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■ Abstract 
GLP-1-modulating therapies are a class of anti-diabetic drugs 
that improve glycemic control by stimulating glucose-
dependent insulin secretion from pancreatic beta-cells. In 
addition, GLP-1-based therapies have a variety of extrapan-
creatic effects, including satiety induction and gastric mobil-
ity reduction, which extend to distinct cardiovascular ac-
tions. GLP-1 was found to reduce infarct size in the context 
of acute myocardial ischemia which depends on the activa-
tion of prosurvival pathways including PI3-kinase, Akt, and 
ERK1/2. Also, GLP-1 augments the left ventricular function 
in dilative and metabolic cardiomyopathy, possibly by in-
creasing insulin independent cardiomyocyte glucose uptake. 
Furthermore, experimental and preliminary clinical evi-

dence suggest vasoprotective efficacy of GLP-1 mediated by 
improved endothelial function and anti-inflammatory capaci-
ties leading to atheroprotection. Mechanistically, the GLP-1 
receptor is relevant for glucose lowering efficacy of GLP-1. 
However, many of its vasoprotective actions have also been 
described for the GLP-1 metabolite (9-37), which does not 
activate the GLP-1 receptor, suggesting the presence of an 
additional, yet unknown, signaling pathway. Ongoing re-
search investigates the relevance of these observations in 
human disease and underlying mechanisms, which are re-
viewed in the present article. 
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Introduction 
 

 n epidemic growth of obesity parallels the 
 world wide expansion of the western life 
 style. This is associated with a dramatic in-

crease of insulin resistance and type 2 diabetes as 
primary risk factors for cardiovascular disease and 
heart failure. 

While an inverse association between glycemic 
control and mortality is well established, data 
demonstrating a prognostic benefit of glucose-
lowering therapies in diabetic patients are limited. 
Although intensive blood glucose control reduces 
microvascular complications, effects on macrovas-
cular disease, or mortality, remain disappointing 
[1]. Interestingly, improved prognostic outcome 
has been reported for some antidiabetic drugs, but 

not for others despite similar HbA1c-lowering ca-
pacities. Metformin was found to reduce mortality 
in a subpopulation of the United Kingdom Pro-
spective Diabetes Study (UKPDS) and in other 
retrospective cohort studies [2-5]. This suggests 
strong relevance of drug-specific, HbA1c-
independent effects for overall prognosis. In case 
of metformin, this might be due to its favorable 
side effects, namely body weight reduction and 
avoidance of hypoglycemia [6]. Therefore, the 
evaluation of new antidiabetic drugs should in-
clude a thorough metabolic and cardiovascular 
risk assessment. 

GLP-1-modulating drugs have been introduced 
to the clinics in recent years. High expectations for 
favorable prognostic effects of these drugs have 
been raised by their potent HbA1c-lowering capac-
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ity, and their beneficial effect on body weight and 
the avoidance of hypoglycemia. These are poten-
tial key elements for cardioprotective therapy. 

GLP-1 is an incretin hormone which is secreted 
by the intestinal L-cells in response to nutritional 
stimuli [7]. Circulatory GLP-1 binds to the GLP-1 
receptor expressed on pancreatic beta-cell, leading 
to increased glucose-dependent insulin secretion. 
In addition, GLP-1 inhibits glucagon release from 
pancreatic alpha-cells and impairs gastric empty-
ing, which in concert improves postprandial glu-
cose metabolism [8]. Finally, GLP-1 has beta-cell 
protective, antiapoptotic effects, and induces sati-
ety by stimulation central hypothalamic neurons 
[7, 8]. 

GLP-1 is produced in a protein convertase 
PC1/3-dependent manner from the preproglucagon 
gene which also harbors glucagon, GLP-2, and 
oxyntomodulin [9]. This leads to the secretion of 
GLP-1 (7-36-amide) and GLP-1 (7-37) which both 
feature similar activity on the GLP-1 receptor [10]. 
The half life of GLP-1 is limited to approximately 
2 minutes. The ubiquitously present enzyme 
dipeptidyl peptidase-4 (DPP-4) cleaves off the first 
two amino acids of the peptide leading to rapid in-
activation [7]. Thereby, the N-terminal-truncated 
GLP-1 metabolite (9-36-amide), or (9-37), is cre-
ated which is unable to activate the GLP-1 recep-
tor and rather act as a weak receptor antagonist 
[11-13]. Consistently, in vivo application of the 
GLP-1 metabolite (9-36) does not increase insulin 
secretion in pigs or humans [14, 15]. However, a 
number of reports suggest a cardiovascular effect 
of the GLP-1 metabolite [16]. 

