with those DCs that are 
matured in the absence of 1,25 dihydroxy vitamin 
D3 [58]. Vitamin D can also alter the macrophage 
phenotype as treatment of murine peritoneal 
macrophages with 1,25 dihydroxy vitamin D3 re-
duces proinflammatory cytokines and other media-
tors that include IL-12p40, inducible nitric oxide 
synthase (iNOS), and TNF-α upon antigen stimu-
lation [59]. These macrophages have a reduced ca-
pacity to activate antigen-specific BDC2.5 T cells. 
This was suggested to be partly dependent on IL-
10 [59]. 

The immunomodulatory effects of 1,25 dihy-
droxy vitamin D3 in humans have been known for 
many years. When monocytes are cultured in the 
presence of 1,25 dihydroxy vitamin D3, CD14 re-
mained high but CD1a, CD83, and HLA-DR were 
expressed at a low level, with concomitant changes 
in costimulatory molecules. The phenotype of the 

treated monocytes appeared to resemble unstimu-
lated monocytes, providing a population of rela-
tively immature DCs, which were less able to 
stimulate T cell proliferation [60]. 

Wide-ranging effects of vitamin D include ef-
fects on pancreatic β-cells where a decrease in ex-
pression of chemokines and cytokines was seen 
when NOD mice were treated with 1,25 dihydroxy 
vitamin D3 [61]. Moreover, vitamin D3 protects 
pancreatic β-cells from apoptotic death through 
modulating inflammatory cytokines on the cells, 
induction of A20 which is an apoptotic protein, and 
the reduction of Fas on human islets [62, 63]. 

Given the potential for immunomodulation of 
both DCs and macrophages derived from mono-
cytes by vitamin D metabolites, could these be tar-
geted by vitamin D or an analogue? These DCs 
and macrophages may then be able to stimulate 
regulatory T cells. The studies using vitamin D in 
humans have been relatively small scale (reviewed 
in [64]). There have been some effects on reducing 
the risk of T1D when vitamin D supplements are 
given in the first year of life. In recently diagnosed 
T1D patients, however, there was no improvement 
or delay of the decline in C peptide. Given these 
small effects, it is likely that, if vitamin D is effec-
tive, this would be at the earlier stage in preven-
tion. Only a large scale trial would be able to prove 
this, and it remains to be seen whether this will be 
a viable option. 
Tolerogenic dendritic cells. Could the beneficial ef-
fects of tolerogenic monocyte-derived macro-
phages/DCs be harnessed as a cellular therapy? 
DCs targeted in NOD mice have also been shown 
to be of critical importance. The activation state of 
the DCs is of major importance in determining 
whether T cells become activated or tolerized [65]. 
Immature DCs with the ability to tolerize T cells 
have been used to stimulate and maintain regula-
tory T cells. This role has major importance in the 
consideration of the use of tolerogenic APCs in 
immunotherapy. A variety of DC-based therapies 
have been reported in NOD mice that have had 
varying degrees of success in preventing diabetes. 
The best success has been achieved when trans-
ferred early in the disease process. We have previ-
ously shown that IL-10 conditioning induces the 
differentiation of tolerogenic bone marrow-derived 
dendritic cells (BMDCs) that inhibit spontaneous 
diabetes, and that can protect against diabetes in 
the NOD mouse when administered very early in 
disease, before 7 weeks of age [66]. The IL-10-
conditioned BMDCs reduced antigen-specific re-
sponses in vitro and in vivo. They stimulated the 
accumulation of B220+ plasmacytoid DCs in the is-
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lets, and reduced insulitis [66]. Others have also 
shown that the transfer of DCs stimulated with 
GM-CSF/IL4 was able to prevent diabetes, but 
again this required treatment to be given when the 
mice were 5 weeks old [67]. If the DCs were first 
transduced with IL-4, delivered in adenovirus vec-
tors, treatment was more effective up to 10 weeks 
of age [67]. The IL-4-transduced DCs altered the 
intra-pancreatic cytokines. 

