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■ Abstract 
Mitochondrial dysfunction involves defective insulin secre-
tion by pancreatic beta-cells, and insulin resistance in insu-
lin-sensitive tissues such as muscle and adipose tissue. Mi-
tochondria are recognized as the most important cellular 
source of energy, and the major generator of intracellular 
reactive oxygen species (ROS). Intracellular antioxidative 
systems have been developed to cope with increased oxida-
tive damage. In case of minor oxidative stress, the cells may 
increase the number of mitochondria to produce more en-
ergy. A mechanism called mitochondrial biogenesis, involv-
ing several transcription factors and regulators, controls the 
quantity of mitochondria. When oxidative damage is ad-
vanced beyond the repair capacity of antioxidative systems, 
then oxidative stress can lead to cell death. Therefore, this 
organelle is central to cell life or death. Available evidence 

increasingly shows genetic linkage between mitochondrial 
DNA (mtDNA) alterations and type 2 diabetes (T2D). Based 
on previous studies, the mtDNA 16189 variant is associated 
with metabolic syndrome, higher fasting insulin concentra-
tion, insulin resistance index and lacunar cerebral infarction. 
These data support the involvement of mitochondrial genetic 
variation in the pathogenesis of T2D. Importantly, phy-
logeographic studies of the human mtDNAs have revealed 
that the human mtDNA tree is rooted in Africa and radiates 
into different geographic regions and can be grouped as hap-
logroups. The Asian populations carry very different mtDNA 
haplogroups as compared to European populations. There-
fore, it is critically important to determine the role of mtDNA 
polymorphisms in T2D. 
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Mitochondria and diabetes  
 

 here is evidence that mitochondria are in- 
 volved in the development of diabetes. Epi- 
 demiological studies have revealed that the 

inherited transmission of type 2 diabetes (T2D) is 
maternally influenced [1-2]. Diabetes is also fre-
quently associated with mitochondrial diseases [3-
8]. Recent studies have added evidence that reac-
tive oxygen species (ROS) generated from mito-
chondria play a major role in the pathogenesis of 
diabetic complications [9-11]. Inherited defects in 

mitochondrial oxidative phosphorylation were 
found in muscle cells of insulin-resistant offspring 
of diabetic parents [12]. These findings support 
the concept of mitochondrial involvement in T2D.  

Mitochondria are the major source of cellular 
energy. Defects in mitochondrial DNA (mtDNA) 
may lead to dysfunction of enzymes involved in 
mitochondria respiratory chains. Also, increased 
ROS production, a consequence of ineffective elec-
tron transportation, may cause further cellular 
damage. Mitochondrial dysfunction may cause 
diabetes by the following mechanisms: 
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1. Defective mtDNA may impair ATP production 
caused by a dysfunction of encoded respiratory 
chain enzymes and impaired insulin secretion 
of beta-cells. 

2. Defects in oxidative phosphorylation in insu-
lin-sensitive tissue could impair insulin action. 

Mitochondrial DNA 
Mitochondria have their own DNA. However, 

mtDNA is dependent on nuclear genes for its rep-
lication and expression. Mitochondrial genome is 
highly compacted on the double-stranded circular 
mtDNA containing 16569 bp in length. The genes 
are arranged in two strands, the outer circle, a 
guanine-rich heavy (H) strand, and the inner cir-
cle, a cytosine-rich light (L) strand. They encode 
13 polypeptides, 22 tRNA, and 2 rRNA which are 
required for oxidative phosphorylation [13]. The 
genes are tightly packed without introns. Mito-
chondrial DNA contains a displacement loop (D-
loop), a non-coding control region of approximately 
1.1 kb (between position 16024 and 576). Initiation 
of mtDNA replication in cells occurs within the D-
loop [14, 15]. 

