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■ Abstract 
C-peptide, historically considered a biologically inactive pep-
tide, has been shown to exert insulin-independent biological 
effects on a number of cells proving itself as a bioactive pep-
tide with anti-inflammatory properties. Type 1 diabetic pa-
tients typically lack C-peptide, and are at increased risk of 
developing both micro- and macrovascular complications, 
which account for significant morbidity and mortality in this 
population. Inflammatory mechanisms play a pivotal role in 
vascular disease. Inflammation and hyperglycemia are major 
components in the development of vascular dysfunction in 
type 1 diabetes. The anti-inflammatory properties of C-

peptide discovered to date are at the level of the vascular 
endothelium, and vascular smooth muscle cells exposed to a 
variety of insults. Additionally, C-peptide has shown anti-
inflammatory properties in models of endotoxic shock and 
type 1 diabetes-associated encephalopathy. Given the anti-
inflammatory properties of C-peptide, one may speculate 
dual hormone replacement therapy with both insulin and C-
peptide in patients with type 1 diabetes may be warranted in 
the future to decrease morbidity and mortality in this popu-
lation. 
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Brief introduction to C-peptide  
 

 uman C-peptide is a 31 amino acid peptide, 
 a product of proinsulin cleavage, generated 
 in pancreatic beta-cells as part of normal in-

sulin production. C-peptide is released into the 
bloodstream in equimolar amounts with insulin in 
response to various stimuli including elevated glu-
cose. In healthy individuals, C-peptide circulates 
in nanomolar concentrations with a half life of ap-
proximately 30 minutes compared to a half life of 
4 to 5 minutes for insulin [1, 2]. Historically, C-
peptide was considered biologically inactive and 
necessary only for proinsulin folding within beta-
cells, thus a mere byproduct of insulin biosynthe-
sis. In recent years, C-peptide has been shown to 
exert insulin-independent biological effects on a 

number of cells, proving itself as a bioactive pep-
tide. 

Patients with type 1 diabetes (T1D) are at in-
creased risk of developing both micro- and 
macrovascular complications, which cause signifi-
cant morbidity and mortality. In patients with 
T1D, C-peptide is decreased or absent. Important 
findings in the current decade were that C-peptide 
replacement therapy in T1D ameliorates certain 
complications including peripheral neuropathy 
and nephropathy [3-8], and that it has anti-
inflammatory effects under high glucose condi-
tions [9, 10]. The anti-inflammatory properties of 
C-peptide that have been discovered to date are at 
the level of the vascular endothelium and vascular 
smooth muscle cells exposed to a variety of insults. 
Additionally, C-peptide has shown anti-
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inflammatory properties in models of endotoxic 
shock and type 1 diabetes-associated encephalopa-
thy [11, 12]. These anti-inflammatory characteris-
tics of C-peptide are discussed in this review. 

Origin of vascular disease in type 1 
diabetes patients 

Endothelial dysfunction: an early lesion in the 
vasculature of T1D patients 

T1D has been recently recognized as an inde-
pendent risk factor for the development of mi-
crovascular disease and atherosclerosis. In T1D, 
the risk associated with microvascular complica-
tions is enormous: approximately, one in three 
people with diabetes develops aggressive mi-
crovascular complications, affecting the small ves-
sels of the eyes, the kidneys, and the peripheral 
nerves. Over 70% die of atherosclerosis-related 
disease [13]. 

The mechanisms of vascular disease in T1D are 
not fully understood. It has been proposed that the 
diabetic milieu induces changes in the arterial 
wall that would render the vessel more susceptible 
to premature vascular compromise [14]. One of 
these changes is represented by endothelial dys-
function, which has been recognized as an early 
event in the pathogenesis of vascular complica-
tions in T1D. Endothelial dysfunction, as seen in 
diabetes, is characterized by impaired flow-
mediated vasodilation [15], a low-grade inflamma-
tion [16], and increased levels of endothelial cell 
adhesion molecules, including E-selectin, intercel-
lular adhesion molecule-1 (ICAM-1), and vascular 
cell adhesion molecule-1 (VCAM-1) [16-20]. The 
upregulation of these molecules on endothelial 
cells allows attachment and migration of circulat-
ing leukocytes into the vessel wall. This is a cru-
cial step in vascular compromise leading to 
atherosclerotic plaque formation. Following ex-
pression at the cell surface, these molecules are 
shed as soluble forms, and can be detected in the 
peripheral circulation. Altered levels of circulating 
endothelial cell adhesion molecules are thus con-
sidered biochemical markers of vascular dysfunc-
tion in high-risk individuals, such as in T1D pa-
tients [19, 21-23]. In these patients, signs of endo-
thelial dysfunction, with increased plasma concen-
trations of endothelial cell adhesion molecules, 
have been found shortly after clinical diagnosis of 
diabetes. This suggests the presence of vascular 
compromise at an early stage of diabetes, when 
subjects are still free of any vascular symptoms 