A phase 1 study has been carried out where 
“immunosuppressive” DCs were generated using 
autologous monocytes from elutriation cultured in 
the presence of IL-4 and GM-CSF together with 

phosphorothioate-modified antisense oligonucleo-
tides targeting CD40, CD80, and CD86, and then 
administered 4 times over 2 months intradermally. 
There were no significant adverse effects. Al-
though this was primarily a safety study, it was 
noted that serum IL-4 and IL-10 were increased 
together with B220+ cells, involving a population 
that suppressed cytokine responses in mixed leu-
kocyte reactions (MLRs). There was no generalized 
immunosuppression, as evidenced by the mainte-
nance of responses in MLRs in vitro. PBMCs from 
the DC-treated patients responded in a similar 
manner to those seen at baseline, and there was 

 Table 1. Summary of non-antigen specific B cell depletion studies in NOD mice 
 

 

Reagent 
used 

 

Treatment 
age 

 

Target 
cells 

 

Treatment 
protocol 

 

B cells after 
repopula-

tion 
 

 

Other cellular 
effects 

 

Islet 
Abs 

 

Effect on  
diabetes 

 

Refer-
ence 

 

Mouse anti-
human CD20 
(2H7, IgG2b) 

 

4–5 wk 
 

Immature 
and ma-
ture 
CD20+ B 
cells 

 

4×250 µg i.v. 
at 3d inter-
val) 

 

T2 subset 
 

Foxp3+ and 
CTLA4+ Treg. 

Increase in Gr1+ 
monocytes 

 

Anti-
insu-
lin Ab 

 

Delay and re-
duce 

 

69, 77 

 9–10 wk      Reduce  
 Diabetic 

mice 
 

     Euglycemia 
restored in 36% 

 

 

Hamster anti-
mouse BLyS 
(10F4, ham-
ster IgG) 

 

4 wk 
 

FO, MZ B 
cells 

 

2×100 µg 
i.p., 5d in-
terval), then 
15µg bi-
weekly 

 

Transitional 
B cells 

 

Foxp3+ Treg 
 

Anti-
insu-
lin ab 

 

Delay and re-
duce 

 

72 

 6–8 wk      Delay and re-
duce 

 

 

 

Mouse anti-
mouse CD20 
(MB20-11, 
IgG2c) 

 

5 wk 
 

CD20+ B 
cells (im-
mature 
and ma-
ture B 
cells) 

 

3×250 µg 
(iv, 2-wk 
interval) 

 
 

No effect 
 

Not  
done 

 

Delay and re-
duce 

 

70 

 15 wk      Delay and re-
duce 

 

 

 

Calicheamicin
-conjugated 
mouse anti-
mouse CD22 
(Cy34.1, 
IgG1) 

 

10 wk 
 

CD22+ B 
cells 

 

2×160 
µg/kg i.p. 
(5d inter-
val), 

 

Anergic B 
cells (T3 
cells) 

 

Foxp3+ Treg 
 

Not  
done 

 

Reduce 
 

71 

 Diabetic 
mice 

 

     100% reversal  

 

BCMA-huFc 
fusion protein 

 

 

9-15 wk 
 

FO and 
MZ B cells 

 

12×150 µg 
i.p., twice/ 
wk) 

 

T2MZB cells 
and T1 cells 
in PLN 

 

Foxp3+ Treg 
 

Not  
done 

 

100% protec-
tion 

 

73, 133 

 

Legend: Ab – antibody, Foxp3 – forkhead box P3, CTLA-4 – cytotoxic T lymphocyte antigen 4, Treg – T regulatory, BCMA – B cell matura-
tion antigen, BLyS – B lymphocyte stimulator, Ig – immunoglobulin, MZ – marginal zone, FO – follicular, T2MZB - type 2 marginal zone B 
(cell), i.p. – intraperitoneal, PLN – pancreatic lymph node. 
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no alteration of responses to viral peptide antigens 
[68]. This may be a promising treatment although 
it is still in an early phase, and its efficacy is not 
currently known. The treatment would require 
specialist preparation, and is much more costly. 
These cellular interventions, requiring the infu-
sion of pre-prepared tolerogenic cells, could cer-
tainly hold promise for some patients, but com-
pared with other strategies which exert their ef-
fects in vivo, they are likely to benefit a smaller 
number of patients overall. 

