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■ Abstract 
Remarkable progress has been made in islet transplantation 
over a span of 40 years. Once just an experimental curiosity 
in mice, this therapy has moved forward, and can now pro-
vide robust therapy for highly selected patients with type 1 
diabetes (T1D), refractory to stabilization by other means. 
This progress could not have occurred without extensive 
dynamic international collaboration. Currently, 1,085 pa-
tients have undergone islet transplantation at 40 interna-
tional sites since the Edmonton Protocol was reported in 
2000 (752 allografts, 333 autografts), according to the Col-
laborative Islet Transplant Registry. The long-term results of 
islet transplantation in selected centers now match registry 
data of pancreas-alone transplantation, with 6 sites reporting 
five-year insulin independence rates ≥50%. Islet transplanta-
tion has been criticized for the use of multiple donor pan-
creas organs, but progress has also occurred in single-donor 
success, with 10 sites reporting increased single-donor en-

graftment. The next wave of innovative clinical trial interven-
tions will address instant blood-mediated inflammatory reac-
tion (IBMIR), apoptosis, and inflammation, and will translate 
into further marked improvements in single-donor success. 
Effective control of auto- and alloimmunity is the key to long-
term islet function, and high-resolution cellular and anti-
body-based assays will add considerable precision to this 
process. Advances in immunosuppression, with new anti-
body-based targeting of costimulatory blockade and other T-
B cellular signaling, will have further profound impact on the 
safety record of immunotherapy. Clinical trials will move 
forward shortly to test out new human stem cell derived is-
lets, and in parallel trials will move forward, testing pig islets 
for compatibility in patients. Induction of immunological tol-
erance to self-islet antigens and to allografts is a difficult 
challenge, but potentially within our grasp. 
 

 

Keywords: diabetes · islet · transplantation · immunosup-
pression · allograft 

 

1. Overview perspective 
 

 ype 1 diabetes (T1D) is an autoimmune dis- 
 ease characterized by the destruction of beta- 
 cells within the pancreas, resulting in abso-

lute deficiency of insulin. Hyperglycemia, ketoaci-
dosis, and dehydration are the immediate conse-
quences if left untreated. Subcutaneous bolus in-
jection of insulin has been the definitive, life-
sustaining therapy since 1922, following its dis-
covery by Nobel Laureates Banting, McCleod, and 
co-workers Best and Collip. Standard or intensive 
insulin therapy remains the gold-standard therapy 

for the majority of patients with T1D. Tight gly-
cemic control lessens the risk of secondary diabetic 
complications, but substantially increases risk of 
troublesome and occasional life-threatening hypo-
glycemia. For a minority of patients, a life troubled 
by frequent hypoglycemia, and fear of the ‘dead-in-
bed’ syndrome or of progressive complications, is 
not tolerable, and alternative strategies become 
increasingly attractive [3-6]. Whole pancreas 
transplantation remains a realistic option for some 
patients, especially in the setting of renal failure 
where a combined kidney-pancreas can be life-
changing, restoring euglycemia with considerable 
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reserve. However, this approach requires major 
surgical intervention with attendant risk of com-
plications and occasional mortality. 

A far more elegant means to restore endoge-
nous, physiologic insulin secretion was conceived 
and tested in 1893, almost 30 years before the dis-
covery of insulin, when Williams and Harsant 
from Bristol, England, transplanted sheep pancre-
atic fragments subcutaneously under chloroform 
anesthesia in a desperate attempt to save a 15 
year old boy dying of ketoacidosis [7]. The boy suc-
cumbed on the third day after the xenograft failed. 

The concept of cellular replacement therapy for 
T1D lay dormant for 80 years until 1972, when 
Ballinger and Lacy cured chemical diabetes in rats 
by islet transplantation [8, 9]. Intensive, collabora-
tive research over the next 40 years has moved is-
let transplantation forward as a viable option for 
highly selected T1D patients with ‘brittle’ control. 
Essential steps on this recent journey include the 
Ricordi Chamber for large-scale processing of the 
human pancreas [10], density-gradient islet purifi-
cation on cell apheresis systems [11], and opti-
mized processing and culture conditions in clinical 
good manufacturing practice (cGMP) facilities [12]. 

Lacy’s team carried out the first successful 
clinical islet transplant in 1989. Insulin independ-
ence lasted for one month, but the cells were re-
jected due to inadequate immunosuppression [13]. 
More success was obtained with islet autotrans-
plantation after surgical pancreatectomy for 
chronic pancreatitis. No immunosuppression was 
needed, and autoimmunity was not an issue, 
which explained the higher rates of insulin inde-
pendence [14]. Tzakis et al. performed abdominal 
extirpation with combined abdominal liver and is-
let transplantation in 1990, and half the cohort at-
tained insulin independence before dying from re-
currence of abdominal malignancy [15, 16]. 

The concept of islet replacement clearly 
worked and was enticing, but the added challenge 
of autoimmune T1D seemed to create an insur-
mountable barrier. Indeed, 447 attempts to treat 
T1D with islet transplantation were made between 
1974 and 2000, but the results were dismal, with 
less than 10% maintaining insulin independence 
and only 28% having detectable C-peptide by one 
year [17]. The introduction of the Edmonton Proto-
col in 2000 was therefore seen as a milestone suc-
cess, as 100% of the first 7 patients treated 
achieved and maintained insulin independence at 
one year [18]. An essential component was the use 
of corticosteroid-free immunosuppression with 
anti-CD25 monoclonal antibody (mAb) induction 
and maintenance tacrolimus and sirolimus. Of  

 
equal importance was the delivery of a sufficiently 
large islet transplant mass (>10,000 islet equiva-
lents (IEQ)/kg recipient body weight) prepared 
from two or more donors. 

Clinical islet transplantation has since transi-
tioned over the past 13 years from rare, experi-
mental curiosity to routine treatment, providing 
robust glycemic control for a small subset of ‘brit-
tle’ T1D patients refractory to stabilization by 
other means. Since 2000, 1,085 patients have un-
dergone islet transplantation at 40 international 
sites (752 allografts, 333 autografts), according to 
the Collaborative Islet Transplant Registry (CITR) 
[19]. The most active clinical center (University of 

Abbreviations: 
 