Signal transduction of GLP-1 is mediated via 
the GLP-1 receptor which belongs to the glucagon 
superfamily of G-protein-coupled receptors and 
functions by increasing intracellular cyclic adeno-
sine monophosphate (cAMP), calcium, and phos-
pholipase C [7, 17]. Expression of the GLP-1 re-
ceptor is found in a variety of tissues including 
pancreatic islet cells, lung, heart, kidney, stomach, 
brain, endothelial cells, vascular smooth muscle 
cells, and cardiomyocytes [7]. 

The improvement of glucose metabolism by the 
multifactorial actions of GLP-1 has let to the de-
velopment of a variety of new drugs which either 
mimic the GLP-1 peptide or increase the bioactiv-
ity of active, endogenous GLP-1 by inhibition of its 
degrading enzyme DPP-4 [17]. So far, two GLP-1 
agonists have been approved for the clinic. These 
are exendin-4 and liraglutide [17]. Exendin-4 is a 
natural DPP-4-resistant peptide with only 53% 
homology to GLP-1 but full receptor activating ca-
pacity. Liraglutide, however, is a fatty acid-

modified GLP-1 homolog which displays a pro-
longed half life by increased albumin binding ca-
pacity. Both agonists similarly improve glucose 
metabolism and cause HbA1c reduction by ap-
proximately 1%. Another positive effect is that 
they promote weight loss and thereby favorably 
impact on the vicious cycle of obesity and insulin 
resistance [17]. A major drawback of these ago-
nists is their need for daily subcutaneous injec-
tions. However, long-acting GLP-1 analogues are 
currently in clinical development, allowing a once 
weekly application. In contrast, DPP-4 inhibitors 
can be taken orally resulting in an 80% reduction 
of DPP-4 activity and a 2-fold increase of circulat-
ing active GLP-1 peptide [18]. So far, sitagliptin, 
vildagliptin, and recently saxagliptin have been 
approved for clinical use. These drugs cause an 
HbA1c reduction of approximately 0.8%, but they 
have no impact on body weight [19]. 

While clinical outcome studies investigating 
the cardiovascular effects of GLP-1-based thera-
pies have been initiated, results will not be avail-
able for a few years. However, a number of ex-
perimental and preliminary clinical data suggest a 
cardiovascular benefit of GLP-1-based therapies, 
which will be discussed in the following sections. 

Abbreviations: 
 

AGE - advanced glycation end product 
AMPK - AMP-activated protein kinase 
ApoE - apolipoprotein E 
BAD - Bcl-2-associated death promoter 
cAMP - cyclic adenosine monophosphate 
CVD - cardiovascular disease 
DPP-4 - dipeptidyl peptidase-4 
eNOS - endothelial nitric oxide synthase 
ERK1/2 - extracellular signal-regulated kinases 1/2 
GLP-1 - glucagon-like peptide-1 
GLUT4 - glucose transporter type 4 
GSK - glycogen synthase kinase 
HbA1c - glycated hemoglobin 
HDL - high-density lipoprotein 
LPS - lipopolysaccharide 
MAP - mitogen-activated protein 
MAPK - mitogen-activated protein kinase 
mTOR - mammalian target of rapamycin 
NF-κB - nuclear factor-kappa B 
NOS2 - nitric oxide synthase 2 
Nrf2 - nuclear factor (erythroid-derived 2)-like 2 
NYHA - New York Heart Association 
PC1/3 - prohormone convertase 1/3 
PI3K - phosphoinositol 3-kinase 
PKA - protein kinase A 
PPAR - peroxisome proliferator-activated receptor 
RAGE - receptor for advanced glycation end-products 
RISK - reperfusion injury salvage kinase 
UCP3 - uncoupling protein 3 
UKPDS - United Kingdom Prospective Diabetes Study 
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GLP-1 and the heart 

GLP-1 and acute myocardial infarction 

Cardioprotective effects of GLP-1 were first re-
ported in patients with acute myocardial infarc-
tion who received 72 h of continuous GLP-1 infu-
sion post angioplasty, leading to a significantly 
improved left ventricular systolic function [20]. 
This prompted a variety of additional studies in-
vestigating the therapeutic potential of GLP-1 in 
the context of myocardial ischemia. 