Thus, at present, there are some potentially 
interesting options when considering monocyte, 
macrophage, and dendritic cell targets for therapy. 
These could include targeting innate immune re-
ceptors to reduce inflammatory responses, and 
means of skewing dendritic cells and macrophages 
towards a more “tolerogenic” phenotype. Cur-
rently, treatment of this nature may be very effec-
tive in vitro, but would require a more basic un-
derstanding of the effects in vivo before they are 
likely to be translatable to human therapy. Pre-
clinical studies directed at monocyte, macrophage, 
and dendritic cell targets appear to be most effec-
tive early in the pathogenesis of disease, and it is 
possible that a therapy targeting these cells would 
be more appropriately used in prevention regi-
mens. 

3. B cells 

3.1 Studies in animal models 

The B cell is a target of therapy in T1D. Anti-B 
cell therapy has both delayed and prevented diabe-
tes in NOD mice when given at early stages. It re-
stored normoglycemia in a proportion of mice after 
the onset of diabetes. The strategies have included 
the use of anti-CD20 [69, 70], calicheamicin toxin-
conjugated anti-CD22 [71], anti-BAFF [72], and 
BCMA-Fc [73], as summarized in Table 1. 

3.2 Studies in humans 

Depletion of B cells using anti-CD20 (rituxi-
mab) has already had partial success in early 
phase clinical trials [74]. It is now believed that 
many individuals presenting with diabetes may 
have a significant number of remaining β-cells. 
Whilst not producing sufficient insulin, these may 
be preserved at the time of onset of diabetes, and 
although not functioning normally, they are not 
destroyed. Within the first 3 months after rituxi-
mab treatment, there was a greater preservation 
of C-peptide responses in the Rituximab group, 

whereas the rate of decline after this time was 
parallel to control subjects [74]. Since the original 
studies, further investigation of the effects follow-
ing treatment, as well as refinements and new 
treatments, have continued to maintain interest in 
the targeting of B cells as a potential therapy for 
T1D. However, there is need for caution. 

What happens after B cell depletion using 
anti-CD20, during reconstitution, and when B cells 
are finally restored? In the phase II rituximab 
study in T1D [74], 87 patients with new onset T1D 
were treated with rituximab weekly over 4 weeks. 
There was a slower decline in mixed meal toler-
ance-stimulated C-peptide levels of the rituximab 
treated group compared with the placebo group. 
The B lymphocytes took many months to reconsti-
tute. At 12 months after the treatment period, na-
ïve B cells, defined as CD24+, IgD+ CD19+, CD38-, 
and CD10-, had returned to >80% of the baseline 
level. The switched memory B cells, defined as 
CD19+, CD27+, CD1c+/-, IgM+/-, and IgD-, remained 
reduced at an average of 40% of the initial baseline 
[75]. This has raised concerns about the level of 
immunosuppression using this treatment. In a fol-
low-up study to assess the effects on antibody re-
sponses, patients from both active treatment and 
placebo arms of the study were immunized with 
diphtheria/tetanus and hepatitis A vaccines 12 
months after the initial rituximab treatment, and 
pre-existing antibody responses to measles, 
mumps, and rubella were assessed [75]. In addi-
tion, bacteriophage phiX174 was given during the 
depletion phase at 2 weeks, after the end of the ri-
tuximab infusion period, and again at 6 weeks af-
ter this, to examine responses to a T lymphocyte-
dependent antigen. Plasma cells do not express 
CD20, and as expected, there was no effect on the 
circulating antibody responses that had been in-
duced prior to rituximab treatment. Responses to 
immunization with the diphtheria/tetanus and 
hepatitis A vaccines were seen in the rituximab-
treated group, and were considered to give ade-
quate protection, although they were lower than 
those achieved in the control group [75]. There was 
no response to phiX174 at the early time point af-
ter rituximab treatment, and a reduced response 
when the treatment was given after one year. 
However, the responses to immunization returned 
to normal upon B cell recovery [75]. These results 
certainly have important implications regarding 
concerns about the length of time that it takes to 
repopulate B cells. The resulting immunosuppres-
sion may preclude general introduction of this type 
of treatment to deplete B cells. Interestingly, ri-
tuximab treatment suppressed anti-insulin auto-
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antibodies (IAAs) more strongly than anti-GAD or 
anti-ZnT8 antibodies. This suppression continued 
for at least a year [76]. It was also observed that, 
independent of the treatment the subjects re-
ceived, the level of IAAs was lower in those that 
maintained better C-peptide levels [76]. 