[20, 24, 25]. Some other studies also detected signs 
of endothelial dysfunction in schoolchildren who 
tested positive for one or more diabetes-associated 
autoantibodies but are non-diabetic yet [20, 26-
29]. The presence of endothelial dysfunction puts 
subjects at risk of developing premature vascular 
damage. These subjects could ideally be early rec-
ognized, followed over time, and eventually 
treated to prevent the development of overt vascu-
lar complications. 

Abbreviations: 
 

AoSMC - aortic smooth muscle cells 
BB/Wor rat - BioBreeding/Worcester rat (animal model of 
spontaneous autoimmune diabetes) 
COX-2 - cyclooxygenase-2 
C-peptide - connecting peptide 
CD11b - cluster of differentiation molecule 11b (also known 
as Mac-1) 
DCCT/EDIC - Diabetes Control and Complications Trial/ 
Epidemiology of Diabetes Interventions and Complications 
DNA - deoxyribonucleic acid 
ERK - extracellular signal-regulated kinase 
E-selectin - endothelial selectin (cell adhesion molecule ex-
pressed on endothelial cells) 
HAEC - human aortic endothelial cells 
HEK-293 cells - human embryonic kidney 293 cells 
ICAM-1 - inter-cellular adhesion molecule 1 
IκB – inhibitor kappa B 
IL-1beta – interleukin 1beta (cytokine produced by mono-
cates, inflammatory mediator) 
IL-6 - interleukin 6 (secreted by monocytes and endothelial 
cells, can have inflammatory and anti-inflammatory ef-
fects) 
IL-8 - interleukin 8 (chemokine of the CXC family, secreted 
by monocytes and endothelial cells) 
L-NAME - NG-nitro-L-arginine methyl ester 
LPS - lipopolysaccharide 
Mac-1 - macrophage-1 antigen (also known as CD11b) 
MAP - mitogen-activated protein 
MAPK - mitogen-activated protein kinase 
MCP-1 - monocyte chemotactic protein type 1 
NF-κB - nuclear factor-kappa light-chain enhancer of acti-
vated B cells 
PAI-1 - plasminogen activator inhibitor-1 
PDGF - platelet-derived growth factor 
PMN - polymorphonuclear 
PPARγ - peroxisome proliferator-activated receptor 
P-selectin – platelet selectin (cell adhesion molecule ex-
pressed on endothelial cells) 
RAGE - Receptor for advanced glycation end products 
mRNA - messenger ribonucleic acid 
ROS - reactive oxygen species 
Swiss 3T3 fibroblasts - 3-day transfer, inoculum 3 x 105 fi-
broblast cells 
T1D - type 1 diabetes 
T2D - type 2 diabetes 
TNF-α - tumor necrosis factor alpha 
UASMC - umbilical artery smooth muscle cells 
VCAM-1 - vascular cell adhesion molecule-1 
VSMC - Vascular smooth muscle cells 
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Several factors have been reported to induce 
endothelial cell activation in vitro, including ab-
normal glucose levels, i.e. hyperglycemia [30], gly-
cated proteins [31], and inflammatory cytokines 
[32]. In this article, we discuss the impact that 
these factors have in the development of T1D-
associated vascular dysfunction. 