While rapid revascularization of occluded ves-
sels remains the main treatment strategy for myo-
cardial infarction, additional approaches try to 
preserve tissue integrity by increasing the cellular 
tolerability to ischemia. Thereby, expansion of 
myocardial infarction depends on ischemic expo-
sure and reperfusion injury caused by radical oxy-
gen formation during revascularization. Experi-
mental interventions applying fractional ischemia 
before vessel occlusion or gradual reperfusion af-
ter myocardial infarction can reduce tissue necro-
sis by approximately 50% [21]. Conceptually, this 
so called ischemic pre- or post-conditioning is used 
to identify new targets for pharmacological treat-
ment [22]. Among these targets, the reperfusion 
injury salvage kinase (RISK) pathway has been 
identified as a promising candidate, together with 
the prosurvival signals phosphoinositide-3 (PI3) 
kinase, Akt, and extracellular signal-regulated 
kinase 1/2 (ERK1/2) [23]. Activation of the RISK 
pathway during reperfusion reduces myocardial 
infarct size by 40-50% [23]. Ongoing research is 
looking for RISK-modulating drugs with GLP-1 
being of potential interest. 

Cardioprotective effects of GLP-1 in acute myo-
cardial ischemia have been described in a series of 
species and models [20, 24-36] although not con-
firmed in all studies [37, 38]. A substantial propor-
tion of these investigations were done under ex-
vivo conditions in isolated heart perfusion models 
[24, 27, 28, 31, 33-35], which successfully trans-
lated to short [20, 24-26, 29, 30, 32, 36] and longer 
lasting in vivo studies [27]. 

Administration of GLP-1 significantly reduced 
myocardial infarction size and led to a functional 
recovery of rodent heart perfusion models under ex 
vivo and in vivo conditions [24, 28, 31, 34]. Simi-
larly, liraglutide prevented myocardial injury, im-
proved survival in mice, and reduced post-
infarction cardiac rupture [27]. This was also con-
firmed in DPP-4 knockout mice [39]. Furthermore, 
DPP-4 inhibition augmented myocardial function 

following myocardial infarction in rodent models 
[40, 41]. In rabbits, pre- or post-ischemic applica-
tion of GLP-1 reduced infarction size, with best re-
sults seen when administered during reperfusion 
[25, 26]. These studies were extended to dogs, in 
which GLP-1 augmented regional wall motion re-
covery following a brief period of ischemia [26]. In 
pigs, exendin-4 limited infarct size and improved 
functional left ventricular recovery when given for 
72 h starting with reperfusion [32]. However, two 
additional studies in pigs failed to demonstrate 
cardioprotective effects of GLP-1 or liraglutide in 
the context of acute myocardial infarction [37, 38]. 
This discrepancy may result from the use of differ-
ent GLP-1 agonists or the timing of application 
prior to or post myocardial infarction. 

At present, investigations in humans are lim-
ited. Besides the initial study, reporting the bene-
ficial effects of GLP-1 in the context of acute myo-
cardial infarction [20], two additional small stud-
ies have been conducted. The latter investigated 
the effects of continuous GLP-1 infusion in pa-
tients undergoing coronary artery bypass graft 
surgery. No effect of GLP-1 on myocardial contrac-
tility and hemodynamics was found in either 
study. Whereas, GLP-1 reduced the need for circu-
latory inotropic, or vasoactive, drug support fol-
lowing surgery [30, 42]. In a dobutamin stress test 
in patients with ischemic coronary artery disease, 
administration of GLP-1, or sitagliptin, improved 
myocardial wall motion [29, 36]. In conclusion, 
GLP-1 convincingly proved cardio-protective in ex-
vivo and small animal models during acute ische-
mia. Results in large animal models remain con-
flicting, while studies in humans suggest cardio-
protection, but they are not conclusive. Therefore, 
a prospective, double-blind clinical trial, investi-
gating GLP-1 effectiveness in patients with acute 
myocardial infarction, remains very preferable. 
Also, it is not clear to what extent these direct 
GLP-1 effects can be found in patients treated 
with GLP-1 analogues or DPP-4 inhibitors. 

