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■ Abstract 
In type 1 diabetes (T1D), pancreatic beta-cells are attacked 
and destroyed by the immune system, which leads to a loss 
of endogenous insulin secretion. The desirable outcome of 
therapeutic intervention in autoimmune diseases is the res-
toration of immune tolerance to prevent organ damage. Past 
trials with immune suppressive drugs highlight the fact that 
T1D is in principle a curable condition. However, the barrier 
in T1D therapy in terms of drug safety is set particularly 
high because of the predominantly young population and the 
good prognosis associated with modern exogenous insulin 
therapy. Thus, there is a general consensus that chronic 

immune suppression is associated with unacceptable long-
term safety risks. On the other hand, immune-modulatory 
biologicals have recently failed to confer significant protec-
tion in phase 3 clinical trials. However, the concept of anti-
gen-specific tolerization may offer a unique strategy to safely 
induce long-term protection against T1D. In this review, we 
analyze the potential reasons for the failure of the different 
tolerization therapies, and describe how the concept of anti-
gen-specific toleraization may overcome the obstacles asso-
ciated with clinical therapy in T1D. 
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1. Immune suppression in T1D: the 
sledgehammer approach 
 

 t diagnosis, it is estimated that T1D patients 
 possess only a limited pool of surviving beta- 
 cells. Before diagnosis, the only consistent 

and reliable signs of ongoing autoimmunity are is-
let autoantibodies, but the pathophysiological 
processes at the level of the target organ remain 
incompletely characterized [1]. It is well known 
that T cells dominate the islet infiltrates [2], and 
that these cells are capable of killing beta-cells di-
rectly [3]. The beta-cells express high levels of 
MHC class I, and are therefore actively involved in 
their own demise. Autoreactive memory T cells 
also pose problems related to islet transplantation 
procedures, since these cells rapidly detect and de-

stroy any transplanted beta-cell mass [4]. There-
fore, a genuine cure for T1D needs to tackle the 
immune component of the disease, and should 
preferably be aimed at the induction of long term 
tolerance. 

Indeed, the combined outcomes of several tri-
als using immune-suppressive agents such as cyc-
losporin [5] and azathioprine [6] have proven that 
blocking T cell function in T1D leads to beta-cell 
preservation. Cyclosporin, for instance, secures 
prolonged periods of insulin independence in many 
patients, which is a rigorous efficacy outcome 
measure [5, 7]. Unfortunately, maintenance of re-
mission requires continuous treatment, and 
chronic cyclosporin therapy results in accelerated 
renal dysfunction [8]. Similarly, aggressive thera-
pies such as autologous hematopoietic stem cell 
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transplantation involve similar risk-benefit con-
siderations within the context of T1D [9]. It is 
therefore evident that this type of approach cannot 
be ethically justified for the prevention of T1D in 
young individuals at risk. 

2. Immune modulation in T1D: im-
proved safety, reduced efficacy 

To reduce the risks associated with chronic 
immune suppression, biologicals directed against 
defined immune receptors could be envisioned to 
tackle the immune system in a more specific fash-
ion. Agents directed at the co-inhibitory receptor 
CTLA-4 [10] (abatacept), the B cell-specific protein 
CD20 [11] (rituximab), and the T cell signaling re-
ceptor CD3 [12, 13] (teplizumab/otelixizumab) 
have all been tested in T1D trials. For instance, 
anti-CD3 therapy, contrary to pharmacological 
immunosuppression, does not affect subsequent 
infectious or iatrogenic immunization to antigens 
that are not related to beta-cells. On the other 
hand, anti-CD3 agents do trigger transient reacti-
vation of Epstein-Barr virus [14]. The hope is that 

a short treatment course will trigger lasting toler-
ance, overcoming the need for chronic treatment 
which is afflicted with serious ethical considera-
tions. Unfortunately, a recent series of immune 
modulation trials in new-onset T1D have been un-
able to permanently arrest the rate of C-peptide 
decline [10, 11, 15]. 

The rationale for the implementation of certain 
immune-modulatory biologicals in a recent-onset 
setting is not always evident. Non-mitogenic anti-
CD3 agents are in fact the only class of biologicals 
that has consistently been able to reverse estab-
lished hypoglycemia in several T1D models [16, 
17]. Other agents such as CTLA-4Ig [18] and anti-
TNF [19] only work in a prevention setting in 
animals, i.e. when given early and before the signs 
of overt hyperglycemia. It is therefore not entirely 
surprising that these approaches are unable to 
potently prevent the C-peptide decline in a recent-
onset setting in humans. 