ATG – antithymocyte globulin 
BK – Brennan-Krohn 
BLA – Biological License Application 
BMI – body mass index 
cGMP – clinical good manufacturing practice 
CMRL – chemically-defined basal culture medium 
CMV – cytomegalovirus  
CNi – calcineurin inhibitor 
CIT – Clinical Islet Transplant Consortium 
CITR – Collaborative Islet Transplant Registry 
CT – computed tomography 
DCCT – Diabetes Control and Complications Trial 
DCD – deceased cardiac death 
ECD - expanded criteria donors 
FDA – Food and Drug Administration 
GADA – glutamic acid decarboxylase 
GLP-1 – glucagons-like peptide 1 
HbA1c – glycosylated hemoglobin 
HIV – human immunodeficiency virus 
HLA – human leukocyte antigen 
HTK – histidine-tryptophan-ketoglutarate 
HYPO score – composite hypoglycemic score 
IA2A – insulinoma-associated protein 2A 
IAK – islet after kidney 
IBMIR – instant blood-mediated inflammatory reaction 
IEQ – islet equivalent 
IL – interleukin 
ITA – islet transplantation alone 
LFA1 – lymphocyte function-associated antigen 1 
LI – lability index 
mAb – monoclonal antibody 
MHC – major histocompatibility complex 
MMF – mycophenolate mofetil 
MTF - liberase mammalian tissue-free 
NDD – neurological determination of death 
NOD – non-obese diabetic 
PRA – panel reactive antibody 
RCT – randomized controlled trial 
SCD - standard criteria donors 
SRL – sirolimus  
T1D – type 1 diabetes 
Tac – tacrolimus  
TNF – tumor necrosis factor 
UW – University of Wisconsin 
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Alberta) performed a total of 61 islet transplanta-
tions in 2012 alone, and has done a cumulative to-
tal of 382 transplantations in 183 recipients to the 
present day. At least in expert hands, islet trans-
plantation may be considered among the safest of 
all transplantation procedures compared with solid 
organs. In several countries, including Canada, 
Australia, the United Kingdom, France, Switzer-
land, Norway, Sweden, and other parts of Europe, 
islet transplantation is funded as ‘non-research’ 
standard clinical care. Major trials are underway 
in the US, funded by the National Institutes of 
Health through the Clinical Islet Transplant Con-
sortium (CIT), designed to generate sufficient data 
for a Food and Drug Administration’s (FDA) Bio-
logical License Application (BLA). Two registration 
trials (CIT-06, islet-after-kidney, and CIT-07, islet-
alone) will deliver data in 2015 that will likely fa-

cilitate insurance reimburse-
ment through Medicare, Medi-
caid, and other third-party pay-
ers. Funding for islet process-
ing and clinical care has been a 
major rate-limiting step in the 
US, and reimbursement will 
certainly lead to a more sus-
tained and expanded clinical 
activity. 

This review highlights the 
recent progress in islet isolation 
and clinical transplantation 
that now justifies further ex-
pansion of islet transplanta-
tion. An adequately powered, 
head-to-head randomized, con-
trolled trial (RCT) of islet 
transplantation with intensive 
insulin and insulin pumps is 
much needed, but may be diffi-
cult to fund. In the longer term, 
a limited human islet supply 
and the need for intense immu-
nosuppression are seen as the 
two drawbacks that prevent 
broader application of islet 
transplantation in T1D [20, 21]. 
Improvements in single-donor 
transplant engraftment, tech-
niques to expand islet mass in 
vitro, and alternative cellular 
therapeutics, including human 
stem cell-derived islets or a 
xenogeneic pig source, will be 
required to bridge the gap in 
supply. To minimize the risk 
from immunosuppression, im-

munological tolerance is desirable, but will be 
challenging to establish in the presence of dual 
allo- and autoimmunity. Despite the perceived and 
known risks of current immunosuppression, risks 
are likely equivalent or perhaps lower than the 
risks of poorly controlled T1D and accelerated 
complications, but a matched RCT is needed to de-
termine this with clarity. Transplanting early in 
the course of T1D could further improve the pro-
tective benefit, but justification for inclusion of 
children will require additional advances in im-
munosuppression and monitoring [22]. The risk-
benefit equation would be improved considerably if 
we had effective, predictive immune biomarkers 
for autoimmunity and alloresponsiveness. Pro-
gress in peripheral blood T cell and antibody-based 
assays of auto-and alloreactivity may change this 

 
 
Figure 1. Illustration of the steps involved in pancreatic digestion, including 
islet isolation and intraportal transplantation within the liver. Inset photo-
micrograph shows human islets stained with dithizone red dye, indicative of 
a highly pure preparation. The lower inset labels indicate the challenges in-
volved with early islet damage post-transplant, and the factors leading to late 
islet graft loss; both of which must be addressed to maintain excellent long-
term graft function. 
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equation, permitting more precise titration of 
therapy to those with higher immunologic risk, 
while considerably lowering risk of infection or 
malignancy for those at less risk [23-25]. 

Successful islet transplantation begins with 
the selection and care of the multiorgan donor. 
Protection of the pancreas during transportation 
with minimization of cold ischemic injury is impor-
tant for islet viability. The sequential steps in-
volved in islet processing, purification, and culture 
are critical to the quality of the final islet product 
(Figure 1). Detailed clinical protocols are required 
for safe cellular transplantation, and for effective 
control of inflammation, auto- and alloimmunity, if 
the islet graft function is to be sustained long-
term, while minimizing recipient risk. What fol-
lows is a step-by-step overview of the critical steps, 
and is based on a remarkable collaborative consen-
sus between international investigators. 

2. Donor selection, pancreas pro-
curement, islet isolation and culture 

While careful donor selection is imperative to 
avoid transmissible infection or malignancy, ex-
pensive processing of organs is unlikely appropri-
ate to yield potent islets. Multivariate analyses 
suggest an optimal donor age >20, high donor BMI 
(provided HbA1c <6.0%), normoglycemia, no hy-
potension or cardiac arrest, and minimal inotropic 
support as key to successful islet isolation [26-34]. 
Donor selection is especially critical for the success 
of single-donor islet engraftment; donor age <50 
and BMI >27 kg/m2 were important components of 
the Minnesota series [35, 36]. Recent refinement in 
isolation techniques by the San Francisco group, a 
collaborative member of CIT, has resulted in 
marked improvement in islet yield from younger 
donors. Combined with improved single-donor suc-
cess rates, these techniques may have an impor-
tant impact on future allocations of pancreas or-
gans for whole pancreas vs. islet transplantation 
[33, 37-40]. 

The majority of donors fall into the categories 
standard criteria donors (SCD) or expanded crite-
ria donors (ECD), where the heart is beating, but 
there is neurological determination of brain death 
(NDD). To address the donor shortage, increasing 
use of deceased cardiac death (DCD) donors are be-
ing used, where circulation has ceased and organs 
are subject to warm ischemic injury. DCD donors 
have been used successfully for islet transplanta-
tion, but mandate stringent selection criteria (con-
trolled setting, warm ischemia < 30 min, cold 

ischemia < 4 hours) to preserve islet potency [41, 
42]. 

The pancreas is provided by meticulous sur-
gery with preservation of capsular integrity. This 
is important for subsequent enzymatic delivery. 
Handling is minimized to avoid pancreatitis and 
local injury prior to aortic cross-clamping [43]. The 
pancreas is cooled rapidly with intracellular pres-
ervation solutions and topical ice, then transported 
to the cGMP islet isolation center. Both solutions, 
University of Wisconsin (UW) and histidine-
tryptophan-ketoglutarate (HTK), provide equiva-
lent protection of the pancreas during transport for 
islet isolation, although HTK may be inferior to 
UW for whole pancreas transplantation preserva-
tion [44-46]. Cold ischemic times are ideally kept 
to below 6-8 hours where possible. 