Importance of high glucose levels in the devel-
opment of endothelial dysfunction in T1D 

Abnormal glucose levels, i.e. hyperglycemia, 
are a major clinical sign in T1D patients. Hyper-
glycemia has been recognized to play a crucial role 
in the development of endothelial dysfunction 
leading to vascular complications in T1D [33]. 
Several mechanistic pathways have been proposed 
in order to elucidate the deleterious effect of high 
glucose on vasculature function. At the cellular 
level, hyperglycemia causes an increased vascular 
tone, and permeability of the endothelial cell 
monolayer. This is mainly a consequence of im-
paired production and bioavailability of vasodila-
tors such as nitric oxide, vasoconstrictors such as 
endothelin-1 [34, 35], and permeability factors 
such as vascular endothelial growth factor [36, 
37]. Exposure of endothelial cells to high glucose 
increases the production of reactive oxygen species 
(ROS), mainly through the mitochondrial electron 
transport chain [38, 39], and by upregulating anti-
oxidant enzymes [40]. The excessive production of 
ROS caused by hyperglycemia leads to alterations 
in endothelial cell proliferation and adhesion 
properties [41]. These alterations contribute to ac-
celeration of the apoptotic process in endothelial 
cells [42]. 

In addition, exposure to high glucose promotes 
the expression of ICAM-1, VCAM-1, and E-selectin 
on endothelial cells, a phenomenon observed even 
after short exposure to high glucose, such as dur-
ing hyperglycemic spikes after a meal [43-45]. 
High glucose also stimulates the secretion of the 
chemokines IL-8 and monocyte chemotactic pro-
tein type 1 (MCP-1) by endothelial cells [10, 45, 
46]. These inflammatory mediators are crucial in 
recruiting monocytes to the vessel wall [45, 47]. 
They are usually found in human atherosclerotic 
plaques [48]. Simultaneously, the adipocyte itself 
is recognized to secrete circulating cytokines (adi-
pokines) such as interleukin-6, tumor necrosis fac-
tor-alpha, leptin, and PAI-1, exacerbating the on-
going vascular inflammation [13, 49] in the vessel 
wall of diabetic patients. The prevalence of being 

overweight in T1D is increasing following the gen-
eral trend in the population [50]. 

Rigorous glycemic control may reduce or delay 
the development of vascular complications, but 
data from the DCCT/EDIC study demonstrated 
that even intensive insulin treatment to achieve 
blood glucose concentrations close to normal could 
not completely prevent the development of vascu-
lar complications in T1D patients [51]. This sug-
gests that factors other than hyperglycemia con-
tribute to the pathogenesis of vascular complica-
tions in T1D. Moreover, endogenous insulin secre-
tion (measured as C-peptide) was better sustained 
by intensive therapy, and was associated with 
lower risk for retinopathy and microalbuminuria 
[52]. Thus, C-peptide deficiency may be a contrib-
uting factor in the pathogenesis of vascular com-
plications in T1D. 

Importance of inflammation in the pathogene-
sis of T1D-associated vascular complications 

Inflammation is considered a major component 
in the development of T1D-associated vascular 
dysfunction [19, 53-55]. It has been observed that 
T1D patients with microvascular complications 
show increased monocyte production of several in-
flammatory cytokines such as IL-6, TNF-α, and IL-
1β over and above the levels detected in T1D pa-
tients without microvascular complications, and 
healthy control subjects [19, 55]. Plasma levels of 
other inflammatory biomarkers, such as C-
reactive protein, are also elevated in T1D patients 
with microvascular complications compared to as-
ymptomatic T1D patients [53, 54]. Many of the re-
ported inflammatory changes are detected at the 
level of monocytes. They show upregulation of the 
adhesion molecule CD11b (Mac-1) [56], and have 
aberrant constitutive and lipopolysaccha-
ride(LPS)-stimulated expression of cyclooxygenase 
(COX)-2, a defect which may predispose to a 
chronic inflammatory response in T1D [57, 58]. 

The vascular endothelium is a likely target of 
the inflammatory response detected in T1D pa-
tients. On endothelial cells, inflammatory cyto-
kines induce functional and structural alterations, 
including oxidative damage or interference with 
the mechanisms of contraction/relaxation. This re-
sults in alterations in vascular integrity, tone, and 
coagulation. The inflammatory cytokine IL-1β is 
associated with increased diabetic retinopathy 
[59]. Certain other cytokines, such as IL-8 and 
MCP-1, are powerful monocyte attractants during 
the early stages of endothelial dysfunction. Once 
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transmigrated into suben-
dothelial layers, immune 
cells produce more in-
flammatory mediators and 
cytokines, thus feeding the 
vicious circle of inflamma-
tion that eventually leads 
to vascular compromise. 