We conclude that the suboptimal effects 
achieved with immune modulation may reflect a 
need for higher doses or longer treatment dura-
tions. The projected risk-benefit ratio may then 
approach the profile seen with general immuno-
suppression. 

3. The concept of antigen-specific tol-
erance 

The overall goal of antigen-specific tolerance is 
to present known autoantigens to the immune sys-
tem in such a way that they are seen as non-
harmful, and consequently provoke a regulatory 
response. This is in fact exactly the opposite ap-
proach to that used by ordinary vaccinations. The 
regulatory response can consist of an attenuation 
or deletion of autoreactive T cells and/or the ex-
pansion and functional activation of regulatory T 
cells (Tregs). Various types of these Tregs exist, 
one of which was termed ‘Th3’ which specifically 
referred to mucosal-derived regulatory CD4 T cells 
producing mainly TGF-β [20]. We know that many 
of these Treg subtypes contribute to mucosal anti-
gen-specific tolerance, and that their key pheno-
typic and functional features often overlap. The 
generation of antigen-specific Tregs is intended to 
regulate local inflammatory responses, i.e. within 
the pancreatic draining lymph nodes (PDLNs) and 
islets in T1D. In oral antigen therapies, the 
Peyer’s patches are crucial immunological niches, 
since mice lacking these structures do not develop 
tolerance [21]. 

How do these antigen-specific Tregs regulate 
the entire autoreactive T cell repertoire? Here, a 
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process termed linked suppression, originally 
stemming from transplantation studies, comes into 
play (Figure 1). Essentially, this concept entails 
that an antigen-specific therapy based on a single 
islet antigen can control autoimmune responses 
against other islet antigens, provided only these 
antigens are co-presented on the same dendritic 
cell (DC) as the tolerizing antigen. Thus, the ac-
tual ‘link’ in this concept is the local DC, which en-
sures that suppression only occurs at the inflam-
matory target site, and that unwanted suppression 
of normal immune responses does not occur. This 
type of ‘bystander suppression’ holds another 
therapeutic advantage, namely “operational capac-
ity” even when the antigenic specificities of the 
other autoareactive T cells are unknown [22]. Treg 

cells may orchestrate this bystander suppression 
by acting directly, through cytokine- or contact-
dependent mechanisms or, more probably, indi-
rectly on antigen-presenting cells (APCs) that in 
turn become tolerogenic. Recent evidence even 
shows that Tregs may be able to kill APCs directly, 
and as such prevent further T cell activation [23]. 
Since the concept of linked suppression enables to 
target the inter-individual variation of T1D pa-
tients with respect to their autoreactive T cell rep-
ertoire, this concept could aid in covering a broad 
spectrum of the population [2, 24]. Importantly, 
bystander tolerance (the term “infectious toler-
ance” is also used frequently) does not necessarily 
involve presentation of antigens by the same APC 
as in the linked tolerance model, since cytokine 
gradients can also limit tolerizing effects to a local 
environment. 

Finally, do we have evidence that stimulating 
the more focused, localized action of antigen-
specific Tregs may provide clinical benefit over in-
creasing the numbers of peripheral natural Treg 
(nTreg) numbers? It appears that there is no sig-
nificant overall difference in peripheral nTreg 
numbers between T1D patients and healthy con-
trols [25]. This argues against the idea of simply 
increasing their numbers by adding more poly-
clonal nTreg to the immune system. Recent clinical 
trial data appear to confirm this notion. For in-
stance, by combining rapamycin and interleukin 
(IL)-2, nTreg numbers can be boosted in T1D pa-
tients [26]. However, this correlated with a four-
fold exacerbation in C-peptide decline compared 
with historical control subjects. Therefore, it seems 
that polyclonal nTreg expansion does not necessar-
ily correlate with beta-cell preservation, and that 
antigen-specific Tregs may in fact be preferable. 