The effects on B cells immediately following 
depletion in the rituximab study have been well 
documented. Given the considerable interactions 
with T cells and other cells of the innate immune 
response, it is interesting to note other aspects of 
B cell treatment and effects after reconstitution. In 
mouse studies, following B cell depletion, when the 
B cells were restored, there was an increase in T 
regulatory cells [69, 71-73], a transitional popula-
tion of B cells [69], and a regulatory population of 
monocyte-derived cells [77] (Table 1). In the ri-
tuximab trial, in those individuals who responded 
to the rituximab treatment, the number of CD4+ T 
cells had increased. Moreover, the number of regu-
latory T cells, defined as CD4+CD25+CD62L+ cells, 
was also greater 12 weeks after treatment, al-
though this was not maintained over the first year. 
Interestingly, there was also a greater T cell pro-
liferative response to 9 out of 12 antigens tested, 
which included neuronal, islet, and milk peptides 
in these individuals [78]. It is not clear in the hu-
man studies, what the underlying reason for this 
is. In the NOD mouse, when B cells were depleted 
in the TCR transgenic BDC2.5 mice (where the T 
cells recognize a peptide of chromogranin A), sur-
prisingly, the BDC2.5 CD4+ T cells were more ag-
gressive during the period when the B cells were 
depleted [79]. This may indicate that, in addition 
to the depletion of pathogenic B cells, B cells that 
have a regulatory function are also depleted. Dur-
ing this phase, there may be some expansion of 
autoreactive T cells, while B cells are depleted, 
and this may account for the fact that the im-
provement in C-peptide was not sustained in the 
human study. 

3.3 Other strategies for targeting B cells 

B cell signaling pathway. Following on from these 
B cell depletion experiments, there have also been 
some newer preclinical studies, with strategies 
that may hold some promise for therapeutic tar-
geting of B cells. The spleen tyrosine kinase (Syk), 
which is important for B cell signaling and FcγR-
mediated responses, can be targeted using a selec-
tive inhibitor R788 (fostamatinib). This is an orally 
administered small molecule that is converted to 
R406, which has been used in phase II clinical tri-
als in rheumatoid arthritis [80] and immune 