Another component of 
inflammation and endothe-
lial dysfunction is oxida-
tive stress. T1D patients 
with microvascular com-
plications have accentu-
ated oxidative stress as 
compared to T1D patients 
without microvascular 
complications, as shown by 
significantly elevated lev-
els of nitrotyrosine, mono-
cyte superoxide anion [55], 
DNA and protein oxidation 
[60, 61]. ROS damage en-
dothelial cells directly 
through cellular injury, 
and indirectly through in-
activation of nitric oxide, 
or by serving as an endo-
thelium-derived contract-
ing factor [62, 63]. At the molecular level, in-
creased ROS production leads to activation of the 
nuclear-factor (NF)-κB pathway [39, 64], and ulti-
mately the production of inflammatory mediators 
[65]. Devaraj et al. showed that T1D patients suf-
fering from microvascular complications have in-
creased activation of the NF-κB pathway com-
pared to diabetic patients without complications 
[55]. To this end, strategies are proposed that tar-
get NF-κB pathway activation to reduce inflamma-
tory activity, and prevent vascular dysfunction 
[66, 67]. 

C-peptide and endothelial function 
C-peptide is now recognized as a molecule dis-

playing potential beneficial effects on the dysfunc-
tional endothelium, as observed in several in vivo 
and in vitro models of inflammation-mediated vas-
cular injury. In T1D, a decrease (or lack) of circu-
lating C-peptide levels as a result of the autoim-
mune attack on the pancreatic beta-cells, has been 
considered an important factor in the development 
of vascular dysfunction. In fact, in a clinic-based 
cohort of T1D, higher fasting C-peptide levels were 
found to have a protective effect on microvascular 

complications [68]. Results from clinical trials of 
C-peptide replacement therapy in T1D patients 
with microvascular complications have demon-
strated significant improvement of signs and 
symptoms of peripheral neuropathy and kidney 
function [4, 5]. An improvement of myocardial 
blood flow in T1D patients has also been observed 
in similar studies [69]. 

Although the mechanisms by which C-peptide 
exerts its cytoprotective effects on the endothelium 
are not entirely understood, it has been reported 
that C-peptide can influence activation of different 
signaling pathways that ultimately modulate or 
shut down inflammatory responses. In the sec-
tions hereafter, we present the current knowledge 
on this topic. 

Effect of C-peptide on leukocyte-endothelium 
interactions: modulation of adhesion molecule 
expression and cytokine secretion 

The adhesion and migration of circulating 
monocytes into the subendothelial space is one of 
the key events in the early stages of atherogenesis 
[70]. Evidence supports the idea that C-peptide af-
fects interactions of circulating monocytes and 
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Figure 1. Physiologic concentrations of C-peptide reduce adherence of U-937 to 
HAEC under high-glucose conditions. HAEC were cultured in 25 mmol/l glucose 
in the presence or absence of  0.5 nmol/l C-peptide (C-P) for 4 hours. U-937 
were added for 1 hour then counted. Boxplot graphs show the median values 
(limits of the lines are 5th and 95th centiles) of number of adherent U-937 per 
well. High glucose (25 mmol/l) increased the number of adherent U-937 com-
pared to low glucose (5.6 mmol/l) (p = 0.004). Addition of C-peptide reduced the 
number of adherent U-937 compared to 25 mmol/l glucose alone (p < 0.01). 
Heat-inactivated (HI) C-peptide did not significantly alter adherence of U-937. 
TNF-α, used as a positive control, produced more than a five-fold increase in ad-
herent U- 937 in comparison to normal glucose. Modified with kind permission 
from Springer Science+Business Media, Figure 4A [10]. 
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other leukocytes to endothelial cells by reducing 
the upregulation of critical endothelial cell adhe-
sion molecules typically observed under inflamma-
tory conditions and exposure to high glucose. The 
first who described this C-peptide effect were 

Scalia and co-workers. They 
examined pretreatment with 
C-peptide to rats injected with 
the inflammatory agents 
thrombin or NG-nitro-L-
arginine methyl ester (L-
NAME), which cause acute 
endothelial dysfunction in 
these animals. It emerged that 
the expression of the endothe-
lial cell adhesion molecule 
ICAM-1 and P-selectin on the 
mesenteric microvascular en-
dothelium was attenuated 
[71]. As a consequence, the 
number of rolling, adhering, 
and transmigrating leukocytes 
also decreased upon C-peptide 
administration to the animals. 