4. Antigen-specific tolerance in T1D: 
excellent safety, but efficacy to be 
improved 

Antigen-specific oral tolerance induction has 
reliably suppressed disease in a range of animal 
models for autoimmunity, including arthritis [27], 
multiple sclerosis [28], and T1D [29]. Other modes 
of mucosal (nasal [30, 31]) and non-mucosal (sub-
cutaneous [32]) antigen delivery, alone or in com-
bination with specific adjuvants, were explored, 
and promising data were obtained showing that 
antigen-specific tolerance induction can prevent 
the development of T1D. However, as actual rever-
sal of established disease is typically not achieved 
via these antigen-based approaches this treatment 

 

 
Figure 1. Antigen-specific tolerance and “linked suppres-
sion”. Antigen-specific regulatory T cells (Tregs) are raised 
under specific immunological conditions, for instance those 
that exist across the mucosal barrier. These Tregs may then 
regulate immune responses in the lymph nodes, for instance 
the pancreatic draining lymph nodes in T1D. Here, antigen-
presenting cells (APCs) constantly drain the inflamed islets 
and shuttle islet antigens to the lymph nodes. The Tregs rec-
ognize the tolerizing antigens (here antigen A) and mediate 
immune suppression. The concept of “linked suppression” 
entails that any autoreactive T cell specific for another islet 
antigen (here antigen B) that is presented on the same APC 
will also be suppressed. Tregs mediate suppression via con-
tact or cytokine expression on APC (1) or other T cells (2). 
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would be applicable in subjects at risk of T1D and 
possibly early-onset patients only. The overwhelm-
ing majority of studies revealed excellent safety 
profiles, with some notable exceptions in the dia-
betic BB rat model [33]. Due to significant cross-
reactivity and endogenous mimicry effects [34] in 
adaptive responses, complete desired specificity of 
antigen-based intervention is not always guaran-
teed, and therefore should not be taken for 
granted. 

Despite these robust data in animals, clinical 
studies in autoimmune disease patients have so 
far been less promising. In rheumatoid arthritis, 
collagen-specific tolerization therapy was tested in 
numerous trials, but with mixed outcomes [35]. 
Oral administration of myelin showed initial 
promise in multiple sclerosis [36], yet a subse-
quent phase 3 trial proved unsuccessful. Taken to-
gether, such trials probably highlight the notion 
that the outcome of antigen-specific therapy criti-
cally depends on a variety of factors, which also 
consistently influence treatment outcomes in ani-
mal models. 

Looking at past experiences, we believe that 
the full potential of antigen-specific therapy for 
T1D has yet to be uncovered. Optimization of clini-
cal translation could center on biomarker discov-
ery and validation. We recently demonstrated that 
the presence of insulin autoantibodies prior to 
treatment with oral insulin/anti-CD3 combination 
therapy predicts efficacy in the NOD mouse [37]. 
To adequately apply potential immune biomarkers 
such as regulatory cytokine responses to islet anti-
gens [38-40] or autoreactive T cell frequencies [41], 
in future trials, we need to better understand how 
these immune markers vary per individual during 
the natural course of T1D development and pro-
gression. 

5. Examples of past and current anti-
gen-specific therapy trials in T1D 

5.1 Oral antigen administration 

For obvious reasons, insulin is considered an 
important candidate for antigen-specific therapy in 
T1D. It is the only known beta-cell-restricted 
autoantigen as all other known protein targets are 
produced outside of the pancreas. Insulin is a ma-
jor autoantigen in the NOD model [42], and evi-
dence is mounting that insulin-reactive T cells 
play important roles in T1D [3]. Oral administra-
tion of whole insulin prevents autoimmune diabe-
tes in spontaneous [29] and induced [43] animal 

models. One conclusion from these animal studies 
is that the dose needs to be carefully chosen, as ef-
ficacy decreases in both the low and high end of 
the dosing spectrum [44]. Additionally, the origin 
of the insulin influences the efficacy, as optimal 
doses in mouse models differ for example between 
porcine and human insulin [45]. It also shows that 
a structurally intact whole antigen holds the most 
promise [27]. 

Most studies on oral insulin therapy in mice 
found an optimal dose within the single digit mil-
ligram range, given intra-gastrically twice weekly 
in a relatively large (~0.5 ml) volume of buffer. The 
Diabetes Prevention Trial (DPT-1) first screened 
over 100.000 relatives of T1D patients for islet cell 
antibodies (ICAs), and subsequently tested the ef-
fect of oral insulin in a secondary prevention set-
ting [46]. Specifically, 7.5 mg of human insulin 
crystals was administered daily in non-
enterocoated capsules or sprinkled over food. It 
was believed by the authors that the breakdown of 
insulin in the gastrointestinal (GI) tract was de-
sirable to avoid any hypoglycemic effects. How-
ever, no beneficial outcome was reported, although 
post-hoc analysis showed a projected delay of 4.5 to 
5 years in those patients with insulin autoantibody 
titers of over 80 nU/ml. 