thrombocytopenic purpura [81]. To test whether 
this agent may show promise in diabetes, in a 
study in NOD mice, R788 reduced B cells to nearly 
half the number one to three months after treat-
ment, with reduced follicular B cells and corre-
spondingly increased marginal zone B cells, while 
activated B cells and plasma cells were unchanged 
[82]. IL-10-producing B cells, which have been 
shown to have regulatory properties, were in-
creased in spleen and peritoneal cavities, although 
the absolute numbers did not change. Coincident 
with these changes, DC numbers were decreased 
in the spleen and pancreatic lymph nodes, and in 
parallel, regulatory T cells appeared to be de-
creased. The treatment with R788 at 6 weeks of 
age in NOD mice delayed and prevented diabetes 
in a dose-dependent manner [82]. When initiated 
at a later stage, after the onset of glucose intoler-
ance detected by intra-peritoneal glucose tolerance 
test, progression of diabetes was also delayed. 
However, once diabetes was established, the drug 
did not restore glucose tolerance [82]. Therefore, 
this treatment would hold more promise for an 
early stage therapeutic. 
Antigen-specific B cell therapy. Development of 
antigen-specific T cell therapy is still a subject for 
investigation, as its specificity is attractive. Could 
the same apply for B cells and might antigen-
specific B cell-targeted therapy be a viable option? 
Antigen-specific B cells, like antigen-specific T 
cells, are present at a low frequency, and B cells as 
a total population only make up 5-10% of periph-
eral blood mononuclear cells in humans. In NOD 
mice, Henry and colleagues showed that when an-
tigen-specific B cells recognizing insulin were tar-
geted with a specific monoclonal antibody, com-
mencing treatment at 3 weeks of age, then diabe-
tes incidence was considerably reduced [83]. It was 
not effective when the frequency of insulin-specific 
B cells was greater than the low frequency found 
in wild type NOD mice. This was illustrated by the 
use of insulin antibody depletion in mice trans-
genic for the heavy chain of the 125 insulin-specific 
B cell, or 125 transgenic mice expressing both 
heavy and light chains of the 125 B cell receptor. 
In the transgenic mice, the anti-insulin antibody 
treatment did not have any effect on diabetes, and 
was not sufficient to fully deplete the insulin-
reactive B cells. It is not known whether this type 
of antigen-specific anti-B cell therapy would be ef-
ficient if commenced at a later time point [83]. 
Tolerogenic B cells. A B cell gene therapy approach 
has been used to induce antigen-specific tolerance, 
where B cells are transduced with a retroviral vec-
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tor encoding a target peptide antigen fused with 
an IgG heavy chain carrier. These B cells have 
been shown to be tolerogenic in a variety of pre-
clinical models of human autoimmune diseases, 
including autoimmune diabetes in NOD mice [84]. 
Treatment with transduced activated B cells re-
duced the incidence of diabetes when treatment 
was commenced at 7 and 10 weeks, with con-
structs expressing either GAD or insulin B chain 
amino acids 9-23 peptide [84]. However, if treat-
ment was commenced later at 14 weeks, there was 
no protection from diabetes. Further experiments 
have shown that transduction of antigen-specific B 
cells does not have any effect on ameliorating the 
disease. The results indicate that this means of 
generating tolerogenic B cells does not overcome 
the pathogenicity of B cells which have pre-
existing antigen specificity [85]. 

Are the results seen thus far with anti-B cell 
therapy sufficient to continue to explore this 
therapeutic avenue, or will the limited time period 
over which the treatment is effective and the 
safety issues preclude anti-B cell therapy? This 
depends on the individual anti-B cell therapy used, 
and the repopulation characteristics of the treat-
ment. Moreover, it will be particularly important 
to continue to explore therapies against antigen-
specific B cells. This would complement means of 
targeting pathogenic B cells, while preserving or 
boosting any regulatory activity that may be pre-
sent, rather than total depletion of all B cells. 

4. Gamma delta T cells 
Gamma delta (γδ) T cells are a small subset of 

T cells that express a distinct T cell receptor (TCR) 
compared with the majority of T cells that express 
α and β TCR chains, hence, αβ T cells [86, 87]. 
Unlike αβ T cells, the antigen recognition of γδ T 
cells is mostly not restricted to antigen processing 
and presentation by classical MHC molecules on 
APCs [87]. It has been hypothesized that γδ T cells 
recognize antigen patterns, similar to innate im-
mune cells [88]. γδ T cells are abundant in tissues 
at the interface with the external environment in-
cluding skin, respiratory tract, and intestine [89-
94], and they could be considered to be innate T 
cells. Studies have shown that γδ T cells contribute 
to the immunopathogenesis of autoimmune dis-
eases including T1D in both mouse models and in 
patients [95-97]. 