The D-loop is frequently associated with se-
quence variation. Greenberg et al. were the first to 
describe two separate regions with high nucleotide 

diversity i.e. the highly variable region 1 (HVR-1) 
between positions 16024 and 16365, and HVR-2 
between positions 73 and 340 [16]. An additional 
HVR-3 region between positions 438 and 574 was 
later found by Lutz et al. [17]. Sequence data of 
the mtDNA D-loop have frequently been used in 
studies of population evolution, in anthropology 
applications, and in forensic practice studies [18-
21]. 

Human mtDNA is more susceptible to oxida-
tive damage and consequently acquires mutations 
at a higher rate than nuclear DNA. This is due to 
elevated exposure of mtDNA to high ROS levels 
generated during respiration, lack of protective 
histones, and limited capacity for repair of mtDNA 
damage [22, 23]. 

Mitochondrial biogenesis controls 
cell function and survival 

Mitochondria are the intracellular organelles 
responsible for supplying most of the cellular en-
ergy needs. This is created by producing ATP 
through oxidative phosphorylation via the respira-
tory chain complex in its inner membrane. Each 
cell contains several hundreds to more than a 
thousand mitochondria. Each mitochondrion con-
tains 2-10 copies of mtDNA. The abundance of mi-
tochondria and mtDNA copies vary dramatically 
in different stages of energy demand and physio-
logical conditions, and is tightly controlled by the 
mechanism called mitochondrial biogenesis. Mito-
chondrial biogenesis can vary in different organs 
reflecting the different requirements of each or-
gan’s specific innate function [24-26]. 

Biosynthesis of mitochondrial proteins requires 
contribution from mitochondria and the nucleus, 
but most of them are encoded by nuclear genes 
and synthesized outside of mitochondria. The as-
sembly and functioning of respiratory enzyme 
complexes in cells require coordinated expression 
and interaction between gene products of mito-
chondria and nuclear genomes [27-29]. Mitochon-
drial biogenesis is controlled by a complex cascade 
of events activated in response to environmental 
stress. The activation of the nuclear transcrip-
tional coactivator PPARγ coactivator-1α (PGC-1α) 
gene, a major regulator of mitochondrial biogene-
sis induced by the environmental signals, triggers 
the process. After activation, PGC-1α regulates the 
expression of transcription factors involved in the 
coordinated expression of mitochondrial genes 
such as nuclear respiratory factors (NRF-1 and 
NRF-2). This event in turn triggers the expression 

Abbreviations: 
 

ATP - adenosine-5’-triphosphate 
AMPK - adenosine monophosphate-activated protein 
kinase 
BMI - body mass index 
Chaperon - protein between the mitochondrial membranes 
Cu/ZnSOD - copper/zinc superoxide dismutase 
D-loop - displacement loop 
GPx - glutathione peroxidase 
HVR - highly variable region 
IGT - impaired glucose tolerance 
MnSOD - manganese superoxide dismutase 
mtDNA - mitochondrial DNA 
mTFB - mitochondrial transcription factor B 
NRF - nuclear respiratory factor 
PGC-1α - PPARγ coactivator-1α 
PPARγ - peroxisome proliferator-activated receptor γ 
RCC - respiratory chain complex 
rCRS - revised Cambridge reference sequence 
ROS - reactive oxygen species 
rRNA - ribosomal ribonucleic acid 
SNP - single-nucleotide polymorphism 
T2D - type 2 diabetes 
Tfam - mitochondrial transcription factor A 
TFB - transcription factor B 
TIM - translocase of the mitochondrial inner membrane 
TOM - translocase of the mitochondrial outer membrane 
tRNA - transfer ribonucleic acid 
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of nuclear genes coding 
for polypeptides of the 
respiratory chain and 
proteins involved in 
transcription and rep-
lication of mtDNA. 
Both NRF-1 and NRF-
2 can regulate the ex-
pression of mitochon-
drial transcription fac-
tor A (Tfam) and B 
(mTFB). These factors 
are then imported into 
the mitochondrial ma-
trix, act on the pro-
moters within the D-
loop region of mtDNA, 
and regulate replica-
tion and transcription 
of the mitochondrial 
genome (Figure 1). 
This provides a unique 
mechanism for the cell 
to integrate the ex-
pression of nuclear 
DNA-encoded proteins 
with the transcription 
of genes encoded by 
mtDNA. Hence, it is 
possible that the effec-
tiveness of mitochondrial biogenesis may be al-
tered or impaired by polymorphisms in the nu-
clear genes of PGC-1α, NRF-1 and 2, Tfam, or by 
base changes in the D-loop of mtDNA. Such ge-
netic variations may alter the activities of tran-
scription factors and regulators. 