Many researchers in the field believe that 
some important factors could be altered to improve 
the efficacy of oral insulin in a prevention setting. 
First, the dose that can be extrapolated from 
mouse studies is several hundred folds higher than 
the one used in the DPT-1 trial. Given the impor-
tance of accurate dosing, as outlined above, this 
most  likely is a pivotal variable. Second, insulin is 
extremely sensitive to denaturation and degrada-
tion, and it is unsure whether any naturally pre-
sented autoantigens will reach the relevant sites 
in the lower GI tract. Finally, this type of therapy 
may only work in patients with ongoing anti-
insulin autoimmunity, and thus prior insulin 
autoantibody screening is required, as mouse stud-
ies appear to confirm [37]. A TrialNet study is un-
derway to test this latter hypothesis 
(NCT00419562). All trials with oral insulin in a 
recent-onset setting, including the IMDIAB [47], 
Diabète Insuline Orale group [48], and the trial by 
MacLaren et al. [49] were unsuccessful. Impor-
tantly, all used low daily insulin doses and lacked 
any entero-protective formulation. Our studies us-
ing the in silico predictive platform developed by 
Entelos Inc. showed, at least for nasal insulin pep-
tide tolerization, that low frequency administra-
tion, as done in mice, was more effective than high 
frequency dosing [50]. We conclude that oral insu-
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lin therapy in T1D may still hold clinical potential, 
provided that parameters such as dosing, formula-
tion methods, and inclusion criteria are optimized. 

5.2 Nasal antigen administration 

An alternative mode of mucosal administra-
tion, nasal insulin inhalation, was characterized in 
mouse models [30]. In contrast to the unpredict-
able bioavailability in the small intestine after oral 
administration, nasal administration could aid in 
better preserving the antigenic structure for opti-
mal presentation to the mucosal immune system. 
A pilot study showed that nasal insulin treatment 
is safe and tends to induce immune changes con-
sistent with the establishment of tolerance to insu-
lin [51]. 

However, a large trial of daily nasal insulin in 
islet autoantibody-positive children at very high 
risk for type 1 diabetes found no effect on progres-
sion to diabetes [52]. A recent trial in new-onset 
patients also demonstrated no effect on C-peptide 
preservation, yet revealed promising immunologi-
cal changes suggestive of tolerance induction [53]. 
A large nasal insulin trial (INIT-II, NCT00336674) 
in relatives of individuals with T1D is underway in 
Australia and New Zealand. The Pre-POINT trial 
which is currently being enrolled aims to identify 
optimal timing, disease stage, dose, and route of 
administration by intervening with oral or nasal 
insulin in genetically at-risk children before the 
appearance of islet autoantibodies [54]. 

5.3 Subcutaneous antigen administration 

(Prepro)Insulin. Subcutaneous administration of 
insulin prior to diagnosis has been explored as a 
secondary prevention strategy, based on encourag-
ing data in animal models [32] and pilot trials [55]. 
In addition to the effects on the immune system, it 
was hypothesized that insulin may act through 
metabolic effects, offering much needed ‘rest’ to the 
stressed beta-cells in at-risk individuals [56]. Re-
cent data mechanistically support this assumption 
as beta-cells producing higher levels of endogenous 
insulin were shown to be more vulnerable to rec-
ognition and killing by preproinsulin-specific CTLs 
[3]. 

The DPT-1 study group assessed the outcome 
of parenteral insulin administration in a large co-
hort of high-risk individuals, and failed to demon-
strate any effect on functional beta-cell preserva-
tion [57]. Alternative approaches include the use of 
insulin B chain administration in incomplete 
Freund’s adjuvant (IFA) and proinsulin DNA vac-

cination [38, 39]. While some immunological evi-
dence exists that supports their tolerogenic capac-
ity, these therapies remain to be validated in large 
controlled trials. 