Mechanisms of GLP-1-dependent cardiopro-
tection during ischemia 

Although GLP-1-dependent cardioprotection 
has been extensively studied, the relevant under-
lying mechanisms are still not fully understood. 
On cellular basis, GLP-1 was found to reduce car-
diomyocyte apoptosis in response to ischemic/re-
perfusion injury [24, 25, 27, 32, 43]. This can be 
attributed to GLP-1-dependent activation of PI3K, 
AKT, and ERK1/2, which together are known as 
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the RISK pathway [24, 27, 32, 34, 43] (Figure 1). 
Furthermore, GLP-1 was found to activate the cell 
growth signaling cascade of mammalian target of 
rapamycin (mTOR) and p70s6K kinase, which are 
downstream of AKT and inhibit the proapoptotic 
protein BAD [24, 34, 43, 44]. However, this could 
not be confirmed in all models [27]. An additional 
antiapoptototic action of GLP-1 is attributable to 
the inhibition of GSK3β as another downstream 
target of the RISK pathway [27, 34, 43]. Finally, 
GLP-1 was found to increase the expression of re-
dox sensitive transcription factors, namely nuclear 
factor (erythroid-derived 2)-like 2 (Nrf2) and per-
oxisome proliferator-activated receptor (PPAR) 
delta [27]. 

Relevance of the GLP-1 receptor 

Ongoing controversy debates the relevance of 
the known GLP-1 receptor as the target of GLP-1 
actions in the cardiovascular system. This discus-
sion is augmented by the persistent cardiovascular 
benefits associated with the GLP-1 metabolite (9-
36), which does not activate the GLP-1 receptor 
[16]. 

Relevance of the GLP-1 receptor in the cardio-
vascular system has emerged through its broad 
expression in cardiomyocytes and endothelial 
cells, the decreased heart rate, elevated left ven-
tricular (LV) end-diastolic pressure, and cardiac 
hypertrophy found in GLP-1 receptor knockout 
mice [33, 45]. It was also found that GLP-1 recep-
tor knockout mice lose the liraglutide-dependent 
activation of prosurvival pathways in the heart 
[27]. Furthermore, GLP-1 receptor antagonist ex-
endin-9 abolished the cardioprotective effects of 
GLP-1 in ischemia/reperfusion models. Similar ef-
fects were found with the inhibition of cAMP sig-
naling as the downstream target of the GLP-1 re-
ceptor [24, 27, 28]. Also, in some experiments, si-
multaneous DPP-4 inhibition was required to 
reach GLP-1 effectiveness, suggesting that only 
the uncleaved GLP-1 (7-36) peptide was cardiopro-
tective [24, 34]. This finding was further sup-
ported by observations of reduced myocardial in-
farction size, improved survival of DPP-4 knockout 
mice [39], and the augmented myocardial function 
seen with DPP-4 inhibition in rodent models [40, 
41]  and humans [29]. 

However, major relevance of the GLP-1 recep-
tor has been challenged by other findings. Firstly, 
preserved GLP-1-mediated cardioprotection was 
found in hearts from GLP-1 receptor knockout 
mice [33]. Secondly, the GLP-1 metabolite (9-
36)―which does not activate the GLP-1 recep-
tor―was found to have infarct-sparing capacities 
similar to exendin-4 [35], although this was not 
confirmed in all studies [31, 33]. Interestingly, 
while exendin-4 lost its cell-protective effect in the 
absence of GLP-1 receptor, the effect was pre-
served for the GLP-1 metabolite [35]. This sug-
gests the presence of an additional, yet unidenti-
fied, receptor only activated by the GLP-1 metabo-
lite but not exendin-4 (Figure 1). However, this re-
ceptor seems to share significant structural and 
functional homology with the known GLP-1 recep-
tor, as it was also found to increase cellular cAMP 
levels and was similarly antagonized by exendin-9 
[35]. This suggests the presence of an additional 
G-protein-coupled receptor as target of the GLP-1 
metabolite. Importantly, these observations ques-
tion the use of exendin-9 as a tool to characterize 
specific effects of the known GLP-1 receptor. 

GLP-1 and heart failure 

GLP-1-dependent cardioprotection extends to 
the setting of chronic heart failure. This was 
firstly described in a dog model of pace maker-
induced dilated cardiomyopathy. A continuous 48 

 

Cell viability ↑ - Apoptosis ↓

NO GSK3b

PI3K ERK1/2 cAMP

GLP-1
receptor

Unknown
receptor

GLP-1 (7-37)
exendin-4

GLP-1 (9-37)