In the cGMP facility, the pancreas is trimmed, 
the duodenum and spleen removed, and the pan-
creatic duct is cannulated. Enzyme is first deliv-
ered at 4-10ºC for 10 minutes, then warmed for 4 
minutes to 37ºC to deliver active collagenase en-
zyme to the islet-acinar interface [47, 48]. The 
process is designed to reduce a 70-100g pancreas 
to extract the 1-2% containing islets in as lower 
purity and volume as possible. A minimal islet 
mass of 5,000 IEQ/kg is generally required for 
each transplant, and > 6,000-7,000 IEQ/kg for sin-
gle-donor success. An inability to extract high-
yield, high-potency human islets was a formidable 
challenge in the early 1980’s, and precluded suc-
cess in early clinical trials. Ricordi’s automated 
method revolutionized the process. It involves the 
sectioning of the distended pancreas into several 
large pieces, and transfer to a chamber containing 
steel marbles and a 500 µm mesh screen [10]. The 
enzymatic solution recirculates at 37ºC for as long 
as it takes (typically 15-30 minutes) to free islets 
from their surrounding matrix. Serial samples are 
stained with dithizone to determine the optimal 
time-point to dilute and cool the process [49, 50]. 

A major key factor to successful islet isolation 
is the quality, specificity, and stability of the colla-
genase enzymatic blend used. Liberase HI (Roche 
Diagnostic Pharmaceuticals, Indianapolis, USA) 
was a major advance over previous products, but 
was discontinued based on potential but infini-
tesimally small concern of transmission of 
Creutzfeld-Jacob related prion disease [51]. Alter-
native, and more optimal blends have been devel-
oped, including Serva neutral protease NB1 (Serva 
Electrophoresis GmbH, Heidelberg, Germany) [33, 
52, 53]. Kin et al. found that separation of NB-1 
and neutral protease components, with ductal de-
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livery of NB-1 and neutral protease added subse-
quently during recirculation, led to less enzymatic 
degradation and more potent yields [54]. A Lib-
erase Mammalian Tissue Free blend (MTF, Roche 
Diagnostics Inc., USA) has since been released, 
and has optimal digestion kinetics similar to NB-1 
[33]. A further enzymatic blend called Vitacyte HA 
(Vitacyte LLC, Indianapolis, USA), has been 
blended with controlled component activity for less 
class II degradation, and is being further evalu-
ated presently [55]. 

After digestion and serial wash steps, the di-
gest is purified using density-gradient separation 
on refrigerated COBE2991 cell processors [56, 57]. 
The duration of centrifugation is 10 minutes. Dis-
continuous Ficoll gradients were used previously, 
but Hering et al. introduced continuous iodixanol 
gradients (Optiprep, Axis-Shield, Oslo, Norway) to 
increase efficiency, and to reduce inflammation 
[35, 58]. The combination of iodixanol with Uni-
versity of Wisconsin preservation solution in-
creases the differential density between exocrine 
and islet tissue, further supporting the enrichment 
process [59]. Repeating the purification run as a 
‘rescue gradient’ may additionally augment islet 
recovery [60-62]. 

After further wash and recombination steps, 
this islet preparation is maintained in culture for 
24-72 hours before release and clinical transplan-
tation. The culture step improves purification as 
contaminating exocrine tissue survives poorly in 
culture. 10-20% of the islet mass is lost during cul-
ture, but a reduced state of inflammation in the 
final product reduces early innate and adaptive 
immune events, and those marginal islets likely 
would not engraft in the recipient. Islet culture at 
24ºC was previously shown to reduce MHC antigen 
expression [63]. Addition of insulin, transferrin, 
zinc, selenium, and pyruvate to CMRL-based cul-
ture media (Miami Media) supplemented by 
nicotinamide [64], and recently modified by the 
Lille group, further optimizes islet survival in cul-
ture [65-67]. The culture period also provides an 
important opportunity to transfer the islet recipi-
ent to the transplantation center, to condition, 
administer T cell-depletional agents, and give ad-
junctive anti-inflammatory agents, while avoiding 
exposure of newly transplanted islets to an injuri-
ous cytokine storm [31, 68-73]. If islets are to be 
shipped from a remote cGMP facility to a distant 
clinical transplantation site, the obligate culture is 
helpful, concentrating skill and expertise locally 
and minimizing costs associated with isolation [74-
76]. 

Before transplantation, the final islet prepara-
tion must meet all ‘product release criteria’, which 
include: 

 
1. Sterility (absence of bacteria on gram 

stain, low endotoxin content <5 EU/kg), 
with final post hoc cultures available by 14 
days 

2. Potency (static insulin release stimulation 
index >1.0) 

3. Volume (packed volume ≤5.0 cc or settled 
volume ≤7.5 cc) 

4. Purity (≥30% based on dithizone staining) 
5. Viability (≥70% on membrane integrity dye 

exclusion staining with fluorescein diace-
tate/propidium iodide or Syto green) 

6. Minimal islet mass (≥5,000 IEQ/kg for rou-
tine initial transplants, ≥6,000 IEQ/kg for 
single-donor protocols, and ≥4,000 IEQ/kg 
for retransplants) 

7. Compatibility (identical or compatible ABO 
blood, negative cytotoxic cross-match if 
panel reactive antibody (PRA) >10-15%). 

 
The product release criteria are minimal crite-

ria needed to transplant, but the FDA has empha-
sized a need to develop predictive islet potency as-
says to correlate with clinical efficacy. Alternative 
options include high-throughput kinetic flux imag-
ing for beta-cell potency [77], laser scanning cy-
tometry for cellular composition and mitochondrial 
apoptosis [78], and oxygen consumption rates, as 
developed by Papas and coworkers. These options 
strongly predict clinical potency and correlate 
closely with the bio-assay of reversal of diabetes in 
immunodeficient mice using small aliquots of the 
final product [79]. 

3. Clinical islet transplantation 

3.1 Selection of patients 

The indications for islet transplantation are 
summarized in Table 1. Islet transplant alone 
(ITA) refers to C-peptide-negative T1D patients 
with a sufficient duration (>5 years) to justify that 
all reasonable attempts have been made to correct 
refractory poor glycemic control by all other 
means. This requires an independent endocrinolo-
gist or diabetologist to optimize intensive insulin 
management and to consider insulin pump ther-
apy and frequent glycemic monitoring, possibly in-
cluding the use of a continuous glucose monitor 
and alarm [80]. Objective scoring of severity of hy-
poglycemia by questionnaire (Clark Score) [81], re-
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view of glycemic records and symptoms (Ryan 
HYPO score), and assessment of glycemic excur-
sions (Lability Index) have been helpful in screen-
ing for potential candidates [36]. 