Alterations in mitochondrial biogenesis could 
be the underlying pathologic factor for some im-
portant human diseases. This is particularly rele-
vant in chronic diseases such as diabetes mellitus 
[9-11], renal insufficiency [30-33], liver disease 
[34-36], and neurodegenerative diseases [37-39]. 
Persistent cell damage by excessive exposure to 
free radicals resulting from the byproducts of mi-
tochondrial biogenesis can contribute to the devel-
opment and progressive deterioration of these dis-
eases. 

Mitochondia and reactive oxygen 
species (ROS) 

Mitochondria are the main intracellular source 
and immediate target of ROS. Approximately 1-5% 
of the oxygen consumed by mitochondria in tissue 
cells is converted to ROS under normal physiologi-

cal conditions. Defects in the respiratory chain in 
affected tissue of patients with mitochondrial dis-
ease or aged individuals contribute to increased 
production of superoxide anions by mitochondria 
[22, 40, 41]. Approximately 90% of oxygen in the 
cell is consumed by mitochondria and the mito-
chondrial respiratory chain is the source of con-
tinuing flux of oxygen radicals. Therefore, these 
organelles are susceptible to contribute to oxida-
tive damage generated in situ [42]. 

To deal with the continuing ROS production by 
aerobic metabolism, cells have developed antioxi-
dative enzymes, including mitochondrial manga-
nese superoxide dismutase (MnSOD), copper/zinc 
superoxide dismutase (Cu/ZnSOD), glutathione 
peroxidase (GPx), and catalase [43]. Although 
these enzymes in combination with other antioxi-
dants can dispose of most of the ROS and free 
radicals generated under normal condition, a frac-
tion of ROS may escape the defense mechanism 
and cause damage to critical cellular macromole-
cules including nucleic acids, proteins, and lipids 
[44, 45]. 

When cells, with adequate antioxidant capacity 
and good quality of parental mitochondria, are ac-
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Figure 1. Molecular pathway for mitochondrial biogenesis. The figure shows the mo-
lecular pathway of mitochondrial biogenesis. The two major initial events are transcrip-
tion and replication of mitochondrial DNA. These events are the pre-requisite for ATP 
production to fulfill the energy requirements of tissue cells. This is exactly controlled by 
sequential events in response to environmental or oxidative stress. The activation of the 
nuclear transcriptional coactivator-PGC-1α gene by these signals triggers the next step 
in the process. PGC-1α, acting as a coactivator, binds to the corresponding nuclear 
genes to help the translation of a series of nuclear DNA-encoded respiratory enzymes 
and mitochondrial transcription factors A (Tfam) and B (mTFB). The latter two proteins 
are also cooperatively transcribed by specific nuclear respiratory factors (NRF-1 and 2). 
These factors are then imported into the mitochondrial matrix to activate further proc-
esses. 
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tivated in response to mild environmental oxida-
tive stress, and if energy supply is decreased, then 
mitochondria can increase the abundance of struc-
tural proteins and mtDNA molecules [46]. This 
may result in an increase of energy supply by in-
creased mitochondrial biogenesis. However, when 
the capacity of the antioxidant system is compro-
mised, then the exposure of tissue cells to higher 
oxidative stress results in an increase of defective 
mitochondria and mutated mtDNA. mtDNA en-
codes essential polypeptides involved in oxidative 
phosphorylation. Respiratory enzymes containing 
defective protein subunits encoded by mutated 
mtDNA may cause mitochondrial dysfunction. On 
the other hand, restimulated mitochondrial ROS 
production and oxidative mtDNA damage eventu-
ally cause a decline in mitochondria function and 
cell death [11, 26, 40]. Therefore, another impor-
tant function of mitochondria is to act as a regula-
tor in the initiation and execution of programmed 
cell death, or apoptosis [47-49]. Recent evidence 
suggests that mitochondria play a crucial role in 
the determination of cell life or death [25]. 