It is interesting that insulin B9-23-reactive γδ 
T cell clones were isolated from spleen and pan-
creatic draining lymph node (PLN) of NOD mice 
[98]. Other investigations have shown elevated 

levels of γδ T cells in both NOD mice and patients 
with T1D [95-97], although it is not clear whether 
the γδ T cells, in particular insulin-reactive γδ T 
cells, are pathogenic or regulatory. However, since 
γδ T cells are abundant in mucosal tissue, Harri-
son and colleagues showed that delivery of proin-
sulin by the respiratory or digestive tracts could 
induce potent regulatory γδ T cells that prevented 
diabetes development in NOD mice [99-101]. 
Moreover, these regulatory γδ T cells could also 
prevent diabetes development induced by diabeto-
genic cells through adoptive transfer [99-101]. The 
regulatory mechanism of these γδ T cells is likely 
to be mediated by IL-10 as these cells strongly re-
semble the induced regulatory Tr1 αβ T cells [99]. 
It is conceivable that the regulatory γδ T cells pro-
vide a new therapeutic approach for prevention 
and treatment of T1D. However, it is clear that 
more studies are needed, particularly to define 
their biology, in order to discover whether they 
may be important in humans and if so, how to tar-
get such cells to increase their number. 

5. Natural killer cells 
Natural killer (NK) cells have been investi-

gated at both cellular and molecular levels, and 
the number of studies in recent years has signifi-
cantly increased. The discovery of activating recep-
tors, natural cytotoxicity receptors (NCRs), and 
the inhibitory killer cell immunoglobulin-like re-
ceptors (KIRs), on NK cells has further promoted 
the research in NK cell biology [102-109]. NK cells 
are innate immune cells that do not express gene-
rearranged receptors such as TCR and B cell re-
ceptors (BCR) for specific antigen recognition. The 
central function of the adaptive immune response 
mediated by T and B cells is to react against “non-
self” recognized via TCR or BCR. However, the ex-
pression of NCRs and especially KIRs on NK cells 
enables them to react against “altered self” includ-
ing virally-infected cells in the host [110]. It is also 
possible that pancreatic β-cells could express “al-
tered self” caused by viral infection or environ-
mental stress. Therefore, it is possible that NK 
cells play a critical role in immune tolerance to 
autoimmunity. 

The role of NK cells in the immunopathogene-
sis of T1D has been studied in both mouse models 
and patients with T1D [111-114]. Most of these 
studies showed that NK cells indeed play an im-
portant role in immmunopathogenesis of T1D, al-
though some studies suggested that NK cells were 
not required for the development of disease [115]. 
It is interesting that Mandelboim and colleagues 
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recently demonstrated that both mouse and hu-
man islet β-cells express an, as yet unidentified, 
ligand for the NKp46 activating receptor on NK 
cells [116]. As blocking the binding of NKp46 to β-
cells prevented diabetes development in NOD mice 
the investigators suggested that binding the ligand 
on β-cells would lead to NK cell activation and β-
cell destruction [116, 117]. Their study suggested 
that targeting NK cells might be a new and an ad-
ditional therapeutic approach for prevention and 
treatment of T1D development. 

Human studies have revealed that patients 
with T1D feature a reduction in NK cell numbers 
and impaired NK cell functions [113, 114]. The 
cause of the altered phenotype of NK cells in T1D 
is unclear. In a longitudinal study, Gillespie and 
colleagues demonstrated that an increased fre-

quency of human KIR and HLA-C group 1 was 
significantly correlated with early onset of T1D 
and a sharp rise in the incidence over the past half 
century [118]. 