By contrast, selection of islet after kidney 
(IAK) patients is more straightforward, as the de-
cision to initiate immunosuppression and accept 
that risk has already been pre-empted by the prior 
kidney transplant. If prednisone is part of the 
regimen, the dose should be minimized to ≤5 mg 
per day. Screening for Brennan-Krohn (BK) virus, 
named after the first kidney patient to have po-
lioma virus isolated from urine in 1971, is espe-
cially important where depletional T cell induction 
is given for the subsequent islet transplantation, 
as this can markedly elevate the risk of BK neph-
ropathy [82, 83]. 

3.2 Intraportal access 

The portal vein may be accessed by a non-
invasive percutaneous transhepatic route or by an 
open surgical approach. The percutaneous route is 

preferred, and can be accomplished safely in cen-
ters with experienced interventional radiological 
expertise. At the University of Alberta, 98% of the 
382 procedures have been done by the percutane-
ous approach, with fewer than 2% requiring open 
surgical access. The ability to carry out islet trans-
plantation without major surgery is the advantage 
of islets over whole pancreas transplantation, and 
makes it one of the safest and most attractive pro-
cedures in transplantation medicine. 

The percutaneous approach was first described 
by Weimar et al. who combined CT and fluoroscopy 
[84]. The Edmonton group used combined ultra-
sound and fluoroscopy for their initial seven-
patient study [18]. The use of preliminary color 
duplex ultrasonography reduces the number of 
capsular punctures and shortens procedural time 
[85, 86]. Patients should have a normal liver pa-
renchyma without cirrhosis or portal hypertension, 
and without large right-sided hemangioma. Anti-
platelet agents, direct thrombin, or Xa inhibitors 
should be discontinued within 7-14 days of the 
procedure if safe to do so, or delisted if not safe. 

Table 1. Indications for islet transplantation 
 

 

Kind of transplantation 
 

Indications 

Type 1 diabetes, duration > 5 years Islet transplantation alone 
(ITA) Age > 18 years, weight < 90 kg, insulin requirement < 1.0 U/kg/day 
 Absence of malignancy or untreated infection 
 Ability to comply with immunosuppression and close follow-up 
 Refractory hypoglycemia or lability despite: 
     1. Optimal intensive insulin or insulin pump with appropriate monitoring 
     2. Supervision by a diabetologist or endocrinologist 
     3. Increased hypoglycemic risk, evidenced by at least one of the following criteria: 
             i)   Clarke score ≥ 4 
             ii)  HYPO score ≥ 1000 
             iii) Lability index (LI) ≥ 400 
             iv)  Combined HYPO ≥ 400 and LI ≥ 300 
  

Type 1 diabetes, successful prior renal allograft Islet after kidney (IAK) 
transplantation Tolerating maintenance immunosuppression 
 Prednisone ≤ 5 mg/day 

 Absence of BK virus, or other active opportunistic infection 
 Non-sensitized (PRA < 20%) 

 

 

Legend: The Clarke method [81] comprises eight questions characterizing the participant’s exposure to episodes of mode-
rate and severe hypoglycemia (0 = no hypoglycemia, ≥4 = hypoglycemia unawareness). The HYPO score is a composite 
measure of the severity of the problem based on 4 weeks of records and a year historical review of the number of episodes 
of severe hypoglycaemia [36]. Once measures in the general diabetes population, the HYPO score median was 143, 25th to 
75th interquartile range 46-423, and the 90th centile 1047. The lability index (LI) is calculated based on changes in glucose 
levels over time, using 4 weeks of glucose records, and compared with a clinical assessment of glycemic lability [36]. BK – 
Brennan-Krohn, PRA – panel reactive antibody.  
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Patients with known thrombophilia (protein C, S, 
anti-thrombin III, factor V Leiden deficiency) 
should not undergo percutaneous intraportal islet 
transplantation [87]. After brief skin infiltration 
with local anesthesia, and with ultrasonic guid-
ance, a 22-gauge Chiba needle is advanced in-
traparenchymally until a peripheral branch of the 
right portal tree is identified [88-93]. An 18-gauge 
guidewire is then threaded in to the main portal 
vein and exchanged for a 4-5 French angio cathe-
ter (e.g. NEFF, Cook Canada, Stouffville, Ontario, 
Canada), with the tip positioned just above the 
portomesenteric confluence. A portal venogram 
confirms the position, and a baseline portal pres-
sure measurement is obtained. 

The final islet product, suspended in 250 cc of 
transplant media in an infusion bag, is loaded with 
heparin (70 units/kg recipient weight) and infused 
under gravity [94]. If baseline portal pressure >20 
mmHg, or if portal pressure rises >22 mmHg dur-
ing infusion, no further islets are given until the 
pressure normalizes, to avoid precipitating portal 
thrombosis. After completion of the transplant and 
rinse solution, the catheter tract is ablated with 
Avitene paste (Medchem Products, Woburn, Mas-
sachusetts, USA) or D-STAT (Vascular Solutions, 
Minneapolis, MN, USA) [95, 96]. If 1 g Avitene 
powder is mixed with 3 cc saline and 3 cc contrast 
media, deployment can be followed by fluoroscopy, 
and the goal is to generate a track of ≥4 cm in 
length. This approach almost completely elimi-
nates the risk of bleeding following percutaneous 
access [95, 97]. A therapeutic heparin infusion is 
initiated in the radiology suite at 3 units/kg/hr, 
then titrated to maintain a partial thromboplastin 
time of 60-80 seconds, and continued for 48 hours. 
Low molecular weight heparin is continued for 7 
days (enoxaparin 30 mg s.c. twice daily) together 
with enteric-coated aspirin 81 mg for 14 days. This 
approach, combined with low-volume islet prod-
ucts and frequent portal pressure monitoring dur-
ing infusion reduces the risk of portal thrombosis, 
and may facilitate single-donor islet engraftment 
by reducing activation of the instant blood-
mediated inflammatory reaction (IBMIR) [98, 99]. 
Partial-branch venous occlusion of a peripheral, 
anterior or posterior segmental branch may occa-
sionally occur, and carries extremely low risk of 
further propagation if managed with hepa-
rin/coumadin and followed with Doppler ultra-
sound. Complete occlusion of the entire portal tree 
would be the most concerning complication, but 
fortunately is exceedingly rare (0%, 0/382 trans-
plants in Edmonton since 2000) [100]. 