An altered peptide ligand (APL) of insulin B9-
23, an important autoantigen, was evaluated in a 
four-arm trial in recent-onset T1D. Patients were 
injected with 3 different doses or placebo at ran-
domization, 2 weeks, 4 weeks, and thereafter 
monthly until 24 months. Maintenance of beta-cell 
function was not observed at any of the doses 
tested [58]. Since disease exacerbation with APL 
was seen in multiple sclerosis (MS), extreme cau-
tion is obviously advised in any future trials in-
volving APL [59]. 
Glutamic acid decarboxylase (GAD). GAD is an en-
zyme that catalyzes the rate-limiting step in the 
biosynthesis of the inhibitory neurotransmitter 
GABA (γ-aminobutyric acid) [60]. The protein is 
broadly expressed in the nervous system and in 
other tissues such as the beta-cells. Two mammal-
ian isoforms of GAD with different molecular 
weights were identified, GAD65 and GAD67, with 
GAD65 being the main immunogenic isoform in 
T1D [61]. GAD autoreactivity predicts clinical on-
set, is closely associated with recent-onset T1D 
[62], and thus represents an important diagnostic 
tool for clinicians. Patients suffering from a rare 
neurological condition called stiff man syndrome 
also exhibit GAD autoreactivity. Stiff-man syn-
drome is characterized by severe muscle stiffness 
with accompanying muscle spasms. A high preva-
lence of diabetes in patients with stiff man syn-
drome has been documented [63]. However, stiff 
man syndrome patients frequently show different 
GAD-specific T cell repertoires and distinct hu-
moral responses (isotype) to GAD, suggesting fun-
damentally different underlying immunopathology 
in both diseases [64]. 

Not unlike insulin, GAD autoreactivity plays 
an essential role in the disease process in the NOD 
model [65]. A variety of tolerization therapies 
against GAD proved highly successful in NOD 
mice [31, 66, 67]. The treatment regimen was 
taken forward into controlled trials consisting of 
subcutaneous injections of GAD protein in alumin-
ium hydroxide (alum), a common vaccine adjuvant. 
This adjuvant is known to skew Th1-dominated 
cellular immune responses, as in T1D, towards a 
Th2 humoral response [68]. An optimal dose of 20 
micrograms (given twice, four weeks apart, C-
peptide measurement at 24 weeks) was found in 
latent autoimmune diabetes of adulthood (LADA) 
patients, whereas both lower and higher doses 
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were inefficacious [69]. The beneficial effects on 
fasting C-peptide of the 20 microgram dosing were 
still measurable after five years, which indicates 
that long-term tolerance was established [70]. A 
phase II study, in a recent onset design, was then 
conducted, and showed improvement of C-peptide 
preservation, particularly in T1D patients with 
short disease duration, which was again main-
tained for at least 4 years [71, 72]. GAD65-specific 
Tregs [73], decreased antigen-specific Th1 re-
sponses [74], and T cell inhibitory pathways upon 
antigen stimulation [75] were all demonstrated in 
the GAD-treated patients. 

Unfortunately, a recent-onset TrialNet study 
subsequently failed to confirm these positive out-
comes [76]. Two phase 3 trials were recently con-
ducted, one in Europe [77] and one in the U.S. 
(DIAPREVENT, NCT00751842), without signifi-
cant evidence of beta-cell preservation. While 
much of the optimism for GAD-alum treatment for 
diagnosed T1D patients has vanished, an ongoing 
secondary prevention trial (DIAPREV-IT; 
NCT01122446) should provide more insight into 
the question of whether the drug can be used to 
protect high-risk individuals. 
60 kDa heat-shock protein (HSP60, p277, Dia-
Pep277). HSP60 has long been known as an 
autoantigen in the NOD mouse [78]. Specifically, a 
HSP60-derived peptide (p277) harbors the poten-
tial to protect mice from diabetes [79, 80], and has 
the ability to induce disease in non-susceptible 
strains after vaccination [81]. The protein appears 
to be a relatively unimportant autoantigen in pa-
tients, although some evidence exists that autore-
activity arises during the natural course of T1D 
[82]. 

The peptide used in clinical trials (DiaPep277, 
TEVA Pharmaceuticals) differs from the native 
p277 sequence in two amino acid positions that 
were introduced for stabilization purposes. A pilot 
study tested the efficacy of three subcutaneous 1 
mg p277 injections in patients with recent-onset 
T1D [83]. Glucagon-stimulated (GST) C-peptide 
was determined at 10 months, and was higher in 
the DiaPep277 treated group, an effect that was 
sustained with follow-up to 18 months [84]. 
Mechanistically, DiaPep277 skews T cell reactivity 
to hsp60 and p277 towards a Th2 functional phe-
notype, but binds directly to toll-like receptor 2 
(TLR2) on Tregs, which provokes better regulatory 
potential [85]. 