In another model of vascu-
lar injury, C-peptide was able 
to decrease polymorphonuclear 
leukocyte (PMN) infiltration in 
isolated rat hearts following 
ischemia-reperfusion injury 
[72]. PMN infiltration induced 
endothelial and myocardial in-
jury by releasing cytotoxic sub-
stances such as oxygen-
derived free radicals, inflam-
matory cytokines, and prote-
olytic enzymes. By reducing 
PMN infiltration to the myo-
cardium, C-peptide restored 
cardiac contractile function 
and postreperfusion coronary 
heart flow [72]. These findings 
have been recently recapitu-
lated in vitro in a model of 
high glucose-induced endothe-
lial dysfunction, in which ad-
hesion of the monocytic cell 
line U-937 to high glucose-
stimulated human aortic endo-
thelial cells (HAEC) in vitro 
decreased by 50% after addi-
tion of physiological concentra-
tions of C-peptide. This effect 
was not detected when C-

peptide was heat-inactivated (Figure 1) [10]. The 
effect was likely the consequence of a decreased 
expression of the adhesion molecule VCAM-1 on 
HAEC by C-peptide, an effect demonstrated both 
at the level of mRNA and protein. In the same 
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Figure 2. In VSMC, both physiologic concentrations of C-peptide and NF-κB 
inhibitors reduce high glucose-induced proliferation. VSMC were incubated 
with 25 mmol/l glucose in the presence or absence of C-peptide (C-P) for 48 
hours, and assayed for proliferation by measuring the nuclear incorporation 
of BrdU (DNA synthesis). In UASMC, BrdU incorporation showed cellular 
proliferation in high glucose (vs. 5.6 mmol/l, p = 0.002). C-peptide reduced 
high glucose-induced UASMC proliferation (p < 0.01), while addition of 
scrambled C-peptide (Scr C-P) did not have a significant effect. Addition of 
the NF-κB inhibitors PDTC (20 µM) and Bay-11-7082 (1 µM) also showed a 
decrease in proliferation (vs. 25mmol/l glucose, p < 0.01).  In AoSMC, BrdU 
incorporation showed cellular proliferation in high glucose (vs. 5.6 mmol/l 
glucose, p = 0.048). C-peptide reduced high glucose-induced AoSMC pro-
liferation (p < 0.01), while addition of scrambled C-peptide (Scr C-P) did not 
have a significant effect. Addition of the NF-κB inhibitors PDTC (20 µM) and 
Bay-11-7082 (1 µM) also showed a decrease in proliferation (vs. 25 mmol/l 
glucose, p < 0.01). Values are mean ± SD of 10 different experiments run in 
triplicate. Modified with kind permission from Elsevier, Figure 1 [9]. 
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model, full-length, native C-peptide, but not heat-
inactivated C-peptide, was demonstrated to reduce 
high glucose-induced secretion of IL-8 and MCP-1 
by HAEC to basal levels measured under normal 
glucose concentrations [10]. These two chemokines 
are essential to promote leukocyte adhesion to en-
dothelial cells. C-peptide did not seem to have any 
apparent effect on endothelial cells under normal 
glucose levels. Thus, the most meaningful biologi-
cal effects of C-peptide on the endothelium are re-
alized in conditions of vascular insult or damage. 

Anti-inflammatory effects of C-peptide on 
smooth muscle cells, and intracellular signal-
ing activities of C-peptide at the basis of anti-
inflammatory function 

Vascular smooth muscle cells (VSMC) play an 
integral role in vascular disease and atheroscle-
rotic plaque formation. They serve as a primary 
source of collagens, elastic fibers, and several pro-
teoglycans, all components of the extracellular 
matrix [73]. In response to growth factors such as 
platelet-derived growth factor (PDGF), VSMC mi-
grate and proliferate, and inflammatory stimuli 
become intermixed in the area of inflammation 
[74]. VSMC serve as a critical component of in-
termediate lesion formation, and with continued 
inflammation and remodeling, for the formation of 
advanced, complicated lesions of macroangiopathy 
[74]. Increased proliferation of VSMC, increased 
migration into the intima, altered matrix compo-
nents, increased matrix degrada-
tion, and increased nonenzymatic 
collagen glycation, all have been 
implicated in diabetic macrovascu-
lar disease [75]. Specifically, un-
der high glucose conditions, hu-
man, porcine, and rat VSMC pro-
liferate and migrate from the me-
dia to the subendothelial space, 
contributing to early atheroscle-
rotic lesions [76-78]. 