Mitochondrial DNA variants and 
diabetes mellitus 

There is compelling evidence for a genetic pre-
disposition to diabetes [50-52]. Early in 1962, 
James Neel addressed the question of how diabe-
tes, an apparently genetic disease with such an 
adverse effect on survival, could have become so 
common [53]. His observation of the high T2D fre-
quency in previously undernourished communities 
raised the “thrifty genotype” hypothesis, which 
suggested that the predisposition to T2D carry 
some selective advantage in evolutionary history. 
The hypothesis is supported by the high preva-
lence and strong familial association of T2D in the 
population of Pima Indians [54, 55] and Polyne-
sians [56]. The thrifty genotype may have contrib-
uted to their survival during centuries of poor nu-
trition, but increased the risk of diabetes following 
recent urbanization. 

Equally convincing is the “thrifty phenotype” 
hypothesis [57]. A strong association between 
small size at birth and the risk of developing the 
metabolic syndrome in adult life has been reported 
since 1989 in studies of a number of cohorts fol-
lowed up from birth on [58-65]. Barker and Hales 
proposed that maternal nutrition programs fetal 
metabolism and predisposes to T2D later in life 
[60]. Their hypothesis was supported by data from 
the Dutch famine study [66], which demonstrated 

that short periods of maternal malnutrition can 
permanently affect glucose homeostasis in the off-
spring. However, “thrifty genotype” and “thrifty 
phenotype” may not be exclusive to each other. 
Both concepts could be explained by genotype that 
promoted survival during earlier nutritional ad-
versity but later add to the risk of T2D. Since mi-
tochondria are responsible for supplying most of 
the cellular energy needs, it has been hypothe-
sized that mitochondria might play a role in 
“thrifty genotype” [67]. 

Quite a number of case studies have found a 
link between the occurrence of diabetes and mito-
chondrial genetic variation such as point mutation 
[3-6], deletion [7] and duplication [8]. The com-
monest single mutation of mtDNA, which may 
lead to diabetes, is located at bp 3243 G:C relative 
to the reference sequence [68]. This point muta-
tion causes maternally inherited diabetes and 
deafness (MIDD) [3], mitochondrial encephalopa-
thy, lactic acidosis and stroke-like episodes (ME-
LAS) syndrome or a progressive kidney failure 
[69]. Since the 3243A>G mutation coexists in cells 
with wild-type mtDNA, the mutation load in dif-
ferent tissue may affect the different phenotypes 
associated with this mutation. Even in the group 
of presumed normoglycemic 3243A>G-positive in-
dividuals, a substantial fraction has diabetes or 
impaired glucose tolerance in oral glucose toler-
ance test screening [70]. However, the commonest 
A3243G mutation has been found in only 1.5% 
among the idiopathic diabetes forms [71]. This is 
too rare to account for a major cause of diabetes. 

In addition to qualitative changes caused by 
mtDNA variations, quantitative defects of mito-
chondria have also been proposed to be the under-
lying mechanism of insulin resistance in T2D [72-
74]. Changes in mtDNA content in leukocytes of 
diabetes patients have been reported previously. 
However, controversy exists regarding the contri-
bution of mtDNA content to the development of 
T2D, because changes of the mtDNA copy number 
may be secondary to hyperglycemia rather than 
being the major cause of insulin resistance [75-77]. 
In addition, discrepancies in the effect of glucose 
metabolism on mtDNA copy number may be at-
tributed to the nature of cell types [78]. 