A number of other small trials with DiaPep277 
were conducted, which all showed excellent safety, 
yet were not powered to offer conclusive evidence 
of efficacy [86-89]. The study by Huurman and co-

workers revealed that the proliferative T cell re-
sponse to p277 is able to distinguish between 
treatment group and placebo, and may serve as a 
future biomarker [40]. These immune biomarkers 
need to be further developed, but the latter data 
suggest that efficacy, at least in part, correlates 
with an altered immune response against the im-
munizing antigen. 

A successful phase 3 trial has now been com-
pleted, and data presented at the 2012  ADA An-
nual Sessions reported that C-peptide at 24 
months showed an improvement with the glucagon 
stimulation test (GST), but not with the mixed 
meal tolerance test (MMTT). A press release also 
announced a reduction of hypoglycemia frequen-
cies and insulin usage in the treatment group 
(http://www.andromedabio.com/news.php). A sec-
ond phase 3 trial is underway, and has recently 
completed recruitment. The phase data support 
the hypothesis that antigen-specific therapies rep-
resent a safe and powerful approach, even during 
the advanced phases of disease. Interestingly, the 
dose used in the phase 3 trial (1 mg DiaPep277) 
was chosen based on reduced hypoglycemia fre-
quencies, whereas the study by Huurman et al. 
showed that C-peptide preservation was most sig-
nificant at a dose of 2.5 mg [86]. These results 
suggest that further dose optimization may lead to 
even better efficacy. 

6. The future of antigen-specific ther-
apy 

Trials with immune-suppressive agents have 
taught us that tackling the immune-related com-
ponent of T1D is an effective strategy to preserve 
functional beta-cell mass. The safety profile of 
these therapies, however, is unsatisfactory given 
the high quality of life that can be achieved with 
modern insulin therapy. Furthermore, we have 
come to the conclusion that long-term tolerance is 
preferable to short-term remission achieved by 
immunosuppression. New biologicals such as anti-
CD3 have yet to meet the high expectations that 
were raised by animal studies and phase 2 trials. 
The phase 3 study with DiaPep277 in recent-onset 
T1D provides a glimmer of hope that antigen-
specific tolerization could be used to treat late-
stage disease at around the time of clinical diagno-
sis. 

It is still puzzling why the impressive efficacy 
record of antigen-specific therapy in animal mod-
els does not translate to the clinic. To find an-
swers, first it should be kept in mind that most an-
tigen-specific therapies only work in a prevention 
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setting in animal studies. As outlined above, a 
combination of ethical considerations, shortened 
trial durations, and cost minimization require-
ments urge trial sponsors to prefer a recent-onset 
setting. Quite clearly, this setup implicates a high 
stringency for efficacy testing (end-stage disease), 
as compared to a secondary prevention setting, 
and offers a less meaningful endpoint (C-peptide) 
in comparison with the delay of diabetes. Addi-
tionally, current preclinical animal research fo-
cuses almost entirely on devising tolerogenic 
strategies for a naïve specific repertoire. However, 
the challenge for tolerogenic strategies in clinical 
autoimmune settings is to understand how regula-
tion can be produced on the background of an on-
going chronic inflammatory response against the 
same antigens to which tolerance is to be pro-
duced. Ignoring this challenge may, for example, 

explain the surprising deleterious effects of the ra-
pamycin/IL-2 trial mentioned above. 

Second, important variables such as antigen 
dose, formulation, and frequency of administration 
have often been characterized in detail in animal 
models, yet were largely ignored in the inception of 
clinical trials. Despite all their limitations, we ar-
gue that animal models should continue to con-
tribute in making better informed decisions on the 
path to clinical translation. Third, suitable im-
mune biomarkers are needed to better identify the 
correct target population, and to correlate immune 
function with clinical benefit. Finally, it is believed 
that for the adequate treatment of established dis-
ease, combination therapies are warranted, al-
though generally more practical obstacles need to 
be overcome than with monotherapies [90]. 
Disclosure: The authors report no conflict of interests. 
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