4. Risks with islet transplantation 

Islet transplantation is considered the safest of 
all organ transplantations when conducted in ex-
perienced centers, as invasive surgery is not re-
quired, and patients are not in a debilitated state 
requiring life-support at the time of transplanta-
tion. Thus, recovery is swift, and risk of hospital-
acquired infections is extremely low. Immunosup-
pressive care, monitoring, and prophylaxis remain 
almost identical to other solid organ transplanta-
tions. Nonetheless there are clear procedural risks 
of intraperitoneal bleeding, portal thrombosis, and 
injury to the gallbladder; the latter is avoidable if 
ultrasound guidance is used routinely. Inadvertent 
intraparenchymal cholangiography is anticipated 
with the 22 gauge seeker Chiba needle approach, 
and does not lead to bile leak [101]. As outlined 
above, the risks of portal thrombosis or bleeding 
are almost completely avoidable if the catheter 
tract is ablated effectively and therapeutic heparin 
is administered [102]. The commonest complica-
tion is mild pain or discomfort either at the cathe-
ter insertion site, or as referred pain to the right 
shoulder tip, is transient, occurs half of patients, is 
easily controlled by standard analgesic medica-
tions, and generally resolves fully in 24-48 hours. 
While we have encountered clinically insignificant 
peripheral portal branch vein occlusions unilater-
ally in 3.7% of the 382 islet transplantations in 
T1D at the University of Alberta, there has been a 
0% risk of complete portal occlusion. None of our 
patients have ever manifested signs of portal hy-
pertension with up to 14 years of follow-up [102, 
103]. 

Transient mild elevation in liver function has 
been described previously in half of the subjects, 
but normalizes completely by one month [104]. A 
5-fold transaminase rise was observed in 27%, but 
also resolved within one month. Interestingly, with 
improved collagenase enzymes, routine adoption of 
islet culture protocols, and use of anti-
inflammatory agents at induction, the incidence 
and severity of observed transaminitis has dimin-
ished markedly in our more recent experience. 

Hepatic steatosis has been observed in up to 
20% of the cases on ultrasound and magnetic reso-
nance liver imaging, and confirmed by biopsy on 
rare occasion [105-109]. The fat is macrovesicular 
but focal, and reflective of high local insulin re-
lease from functioning islets. These changes are 
reversible, have yet to be associated with sequelae 
of non-alcoholic steatohepatitis, and are perceived 
as inconsequential. 
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Potential risk of hepatocellular adenoma and 
carcinoma has been raised by Dombrowski et al. in 
rats receiving low islet mass after treatment with 
streptozotocin, and similar changes were observed 
in spontaneously diabetic BB/Pfd rats [110, 111]. 
Fortunately, this observation appears to be unique 
to the rat. Of over 1,500 auto- and allo-islet trans-
plantations carried out in humans with up to 35 
years of follow-up, there has yet to be a case report 
of this complication in patients [21, 112-114]. 

The risk of transmissible infection from con-
taminated donor islets has been exceedingly low to 
date. While the risk may be low, it is well de-
scribed in solid organ transplantation, with 
transmission of hepatitis C, human immunodefi-
ciency virus, fatal lymphocytic choriomeningitis, 
and rabies [115-118]. A fatal case of untreated 
West Nile Virus encephalitis has been described in 
one islet recipient who received two islet trans-
plants three years previously, but this was not of 
donor origin [119]. Careful screening of donors 
with avoidance of high-risk donors for non-life-
threatening transplants is required in all cases. 
The period of islet culture can provide additional 
time to complete nuclear acid testing for HIV, 
hepatitis B and C, with a plan to wait for negative 
results before proceeding with transplantation 
[120]. 

The risk of death following islet transplanta-
tion has been exceedingly rare. Our actuarial sur-
vival rate at the University of Alberta is 97% with 
14 years of follow-up (6/183 subjects). Specifically, 
we have encountered no deaths as a direct or indi-
rect consequence of immunosuppression, to the 
best of our knowledge. Of 6 deaths, 4 were cardio-
vascular from diabetic microangiopathy, coronary 
occlusion, or arrhythmia, 1 from fatal hypoglyce-
mia after a failed islet transplant and return to in-
sulin, and 1 inadvertent overdose of methadone 
[121]. A mortality rate of 1.3% (18 cases including 
the 6 from Edmonton) has been reported in the 
latest CITR report. Of these, 3 were possibly 
linked and only 1 definitely related to islet trans-
plantation or immunosuppression [19]. Con-
versely, over a similar time period, several cases of 
death from severe hypoglycemia have been noted 
in patients on waiting lists for islet transplanta-
tion who never received therapy. This suggests 
risk equipoise between islet transplantation and 
poorly controlled T1D, and would further support 
the need for a randomized controlled trial to quan-
tify the risk-benefit balance more precisely. 

In terms of malignancy, the CITR registry 
highlights 13 patients with treatable skin basal or 
squamous cell carcinoma, with an overall rate of 

2.3% [19]. These are likely resultant from chronic 
immunosuppression. Interestingly, the drug si-
rolimus may be protective in this regard [122-131]. 

The risk of HLA sensitization has been raised 
previously by our group, but only in a small sub-
set of patients with failed islet transplants who be-
came C-peptide-negative and were withdrawn 
from immunosuppression, with an overall risk of 
16% [132]. Our more recent experience with potent 
T cell-depletional induction with alemtuzumab has 
been associated with exceedingly low rates of PRA 
sensitization. The Geneva group also reported low 
rates of HLA sensitization (10.8% risk) in islet af-
ter kidney recipients [133]. 

5. Immunosuppression for islet trans-
plantation 

Immunosuppression for clinical islet trans-
plantation must consistently suppress both auto- 
and alloreactivity, and for this to be achieved, 
threshold therapeutic drug levels and dosing must 
be sustained at all times. In contrast to all other 
solid organ transplants, this small-volume endo-
crine graft is widely dispersed throughout the 
liver, and the only surrogate marker of dysfunc-
tion, hyperglycemia, is usually an end-stage re-
sponse to irreversible graft injury. Only on rare oc-
casion, islet grafts have been rescued from acute 
cellular or humoral rejection by interventional 
treatment with corticosteroids or rituximab and 
intravenous immunoglobulin [134, 135]. 

Recurrent autoimmunity in T1D was incor-
rectly assumed to be readily controlled by stan-
dard immunosuppression, perhaps driven by pre-
liminary encouraging data from the early cyc-
losporine intervention trials in new-onset T1D 
[136]. Another evidence for this assumption was 
provided by the observation that recurrent auto-
immunity led to rapid islet destruction in an iden-
tical twin recipient of a segmental pancreas trans-
plant in the absence of immunosuppression [137], 
while pancreas allografts functioned well in thou-
sands of other recipients with T1D receiving im-
munosuppression [138]. Burke et al. have clearly 
documented several cases of recurrent autoimmu-
nity arising in whole pancreas transplantations, 
despite maintenance of therapeutic levels of im-
munosuppression [139]. Rossini et al. demon-
strated evidence of recurrent autoimmunity after 
intraportal islet transplantation under the Ed-
monton Protocol, with liver biopsies showing sur-
viving islets, but with specific destruction of beta-
cells [140]. 
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Finding immunosuppressive cocktails that 
more effectively suppress autoimmunity in hu-
mans is especially challenging as the only experi-
mental model, the non-obese diabetic (NOD) 
mouse, has a flawed immune system, and consis-
tently fails to reflect clinically relevant response 
[141, 142]. Fortunately, advances by Roep and the 
Leiden group in peripheral blood monitoring of T 
cell autoreactivity against insulinoma-associated 
protein 2 (IA2A) and glutamic acid decarboxylase 
(GADA), with strong correlation with islet out-
come, suggest that such tools may help guide fu-
ture specific therapeutic suppression of autoim-
munity [23, 143]. 