A common transitional variant at bp 16189 
(T>C transition) in the first hypervariable seg-
ment of the mtDNA control region (D-loop) ini-
tially showed an unusually high incidence in the 
MELAS phenotype group as compared to controls 
(67.0% vs. 22.4%) [79]. It was suggested that the 
16189 variant reflects a predisposition towards 
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the formation or fixation of mtDNA mutation. This 
16189 variant was later found to be associated 
with elevated fasting insulin levels in men born in 
Hertfordshire, UK, between 1920 and 1930, in 
whom the link between small birth size and im-
paired glucose tolerance (IGT) at age 64 was con-
firmed [80, 81]. Moreover, a population-based 
case-control study in Cambridgeshire, UK, demon-
strated a significant association between the 
16189 variant and T2D [82]. 

In Asia, a hospital-based case-control study 
found an association between the mtDNA 16189 
variant and lacunar cerebral infarction in a Chi-
nese population [83]. Another case-control study in 
Chinese aged 40 or older revealed that the mtDNA 
16189 variant was associated with the metabolic 
syndrome. This association remained significant 
after correcting for age and body mass index 
(BMI). Furthermore, the 16189 variant occurred 
more frequently in individuals with an increasing 
number of metabolic syndrome traits [84]. A fol-
low-up study of 1,054 Chinese adults revealed that 
the proportion of subjects with the 16189 variant 
increased with higher fasting insulin concentra-

tion and insulin resistance index. Increased BMI 
was an aggravating factor for the development of 
T2D in subjects carrying the 16189 variant. The 
data exemplify an additive effect on the patho-
genesis of T2D caused by genetic and environ-
mental factors [85]. 

Although some recent case-control studies in 
Europe could not replicate the association between 
the 16189 variant and T2D [86-89], a multina-
tional study in Asians including 2,469 T2D pa-
tients and 1,205 controls from Korea, Japan, Tai-
wan, Hong Kong, and China confirmed the role of 
the mtDNA 16189 variant at least in Asian T2D 
patients [90]. The prevalence rate of the 16189 
variant of mtDNA in Taiwan Chinese adults was 
38.2% (34.6% in non-diabetic and 43.1% in dia-
betic subjects) [84]. This finding was similar to 
those reported for Koreans (28.8%) [91], Japanese 
(34.4%) [92], Mainland Chinese (30%; non-
diabetes 20-26.6%, T2D 33-36.9 %) [93, 94], Indo-
nesia (10-60%, major population 32-47%) [95, 96], 
and Kuna Amerinds of Panama (28.5%) [97]. How-
ever, it was higher than the prevalence reported 
for Anglo-Saxon Caucasians (8.2%; non-diabetes 

6.4%, T2D 9.9%) [82] 
and Indians (12.2%) 
[98]. Following the 
trail of ancient hu-
man migrations from 
Africa to the Asian 
Pacific region [99], 
we can observe an 
increasing frequency 
of the mtDNA 16189 
variant along this 
path (Figure 2). The 
magnitude of influ-
ence of a particular 
genetic variant on 
disease susceptibility 
may dependent on 
the prevalence of this 
variant in the popu-
lation. We hypothe-
sized that the rapid 
increase of T2D in 
Asians under the in-
fluence of Western 
lifestyle may partly 
be explained by the 
high prevalence of 
the mtDNA variant. 
This hypothesis still 
needs further clarifi-
cation. 