NF-κB regulates the transcrip-
tion of a number of genes that are 
involved in inflammation and pro-
liferation. In the unstimulated 
state, NF-κB exists as a het-
erodimer in the cytoplasm, and is 
composed of p50 and p65 subunits 
bound to IκB [79]. In response to 
any number of stimuli, IκB is 
phosphorylated and degraded 
causing a release of the p50/p65 

subunit, which subsequently translocates to the 
nucleus, and initiates the transcription of different 
genes [79]. Evidence suggests the NF-κB pathway 
is involved in atherosclerosis by acting at various 
pathophysiological levels during atherogenesis 
[80]. The activated p65 subunit has been found in 
the fibrotic thickened intima-media and athero-
matous areas of the atherosclerotic lesion, and 
also in macrophages, endothelial cells, and smooth 
muscle cells [80]. 

High glucose initiates activation of the NF-κB 
pathway in VSMC [81]. Administration of p65 an-
tisense oligonucleotides inhibits VSMC prolifera-
tion, which further demonstrates the critical role 
of NF-κB in VSMC physiology [82]. Other studies 
implicate NF-κB as a modulator of apoptosis and 
inflammatory signaling in VSMC rather than pro-
liferation [83]. Dragomir et al. found that high 
glucose upregulates MCP-1, and fractalkine, key 
inflammatory chemokines, through upstream in-
volvement of the mitogen-activated protein kinase 
(MAPK) signaling pathway in NF-κB, and activa-
tor protein-1 (AP-1) activation [84]. MCP-1 and 
fractalkine expression was reduced when high glu-
cose-exposed VSMC were treated with peroxisome 
proliferator-activated receptors alpha (PPARα), by 
reducing the activation of the MAPK pathway 
[84]. Nonetheless, NF-κB activation in VSMC 
represents a key mechanism for the accelerated 
vascular disease observed in diabetes. Strategies 
targeting the NF-κB pathway activation for the 
prevention and/or treatment of cardiovascular dis-
ease are becoming important [66, 67, 85, 86]. 

 

5.6 mmol/l 25 mmol/l 1 nmol/l C-P 1 nmol/l Scr C-P

in 25 mmol/l glucose

β-actin

NF-κB p65

 
 

Figure 3. Expression of p65 subunits of NF-κB in AoSMC cultured in 
high glucose in the presence or absence of physiologic amounts of C-
peptide. Representative immunoblot depicting the 65-kDa band of the 
p65 subunit in AoSMC cultured in 5.6 mmol/l or 25 mmol/l glucose in 
the presence or absence of C-peptide (C-P) for 48 hours. In high glu-
cose, AoSMC in the presence of C-peptide showed a decreased NF-κB 
nuclear translocation as compared to high glucose alone. Scrambled 
C-peptide (Scr C-P) did not have significant effect. To show equal 
loading of the gel, staining for β-actin is also shown. Modified with 
kind permission from Elsevier, Figure 5 [9]. 
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C-peptide is emerging as a potential therapeu-
tic option; it reduces high glucose-induced prolif-
eration of vascular smooth muscle cells [9, 87]. Rat 
aortic smooth muscle cells cultured in high-glucose 
conditions with 1 to 100 nmol/l of C-peptide show 
a dose-dependent reduction in proliferation, which 
is mediated through inhibited phosphorylation of 
p42/p44 MAP kinases, and inhibited PDGF-β re-
ceptor expression [87]. In human umbilical artery 
smooth muscle cells (UASMC) and human aortic 
smooth muscle cells (AoSMC), physiologic concen-
trations of C-peptide (as well as NF-κB inhibitors) 
decrease high glucose-induced proliferation (Fig-
ure 2) [9]. Furthermore, C-peptide reduced high 
glucose-induced nuclear translocation of NF-κB 
p65 and p50 in both UASMC (Figure 3) and 
AoSMC, and reduced high glucose-induced phos-
phorylation of IκBα in VSMC [9]. The latter is an 
upstream signaling event that regulates NF-κB 
translocation from the cytoplasm to the nucleus. 
Thus, physiologic concentrations of C-peptide ap-
pear to reduce high glucose-induced VSMC prolif-
eration via suppression of NF-κB activation. These 
findings underscore a role of C-peptide in VSMC 
functions, especially in conditions of diabetic in-
sult to the vasculature. 