An interesting study using a T cell transgenic 
mouse model of T1D revealed that regulatory T 
cells exert tight control of the expansion and func-
tion of diabetogenic NK cells. This was illustrated 
by removing Foxp3+ regulatory T cells which led to 
rapid diabetes development and considerable NK 
cell infiltration in pancreatic islets [119]. Regula-
tory T cell therapy is currently in clinical trial for 
treating patients with new-onset T1D [16]. En-
hancing regulatory T cell number and function 
would also tame the diabetogenic NK cells. It will 
be interesting to observe whether NK cells are al-
tered as a result of this treatment. 
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Figure 1. Summary of potential immune targets for immunotherapy in type 1 diabetes. The figure summarizes the immune 
targets highlighted in the text that could be manipulated for immunotherapeutic purposes. These targets include antigen-
presenting cells (monocytes), macrophages, and dendritic cells (DCs), as well as B cells, innate lymphocytes (γδT cells), natu-
ral killer (NK) cells, and NKT cells. Abbreviations: IDO – indolamin-2,3-dioxygenase, IFNγ – interferon gamma, IL – inter-
leukin, IRF7 – interferon regulatory factor 7, NKp46 – natural killer cell p46-related protein, TGFβ – transforming growth fac-
tor beta, TLR – toll-like receptor, VitD – vitamin D. 
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6. Natural killer T cells 
There are a number of cells that fall into this 

category of innate lymphocytes. CD1d-restricted 
natural killer T (NKT) cells have functions differ-
ent from cytotoxic NK cells. Type 1 or invariant 
NKT cells (iNKT) express a TCR using an invari-
ant alpha chain (Vα24-Jα18 in humans and Vα14-
Jα18 in mice) together with a restricted set of β 
chains, and they produce a large amount of IL-4 
and other cytokines upon activation [120]. They 
recognize glycolipid antigens presented by CD1d. 
Type 2 NKT cells are also CD1d-restricted but 
have more diverse T cell receptors [121], and they 
target sulphatide [122] amongst other lipid anti-
gens. 

A number of studies have shown that NKT 
cells in NOD mice are impaired in both number 
and function (reviewed in [123, 124]). Improving 
the function of this subset protects against diabe-
tes development in NOD mice [125-129]. Targeting 
invariant NKT cells is potentially an attractive 
approach for an alternative immunotherapy. In-
variant NKT cells are stimulated by the glycolipid 
α-GalactosylCeramide (α-GalCer), and initially this 
was proposed to be a possible therapeutic agent to 
boost these cells [130]. Very recently, sulphatide 
that stimulates type II NKT cells has also been 
proposed as a possible therapy [131]. 

Whilst the promotion of cytokine production, 
particularly IL-4, may be attractive to counteract 
the Th1 dominance in T1D, inducing such a 
change in cytokine balance also raises the risk of 
enhancing Th2-mediated immunopathology includ-
ing allergy. Possible applications of therapy that 
stimulates NKT cells in T1D and other autoim-
mune diseases, and potential problems of this im-
munotherapy, have been very recently reviewed by 
Simoni and colleagues [132]. Whilst preclinical 
studies suggest that therapy directed at NKT cells 
is of potential clinical interest, there are considera-
tions of safety and efficacy which need to be fur-

ther explored if it were to be used for human im-
munotherapy in T1D. 

7. Concluding remarks 
It is clear that there are several potential im-

mune therapies beyond T cell therapy (see Figure 
1). However, more basic and applied research is 
required to understand the biological processes 
and to test for the safety and efficacy of new 
therapies. Many treatments highlighted in pre-
clinical studies are only effective in early stages of 
the disease process; they are likely to be more ef-
fective in the prevention of human T1D. There are 
still insufficient biomarkers, other than multiple 
autoantibodies, to predict the future development 
of disease. Clearly, research should continue to be 
focused on this area. The smaller number of thera-
pies that are effective at later stages in the pre-
clinical models will require rigorous testing and 
understanding of how their effects may differ in 
humans compared with rodents. The results of the 
recent clinical trials provide us with some impor-
tant messages. Firstly, a combination of different 
interventions may be more effective as there is 
unlikely to be a “magic bullet” (i.e., a monother-
apy) for a multifactoral disease such as T1D. Sec-
ondly, the approaches that target immune cells 
other than T cells currently are likely to be more 
effective in prevention of T1D. We will need to con-
tinue the search for safe and effective agents that 
can be used in both early and later phases of dis-
ease. 
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