BAD

AKT

P70/S6eNOS

PKA

Myocardial infarction

Caspase 3Mitochondria

 
Figure 1. Effects of GLP-1 during acute myocardial infarc-
tion. PI3K: phosphoinositol 3-kinase. ERK1/2: extracellular 
signal-regulated kinases. PKA: protein kinase A. eNOS: en-
dothelial nitric oxide synthase. BAD: Bcl-2-associated death 
promoter. GSK: glycogen synthase kinase 3. 
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h GLP-1 infusion improved cardiac function re-
sulting in increased stroke volume and cardiac 
output, while simultaneously reducing heart rate, 
peripheral resistance, and plasma norepinephrine 
concentrations [46]. Similar effects were found in 
mouse models of primary dilated cardiomyopathy 
[47] and chronic ischemic [48], or metabolic, car-
diomyopathy [49]. In humans, continuous GLP-1 
infusion for 5 weeks augmented left ventricular 
ejection fraction and maximal oxygen uptake in a 
small study of patients with heart failures of 
classes NYHA III and IV [50]. In contrast, 48 h of 
GLP-1 infusion failed to improve cardiac function 
in a double-blind placebo-controlled crossover 
study in 20 patients with NYHA class II and III. 
This could have been due to the shorter applica-
tion interval [51]. 

On molecular level, heart failure is character-
ized by a switch in primary substrate utilization 
from fatty acid oxidation in healthy subjects to 
glucose oxidation in heart failure patients [52] 
(Figure 2). The lower respiratory quotient of glu-
cose thereby reduces myocardial oxygen demand 
[53]. This coping strategy is however defeated by a 
concomitant raise in local and systemic insulin re-
sistance during heart failure, which limits glucose 
supply and causes a chronic state of energy depri-
vation [54]. Therefore, improvement of cardiomyo-
cyte glucose delivery was identified as a target for 
heart failure therapy. GLP-1 directly increases 
cardiomyocyte glucose uptake, which happens in-
dependently of its insulinotropic actions and re-
mains present under hyperinsulinemic clamp con-
ditions [46]. Mechanistically, this might be attrib-
utable to increased GLP-1-dependent AKT activa-
tion and glucose transporter type 4 (GLUT4) 
translocation [47, 49]. It may also result from mi-
togen-activated protein (MAP) kinase and nitric 
oxide synthase 2 (NOS2)-dependent GLUT1 trans-
location [55]. Interestingly, in one study, the GLP-
1 metabolite was also found to increase cardio-
myocyte glucose uptake [11]. Additional cardiopro-
tective effects of GLP-1 might result from a reduc-
tion of oxidative stress, reduced mitochondrial 
density, and increased UCP3 expression [55]. 

GLP-1 and the vessel wall 
GLP-1 has vasoprotective effects. GLP-1-

dependent improvement of vascular function has 
been reported in healthy subjects and type 2 dia-
betic patients with stable coronary artery disease 
[56, 57]. Continuous infusion of the peptide 
thereby rapidly increased acetylcholine, or flow-
mediated, vasodilatation of the brachial artery 

under hyperinsulinemic clamp conditions, demon-
strating a direct and insulin-independent effect 
[56, 57]. Similar results were obtained from differ-
ent experimental models in which GLP-1 in-
creased vasorelaxation in coronary or pulmonary 
arteries in a cAMP- and endothelial nitric oxide 
synthase (eNOS)-dependent manner [33, 58]. In 
contrast, other findings suggested vascular smooth 
muscle to be of primary relevance for vasorelaxa-
tion in an eNOS-independent manner [59]. Impor-
tantly, eNOS inhibition abrogated 50% of the car-
dioprotective effect of GLP-1 following myocardial 
infarction, demonstrating a relevant contribution 
of the vascular system to GLP-1-dependent car-
dioprotection [33]. Interestingly, DPP-4 inhibition 
was able to abrogate GLP-1-dependent vasore-
laxation, while this was preserved for the GLP-1 
metabolite, even in the absence of the GLP-1 re-
ceptor [33]. This suggests that the GLP-1 metabo-
lite was the primary cause of vasorelaxation. 
However, others reported similar improvement to 
endothelial function with exendin-4 as a non-
cleavable peptide and classical activator of the 
known GLP-1 receptor [60]. 

The vasorelaxative effects of GLP-1 might in 
part explain the antihypertensive potential dem-
onstrated in long-term clinical trails using ex-
enatide, liraglutide, or DPP-4 inhibitors [61-63], 
although most of the antihypertensive effects may 
be due to weight loss. Consistently, a 2-week GLP-
1 treatment reduced blood pressure and proteinu-
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Figure 2. Modulation of myocardial substrate utilization by 
GLP-1 during heart failure. FA: fatty acids. 
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ria in salt-sensitive hypertensive rats. This effect 
was paralleled by increased natriuresis and im-
proved endothelial function [64]. However, these 
observations contrast to heart rate- and blood 
pressure-increasing effects of short-term GLP-1 
application, as found by others [65, 66]. Poten-
tially, this reflects a GLP-1-dependent bidirec-
tional modulation of blood pressure in a time-
dependent manner [67]. 