The added challenge is that most of the immu-
nosuppressive agents in common use in transplan-
tation are directly toxic to beta-cells, and this is 
compounded when islets are transplanted in-
traportally and exposed to high local drug levels 
[144-146]. Using lineage tracing techniques, Nir et 
al. demonstrated that both tacrolimus and si-
rolimus, drugs used in the Edmonton Protocol, are 
potent inhibitors of beta-cell regeneration in mice 
[147]. 

5.1 Induction of immunosuppression 

T cell-depletional induction strategies are be-
ing used increasingly in islet transplantation as 
long-term results appear more durable with this 
approach [21, 148, 149]. Previous use of the anti-
IL2R monoclonal antibodies (mAb) daclizumab and 
basiliximab were well tolerated without side ef-
fects in the Edmonton Protocol, but probably add 
little additional allograft protection, and minimal 
if any protection against T1D autoimmunity. 
Large-scale clinical trials of daclizumab and myco-
phenolate mofetil (MMF) in new-onset T1D failed 
to preserve beta-cell function or prolong the hon-
eymoon period [150]. Hering et al. promoted the 
use of T cell-depletional or modulatory agents for 
their single-donor islet transplant series, and a 
large number of preclinical studies support their 
use as a means to facilitate autoimmune regula-
tion and tolerance [35, 151-158]. Bellin et al. ana-
lyzing the Minnesota and CITR islet data, found 
that T cell-depletional induction, especially in 
combination with tumor necrosis factor alpha 
(TNFalpha) blockade, provided the most durable 
50% insulin independence rates at five years post-
transplant [148]. 

Thymoglobulin (rabbit ATG) is given as a cu-
mulative dose of 6 mg/kg by peripheral intrave-
nous infusion over 2-3 days, and at least 2 mg/kg is 
infused prior to islet infusion [35]. In Edmonton, 

we currently favor T cell-depletional induction 
with alemtuzumab, 30 mg by peripheral i.v. over 3 
hours, based on superior potency, tolerability, sus-
tained effect, and cost. To minimize dose-related 
side effects, acetaminophen 650 mg p.o., diphen-
hyrdramine 50 mg i.v. and solumedrol 250 mg i.v. 
are given 30 minutes prior to alemtuzumab. Alem-
tuzumab was first tested in renal transplantation 
by Calne et al. in a prope-tolerance approach to-
gether with low-dose cyclosporine [159-161]. Alem-
tuzumab generally requires maintenance therapy 
with calcineurin inhibitors. Maintenance mono-
therapy sirolimus is associated with high rates of 
rejection in kidney, and in our previous experience 
in islet transplantation [162-165]. Therefore, we 
recommend tacrolimus (target trough 10 ng/ml for 
3 months, then 8-10 ng/ml) together with MMF up 
to 2 g per day in divided dose as tolerated thereaf-
ter, as this has provided superior insulin inde-
pendence rates at 5 years. 

We have observed increased rates of late CMV 
transmission and reactivation with the use of ei-
ther thymoglobulin or alemtuzumab T-depletional 
induction, despite the use of early CMV prophy-
laxis, but these have been largely sub-clinical and 
without sequelae [166-168]. Valganciclovir is rec-
ommended for all subjects receiving T-depletional 
therapies, irrespective of donor and recipient mis-
match status, given at 450 mg daily for 14 days, 
then increased to 900 mg daily for 12 weeks post-
transplant [166]. Sulphamethoxazole 400 mg and 
trimethoprim 80 mg is given once daily for 6 
months for Pneumocystis jiroveci prophylaxis. If 
allergic to sulphonamide, it may be substituted 
with monthly pentamidine inhalations (300 mg). 

5.2 Anti-inflammatory and beta-cell-pre-
serving strategies 

Based on Hering et al., most centers have 
adopted the use of anti-TNFalpha blockade in the 
peritransplant period [35, 148, 153]. Farney et al. 
initially described this approach in mice [169]. 
Etanercept is given as 50 mg i.v. pre-transplant, 
then 25 mg s.c. on days 3, 7, and 10 post-
transplant [35]. We recently found strong potentia-
tion of marginal mass human islet engraftment in 
immunodeficient mice when etanercept is com-
bined with an anti-IL1 beta receptor antibody, 
anakinra [170]. Matsumoto et al. suggested that 
this combination might be beneficial in a small se-
ries of islet recipients [171]. At present, this com-
bination is being explored in an expanded series in 
Edmonton. 
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Korsgren’s group in Sweden have explored a 
series of strategies designed to decrease an innate 
immune injury to islets (IBMIR) triggered through 
islet expression of tissue factor, leading to platelet 
aggregation, inflammation, and injury [172, 173]. 
Circulating thrombin-antithrombin complex and 
C-peptide release from islet lysis correlating with 
the IBMIR response, and acute loss of labeled hu-
man islets detected by positron emission tomogra-
phy, confirm a major role for this pathway in limit-
ing islet engraftment and survival [174, 175]. Peri-
transplant insulin and heparin may partially mod-
ify the response [99], but more potent strategies 
are being tested, including surface binding of 
heparin to islets [176], low molecular weight dex-
tran, and direct thrombin inhibitors. Balancing 
risk of bleeding against improved islet engraft-
ment and survival will be critical as these strate-
gies move forward. 

Our basic laboratory has been interested in the 
control of islet apoptosis as a means to augment 
initial islet survival. Using a spectrum of different 
pan-caspase inhibitor compounds, we consistently 
demonstrated in preclinical models that in the 
presence of these agents, only 10-30% of the usual 
marginal islet engraftment mass was required to 
reverse diabetes with mouse, pig, and human is-
lets, when given for just two weeks during the 
early islet engraftment period [177-182]. One 
agent (IDN-6556, Conatus Pharmaceuticals Inc., 
San Diego, USA) appeared to be most promising in 
a large animal pig islet autograft model [183], and 
has now moved to early pilot clinical trials in Ed-
monton. 

Glucagon-like peptide 1 (GLP-1) analogues, 
especially exenatide, have been explored exten-
sively by the Miami, Vancouver, and Illinois 
groups, as a means to facilitate both single-donor 
and supplemental islet engraftment [184-190]. 
These agents need to be continued indefinitely to 
maintain improved metabolic control in islet 
transplantation. Up to one third of patients cannot 
tolerate exenatide due to severe nausea. We have 
tested an alternative, long-acting once-daily GLP-1 
analogue, liraglutide, as this agent has had much 
lower rates of nausea and intolerance in trials in 
type 2 diabetes. Liraglutide improves marginal 
mass human islet engraftment in mice, protects 
against immunosuppressant related beta-cell tox-
icity [191], and when tested in a large animal pig 
autotransplant model, liraglutide helped to resist 
metabolic graft failure over time [192]. When 
added to human islets in culture (1 µM/l), liraglu-
tide improved islet recovery and engraftment in 

mice [193]. Novo Nordisk is currently conducting a 
16-center international placebo-controlled RCT to 
further evaluate these findings in the clinic [194]. 