There are also conflicting data on C-peptide’s 
role in VSMC proliferation. In vitro studies by 
Walcher et al. revealed human and rat VSMC pro-
liferation upon stimulation with the respective C-

peptide in a dose-dependent manner, with a 
maximal induction at 10 nmol/l human C-peptide 
or 0.5 nmol/l rat C-peptide [88]. It is possible that 
C-peptide in excessive or non-physiologic quanti-
ties may promote lesion development, for example 
in patients with type 2 diabetes (T2D) and insulin 
resistance, while preventing lesion development in 
patients with T1D and insulin deficiency. Further 
studies are needed to delineate the exact role of C-
peptide in lesion development. 

Other studies also demonstrate the importance 
of C-peptide in intracellular signaling and in-
flammation in the central nervous system. T1D 
patients may suffer impairments in learning, 
memory, problem solving, and mental and motor 
speed with primary diabetic encephalopathy rec-
ognized as a late complication of T1D [11]. In the 
type 1 BB/Wor rat (rat model of human T1D), du-
ration-related cognitive impairment is associated 
with duration-related apoptosis-induced neuronal 
loss in the hippocampus [89]. C-peptide replace-
ment reduced several apoptotic mechanisms, and 
significantly prevented the cognitive dysfunction 
and hippocampal neuronal loss [90]. 

Furthermore, the expression of NF-κB was sig-
nificantly increased in diabetic hippocampi. This 
phenomenon was associated with increased ex-
pression of RAGE, and the downstream activation 
of pro-inflammatory TNF-α, IL-1β, IL-2, and IL-6 
[11]. The upregulation of RAGE and activation of 

NF-κB, TNF-α, IL-1β, IL-2, and 
IL-6 were significantly reduced 
when the diabetic rats received 
C-peptide replacement, which 
was also associated with the 
prevention of astrocyte prolif-
eration [11]. In addition to 
stimulating NF-κB activation, 
RAGE plays a role in innate 
immune responses [11]. Thus, 
both NF-κB and RAGE activa-
tion contribute to the eventual 
apoptotic cell death and cogni-
tive dysfunction in T1D, all of 
which may be prevented by C-
peptide replacement [11]. 

Anti-inflammatory effects of 
C-peptide in endotoxic shock 

Sepsis, defined as acute sys-
temic inflammatory response 
to infection, is the most com-
mon cause of death in inten-
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Figure 4. C-peptide internalization in human aortic endothelial cells 
(HAEC) and umbilical artery smooth muscle cells (UASMC). In HAEC and 
UASMC, C-peptide internalizes as punctuate structures. HAEC (A) and 
UASMC (B) were incubated for 30 minutes with 1 mmol/l Alexa Fluor 488-
labeled C-peptide at 37°C, washed with medium, and imaged by confocal 
microscopy. The C-peptide probe localized at the periphery of the cell and 
in the cytoplasm, represented by the green punctuate staining. The figure 
shows a representative z-section across one cell. Modified with kind per-
mission from Springer Science+Business Media, Figure 1 [100]. 
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sive care units. It has been calculated that 10% of 
all deaths in the United States are attributable to 
sepsis [91]. Systemic inflammation, with increased 
circulatory levels of inflammatory cytokines, is a 
pathogenetic component of severe sepsis and of 
other critical illnesses such as major trauma, 
burns, and pancreatitis, and can occur after major 
surgery [92]. To date, the conventional therapies, 
combined with circulatory and respiratory sup-
port, are not always sufficient to reverse systemic 
inflammation [12, 93]. A recent report showed that 
injections of C-peptide in vivo to lipopolysaccha-
ride (LPS)-treated mice, an animal model of en-
dotoxic shock, drastically improved the survival 
rate of the animals compared to vehicle-treated 
mice. This effect is associated with reduced 
plasma levels of the pro-inflammatory cytokines 
tumor necrosis factor alpha (TNF-α) and MCP-1, 
and a decreased overall inflammatory response in 
the lung [12]. In the lung of endotoxin-treated 
mice, C-peptide inhibited phosphorylation of ex-
tracellular signal-regulated kinase (ERK) 1/2, fol-
lowed by upregulation of nuclear expression and 
DNA binding of the nuclear transcription factor 
proliferator-activated-receptor gamma (PPAR-γ), 
which plays an important role in the modulation 
of inflammation [12]. 