Additional vasoprotective effects of GLP-1 have 
been described in acute vascular injury models in 
which exendin-4 reduced neointima formation and 
smooth muscle cell proliferation after wire injury 
[68]. Furthermore, chronic treatment with ex-
endin-4 reduced atherosclerotic lesion formation in 
apolipoprotein E (ApoE)-deficient mice on a high 
fat diet [69]. Both studies reported reduced vascu-
lar inflammation under GLP-1 agonist treatment 
which was attributed to a variety of immune and 
vascular cells (Figure 3). GLP-1 was found to (i) 
reduce lipopolysaccharide (LPS)-dependent cyto-
kine release from macrophages, (ii) inhibit the mi-
gration of T cells, (iii) repress endothelial cell ad-
hesion molecule expression, and (iv) impair vascu-
lar smooth muscle cell proliferation [69-74]. These 
observations translated to a reduced mortality of 
exendin-4-treated mice challenged with LPS [75]. 
In macrophages, anti-inflammatory effects of 
GLP-1 have been attributed to inhibition of NF-κB 
in a cAMP- and protein kinase A (PKA)-dependent 
manner [69]. Similarly, GLP-1 was found to in-

hibit NF-κB in endothelial cells, although medi-
ated by AMP-activated protein kinase (AMPK) 
[74].  However, neither cAMP, Akt, nor mitogen-
activated protein kinase (MAPK) signaling was 
found to be responsible for antiproliferative effects 
by GLP-1 seen in vascular smooth muscle cells 
[68]. Anti-inflammatory effects of GLP-1 might 
also beneficially modulate the coagulation system, 
with decreased expression of plasminogen activa-
tor inhibitor being found in response to liraglutide 
in endothelial cells [72]. 

It was also found that GLP-1 can down-
regulate the receptor for advanced glycation end-
products (RAGE) in endothelial cells, which con-
tributes to hyperglycemia-induced vascular in-
flammation in diabetes [71, 76]. Consequently, 
generation of reactive oxidant species in response 
to advanced glycation end product (AGE) exposure 
was reduced by GLP-1 agonist treatment [71]. In-
terestingly, similar anti-inflammatory and RAGE 
suppressive effects were reported for DPP-4 inhi-
bition in diabetic rats resulting in reduced NF-κB 
activation [77].  These anti-inflammatory actions 
might also explain the improved survival of en-
dotoxin-challenged rats when treated with DPP-4 
inhibitors [75]. 

Furthermore, GLP-1 agonists have been found 
to improve lipid metabolism during longer term 
treatment intervals, leading to a reduction of 
triglyceride levels and increased HDL cholesterol 
[78, 79]. This effect seems to be due to a GLP-1-
dependent improvement of postprandial lipemia 
[80], although it might also largely be secondary to 
improved glucose metabolism and body weight re-
duction. 

The described effects on heart and vascular 
system, including the modulation of risk factors, 
might translate into long-term improvement in 
clinical prognosis. Indeed, a large retrospective 
database analysis recently compared cardiovascu-
lar events in diabetic patients treated since 2005 
with exendin-4 or other antidiabetic drugs. Pa-
tients receiving exendin-4 were more likely to pre-
sent with ischemic heart disease, obesity, hyper-
tension, and/or other co-morbidities. However, the 
use of exendin-4 was associated with a 19% reduc-
tion in CV-events and a 12% reduction in CVD-
related hospitalization, suggesting a cardiovascu-
lar benefits of GLP-1-based therapies [81]. 

Conclusions 

Current experimental and early clinical data 
suggest that GLP-1-based therapies may modulate 
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Figure 3. Vasoprotective effects of GLP-1. 
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vascular and cardiac function. As such, they ex-
hibit protective effects in the cardiovascular sys-
tem. Moreover, retrospective analyses of phase II 
and III studies with GLP-1 analogues and DPP-4 
inhibitors showed a trend towards reduced cardio-
vascular events compared to placebo or compara-
tor. This finding raised the hypothesis that these 
beneficial effects may translate into a reduction in 
cardiovascular morbidity and mortality in treated 
patients. Large randomized, prospective cardio-
vascular outcome trials are currently under way 

for various GLP-1-based drugs. The anxiously 
awaited results will clarify whether these thera-
pies have the potential to reduce cardiovascular 
risk in patients with diabetes. 
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