5.3 Maintenance immunosuppression 

The choice of maintenance immunosuppressive 
agents has been especially challenging in clinical 
islet transplantation. The therapy must be suffi-
ciently potent to suppress auto- and alloimmunity, 
safe, well tolerated and ‘islet friendly’ to avoid 
beta-cell toxicity [21, 144]. The added risk of 
nephrotoxicity is a particular challenge, as pa-
tients with longstanding T1D have underlying 
nephropathy, and are at increased risk of renal 
failure [195, 196]. The Edmonton Protocol reduced 
calcineurin inhibitor (CNi) exposure through the 
use of high-dose sirolimus (levels 12-15 µg/l for 3 
months, then 10-12 µg/l) [18]. While high rates of 
one-year insulin independence were observed in 
Edmonton and other leading islet centers [197], it 
became apparent that high-dose sirolimus was dif-
ficult to titrate when extended to an international 
multicenter trial [198-200]. High rates of mouth 
ulceration [100, 101], ovarian cysts [201-203], fa-
tigue, diarrhea, occasional severe small bowel ul-
ceration [204], pneumonitis [205], edema [108, 
206], and proteinuria [207, 208] have made this 
approach less attractive. We have largely aban-
doned the use of sirolimus at the University of Al-
berta for islet transplantation, finding that higher-
dose tacrolimus and MMF are far better tolerated 
[121]. We have observed a substantial improve-
ment in five-year insulin independence with alem-
tuzumab induction and tacrolimus/MMF mainte-
nance, suggesting that this strategy provides ade-
quate immunoprotection and function in practice, 
despite theoretical concerns of islet toxicity. 

Strategies that eliminate CNi entirely while 
providing ongoing immunosuppressive protection 
have become a major priority in the field of islet 
transplantation. Posselt et al. found that thymo-
globulin induction and monthly maintenance 
costimulation blockade infusion with belatacept 
provided an effective CNi-free regimen requiring 
only sirolimus or MMF [38]. Posselt et al. and Tur-
geon et al. have both explored an anti-leukocyte 
functional antigen-1 antibody (anti-LFA1 mAb, 
efalizumab) in place of costimulation blockade [38, 
209]. While encouraging, these observations are 
limited to a small number of patients, and the 
anti-LFA1 mAb has been withdrawn due to ex-
ceedingly low rates of progressive multifocal leu-
koencephalopathy in psoriasis patients (3 con-
firmed cases and an additional case suspected in > 
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46,000 treated) [210-212]. An ideal CNi-free im-
munosuppression is not available for more wide-
spread and long-term testing in clinical islet 
transplantation at present. 

5.4 Long-term outcomes 

The five year results with the original Edmon-
ton Protocol demonstrated a steep loss of insulin 
independence by the third year, but persistent C-
peptide and ongoing long-term protection from hy-
poglycemia in most treated patients [213]. The 
cause for inexorable loss of complete insulin inde-
pendence over time is likely multifactorial, but re-
current autoimmunity and allograft rejection are 
major causes, exacerbated by a marginal initial 
engraftment mass. 

Senior et al. updated the status of the Edmon-
ton patients with a decade of follow-up, and of 138 
patients in that analysis, 79% had full or partial 
graft function with correction of HbA1c and protec-
tion from hypoglycemia, and current protocols pro-
vided 60% insulin independence beyond 4 years 
[121]. Similar results have been reflected in the 
CITR database [214]. This remarkable level of gly-
cemic stabilization is rarely achieved by insulin 
pumps or by continuous glycemic monitoring. 

The encouraging news that more potent induc-
tion and maintenance immunosuppression, com-
bined with pre-emptive anti-inflammatory strate-
gies, are having positive impact on the current 
five-year insulin independence rates [148, 149]. 
Indeed, as summarized in Table 2, there are now 
at least 6 independent centers, reporting 50-70% 

five-year rates of insulin independence with differ-
ent induction and maintenance approaches [35, 
151-153, 215, 216]. For islet-alone transplantation, 
this represents a milestone advance, as the results 
at five years equate at least to the registry data for 
pancreas-alone transplantation [151, 217]. How-
ever, islet transplantation will not replace pan-
creas transplantation until the single-donor rates 
for islet transplantation improve further. Payne, 
Griffin, and others demonstrated, at least in small 
and large animals, a single-donor islet preparation 
could treat up to three recipients [218, 219]. This 
has yet to be achieved routinely in humans, but 
could have major bearing on the current limited 
islet supply and more broader application in T1D. 
The first demonstration of this concept was a liv-
ing donor islet transplant carried out with islets 
prepared from a distal pancreactomy [220]. 

Progress has occurred in single-donor islet en-
graftment, and 10 programs have reported small 
cohorts of patients with single-donor success (Ta-
ble 3). Understanding the factors leading to in-
creased islet potency will be essential to expanding 
this routinely [221]. Predictive islet potency assays 
(e.g. oxygen consumption rate, mitochondrial and 
beta-cell viability) will be an essential component 
in the selection of optimal islet preparations. 

6. Impact of islet transplant upon 
secondary complications 

It is not questioned that the restoration of 
near-perfect glycemic control will stabilize and po-
tentially reverse secondary diabetic complications. 

Table 2. Centers with five-year insulin independence rates >50% 
 

 

Center 
 

Approach 
 

5-year rate 
 

Year 
 

Reference 

 

Minnesota 
 

Anti-CD3 + etanercept 70% (at 7 yr)* 2011 Hering et al. [35, 152] 

Minnesota CITR T cell depletion + anti-TNF 50% 2012 Bellin et al. [148] 

Edmonton Alemtuzumab + Tac + MMF + anakinra + etanercept 60% 2012 Shapiro et al. [21, 121] 

UCSF ATG + efalizumab/belatacept + SRL or MMF 80% (at 4 yr)* 2012 Posselt et al. [38] 

UIC Tac/SRL or MMF + exenatide + etanercept 60%* 2012 Gangemi et al. [190] 

Lille, France Tac/SRL 50%* 2012 Vantyghem et al. [142] 

Geneva, GRACIL ATG + Tac/SRL 50%* 2012 Berney et al. [142] 
 

Legend: * 5-year insulin independence data updated from previous publications in oral presentation or by personal communication, American 
Transplant Congress Symposium “Advances in Islet Transplantation” June 6, 2012, Boston, USA, and at the International Islet and Pancreas 
Transplant Association (IPITA) meeting, 2011, in Prague, Czech Republic. Abbreviations: ATG – antithymocyte globulin, CITR – Collaborative 
Islet Transplant Registry, MMF – mycophenolate mofetil, SRL – sirolimus, Tac – tacrolimus, TNF – tumor necrosis factor alpha, UCSF – Uni-
versity of California San Francisco, UIC – University of Illinois at Chicago. 
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Such degree of control is rarely if at all achievable 
with subcutaneously injected insulin. Intensive in-
sulin is clearly superior to standard management, 
but is far from perfect, and the more intensive the 
administration, the higher the risk of severe and 
recurrent hypoglycemia. These are the hard les-
sons learned from the DCCT registration trials of 
intensive insulin therapy [222, 223]. In whole pan-
creas transplantation, the near-perfect glycemic 
control achieved has had major benefit in stabiliz-
ing coronary artery disease, intimal carotid thick-
ness, diabetic glomerulopathy, neuropathy, reti-
nopathy, and other secondary complications of 
T1D, and decreases cardiovascular mortality [224-
236]. 