Internalization of C-peptide in target cells 

C-peptide has been shown to exert biological ef-
fects on a variety of cells. However, little is known 
about the C-peptide receptor, and how C-peptide 
achieves its intracellular effects in target cells. It 
was initially thought that C-peptide works via 
nonchiral mechanisms rather than by stereospeci-
fic receptors or binding sites [94]; though, earlier 
reports showed specific binding of C-peptide to 
cultured B cells from a transplantable rat islet cell 
tumor [95]. Using sensitive techniques (fluores-
cence correlation spectroscopy), Rigler et al. con-
firmed specific binding of human C-peptide to 
membrane-bound receptors in several human cell 
types, including renal tubular cells, skin fibro-
blasts, and saphenous vein endothelial cells [96, 
97]. Furthermore, C-peptide binding reached full 
saturation at 0.9 nM; thus in healthy subjects, re-
ceptor saturation is achieved at physiologic levels 
[96]. Pretreatment with pertussis toxin prevented 
C-peptide binding, suggesting C-peptide binds to 
specific G-protein coupled receptors on human cell 
membranes (96). C-peptide binding to cells may be 
displaced by its C-terminal pentapeptide with 
Glu27, which is particularly important for specific 
binding to human renal tubular cells (96, 98). 

In addition to specific binding to cell mem-
branes, C-peptide internalization has recently also 
been verified. In HEK-293 cells and Swiss 3T3 fi-
broblasts, C-peptide was shown to bind and cross 
the plasma membrane, localizing in the cytoplasm 
where it was detected up to 1 hour after its uptake 
[99]. Nuclear localization of C-peptide in HEK-293 
cells and Swiss 3T3 fibroblasts was also demon-
strated [99]. C-peptide internalization was also 
explored in HAEC and UASMC. In these cells, C-
peptide internalizes to punctate structures local-
ized at the level of the cellular membrane and in 
the cytoplasm (Figure 4) [100]. Internalization of 
C-peptide was minimal after 5minutes, clearly de-
tectable after 10 minutes, resulted in bright stain-
ing after 30 minutes, and internalization was 
completed by 1 hour [100]. Furthermore, C-
peptide co-localized with endosomes, and was 
eventually trafficked to lysosomes [100]. Based on 
these findings, signaling from putative C-peptide-
receptor complexes might be initiated at the 
plasma membrane, continue from early en-
dosomes, and terminate at lysosomes. Endosomes, 
classically regarded as sorting stations for inter-
nalized activated receptor-peptide complexes on 
their way to lysosomal degradation, are emerging 
as crucial players in intracellular signaling [101]. 
This trafficking provides a possible platform for 
the intracellular signaling events initiated by C-
peptide in target cells. 

Concluding remarks 
Contrary to past belief, recent years have ex-

posed C-peptide as a biologically active peptide, 
independent of insulin. C-peptide circulates in 
nanomolar concentrations in healthy individuals, 
but is reduced or absent in individuals with T1D, 
a population with inherent increased risk for vas-
cular sequelae. C-peptide also seems to be present 
in too large quantities in T2D. Though DCCT 
clearly demonstrated rigorous glycemic control 
may reduce or delay the onset of vascular compli-
cations in T1D, these complications could not be 
completely prevented. Thus, other factors must be 
playing a role. C-peptide, in physiologic amounts, 
is emerging as a molecule displaying potential 
beneficial effects on the dysfunctional endothe-
lium, as observed in several in vivo and in vitro 
models of inflammation-mediated vascular injury. 
Although further studies are needed, one may 
speculate dual hormone replacement therapy with 
both insulin and C-peptide in patients with T1D 
may be warranted to combat cardiovascular mor-
bidity and mortality in this population. 
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