Compelling data is emerging in islet trans-
plantation providing a similar protective impact. 
The Milan group showed that positive C-peptide 
can stabilize both macro- and microangiopathic 
changes in T1D, irrespective of the insulin inde-
pendence status [237-243]. The Vancouver group 
conducted a prospective cohort crossover study, 
comparing the intervention of islet transplantation 
with optimal medical therapy, and found reduced 
progression of retinopathy and a trend towards 
improved nerve conduction velocity [244, 245]. De-
spite the presence of CNi, there was a reduced de-
cline in renal function [244]. Danielsen et al. found 
that a surrogate marker of atherosclerosis, carotid 
intimal thickness, was significantly reduced after 
12 months of insulin independence, but empha-
sized a need for multimodal management to 
achieve this, including optimal management of hy-

perlipidemia and hypertension [246]. Large-scale 
RCTs without crossover are needed to corroborate 
these important positive findings. 

7. Alternatives to islet transplanta-
tion 

While islet transplantation remains an attrac-
tive therapy, it is acknowledged that transplant 
tolerance, or stem-cell derived and xenogeneic is-
lets are not on the proximate horizon [247]. Alter-
native means to stabilize glucose control are being 
explored, including high-tech closed loop insulin 
pumps and implantable sensor technologies that 
may serve as bridge or destination therapy, avoid-
ing a need for transplantation entirely. Such ap-
proaches may still be cumbersome for patients, 
and glycemic monitoring and insulin delivery in 
the subcutaneous site may still suffer from the 
challenges of depot injection, delayed absorption, 
and imperfect dynamic matching for perfect mo-
ment-to-moment control which is attainable in the 
native pancreas or from transplanted islets. 

Several strategies for prevention and early in-
tervention in T1D have met with recent disap-
pointment, despite enormous promise generated in 
mouse models, as discussed in other articles in this 
current Special Issue. Shoda et al. pointed out that 
over 463 interventional treatments have been 
shown to prevent or reverse autoimmune diabetes 
in NOD mice [142]. Attempts to move these to the 
clinic have met with frustration despite large-scale 
clinical enrollment and major cost [248]. The NOD 

Table 3. Single-donor islet protocols 
 

 

Center 
 

Approach 
 

Year 
 

Reference 

 

Minnesota 
 

Anti-CD3 + etanercept 2005 Hering et al. [35] 

Pennsylvania Edmonton-like 2003 Markmann et al. [254] 

Emory Efalizumab + MMF 2010 Turgeon et al. [209] 

San Francisco ATG + efalizumab + SRL or MMF 2010 Posselt et al. [255] 

San Francisco ATG + belatacept + SRL or MMF 2010 Posselt et al. [38] 

Edmonton Peritransplant insulin + heparin 2010 Koh et al. [99] 

Kyoto Living donor islet transplant 2005 Matsumoto et al. [220] 

Baylor ATG + anakinra + etanercept 2011 Matsumoto et al. [256] 

Vancouver Exenatide 2007 Ghofaili et al. [189] 

Miami Exenatide 2009 Faradji et al. [184] 

UIC Exenatide 2008 Gangemi et al. [190] 
 

Legend: ATG – antithymocyte globulin, MMF – mycophenolate mofetil, SRL – sirolimus, UIC – University of Illinois at Chicago. 
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mouse model clearly has major limitations as a 
surrogate for clinical autoimmune T1D. Better 
models or empiric interventions that clearly work 
in patients are now needed. Voltarelli et al. devel-
oped an approach in Brazil for ‘immunological re-
set’ designed to eliminate autoreactive lymphocyte 
clones using non-myeloablative autologous hema-
topoetic stem cell transplantation [249-251]. Of 20 
new-onset T1D subjects, 12 were rendered insulin 
independent for 31 months, but there were side ef-
fects from opportunistic infection and oligospermia 
resultant from heavy immune conditioning with 
thymoglobulin and cyclophosphamide. If these ap-
proaches can be further modified to improve the 
safety profile, while restoring more permanent 
self-tolerance, they would obviate a need for cellu-
lar replacement therapy. 

8. Summary and conclusions 
Islet transplantation has moved forward from 

a state of experimental curiosity in mice to a ro-
bust therapy for highly selected patients with T1D, 
refractory to stabilization by alternate means. This 
remarkable progress has occurred over a span of 
40 years, and could not have occurred without ex-
tensive dynamic international collaboration. Cur-
rently, more than 1,000 patients have received is-
let transplants since the Edmonton Protocol series 
was reported in 2000. The long-term results of is-
let transplantation in selected centers now match 
the registry data for pancreas-alone transplanta-
tion, with 6 sites reporting five-year insulin inde-
pendence rates ≥50%. 

Islet transplantation has been criticized for the 
use of multiple donor pancreas organs, but pro-
gress has occurred in single-donor success, with 10 
sites reporting increased single-donor engraft-
ment. The next wave of innovative clinical trial in-
terventions will address IBMIR, apoptosis, and in-
flammation, and will translate to further marked 
improvement in single-donor success. Effective 

control of auto- and alloimmunity is the key to 
long-term islet function, and high-resolution cellu-
lar and antibody-based assays will add consider-
able precision to this process. Advances in immu-
nosuppression, with new antibody-based targeting 
of costimulatory blockade and other T-B cellular 
signaling, will have further profound impact on 
the safety record of immunotherapy. 

Islet transplantation is one of the safest of all 
organ transplantation procedures, and an ability 
to deliver cells by a non-surgical low-risk approach 
is an important attraction of this therapy. Clinical 
trials will move forward shortly to test out new 
human stem cell-derived islets, and in parallel, 
trials will move forward testing pig islets for com-
patibility in patients. Induction of immunological 
tolerance to self-islet antigens and to allografts is a 
difficult challenge, but potentially within our 
grasp. Ultimately, strategies to prevent T1D, and 
induce self-regeneration of islets within the native 
pancreas would replace the need for cellular 
transplantation entirely. More intensive research 
is needed to address these avenues. 
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