 
 
 
 
 

12%

8%

29%25%

29%
10-60%

38%

34%

30%

12%

8%

29%25%

29%
10-60%

38%

34%

12%

8%

29%25%

29%
10-60%

38%

34%

30%

 
 
Figure 2. The prevalent rate of the mtDNA 16189 variant traced along the ancient path 
of human migration. The encircled data represent the percentages of the population in a 
given country/region with the mtDNA 16189 variant according to available study data. 
The incidences are given for England (8%), Finland (30%), India (12%), China (25%), Ko-
rea (29%), Japan (34%), Taiwan (38%), Indonesian archipelago (10%-60%), and Panama 
(29%) [82, 85, 89, 90-98]. The world map shows possible migration routes of different 
people, as suggested by studies of mitochondrial DNA. The map is modified from [100]. 
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We have studied the polymorphism of mito-
chondrial D-loop DNA in 1,754 samples of periph-
eral leucocytes from a Chinese population. DNA 
sequences were analyzed by the DNASTAR Se-
quencing Analysis Software and compared with 
the revised Cambridge reference sequence (rCRS, 
last updated 05/16/2007). We found 324 variable 
positions within the 1100 bp mtDNA segment 
(nt16000 ~ nt502) in comparison to the rCRS. Ta-
ble 1 shows the common genetic variants (>10%) 
in our series. The positions with the highest fre-
quency of polymorphism (>30%) included nt16189, 
nt16223, nt16362, nt16519, and nt489. In this 
study, the T16217C mutation was more signifi-
cantly associated with T2D than the T16189C mu-
tation. Interestingly, we found that the T16217C 
mutation occurred simultaneously with the 
T16189C mutation, suggesting the existence of a 
linkage disequilibrium between T16217C and 
T16189C [101]. 

The possible mechanisms involved in the asso-
ciation of the 16189 variant with T2D are as fol-
lows: 

 
1. Since the 16189C variant is located in the 

control region of mtDNA replication, it was 

suggested that the T>C transition results in 
a polycytosine tract that in turn may predis-
pose the mtDNA to defects in replication 
[102, 103]. This hypothesis was not sup-
ported by two recent studies [88, 89]. 

2. T2D patients carrying the 16189C variant 
had impaired ability to respond properly to 
oxidative stress [104]. 

3. The mtDNA 16189 variant has a lower bind-
ing affinity to mitochondrial single-stranded 
DNA-binding protein, which is involved in 
mtDNA replication [90], and may impair mi-
tochondrial biogenesis. 

4. Possibly there is a linkage of the 16189 vari-
ant with other potential SNPs associated 
with diabetes. It is reasonable that haplo-
type analysis for determination of racial-
specific characteristics will be more informa-
tive. 

 
In our unpublished data, the haplotype B4 in 

the Chinese population is associated with T2D and 
the T16217C mutation. The latter occurred simul-
taneously with the T16189C mutation. This is a 
critical single-nucleotide polymorphism (SNP) for 
haplotype B4 classification. Tanaka et al. studied 
genotypes for 25 polymorphisms in the coding re-
gion of the mitochondrial genome in 1,337 unre-
lated Japanese individuals. Among the 10 hap-
logroups identified (F, B, A, N9a, M7a, M7b, G1, 
G2, D5, and D4), group N9a was significantly as-
sociated with resistance to the metabolic syn-
drome in women [105]. A second study involving 
2,906 unrelated Japanese individuals and 1,365 
unrelated Korean individuals further confirmed 
that haplogroup N9a is a resistant genotype to 
T2D [106]. 

Conclusions 

Diabetes is accompanied by a group of risk fac-
tors of metabolic origin and an increased risk for 
cardiovascular disease. Identifying diabetes-
susceptible genetic variants in humans has been 
challenging. Genome-wide association studies 
have detected at least 10 T2D-associated variants 
in nuclear DNA and emphasized the contribution 
of multiple variants of modest effect [107-110]. Al-
though mtDNA is different from nuclear DNA, 
there is coordinated expression and interaction be-
tween the gene products of mitochondria and nu-
clear genomes. The role of defective oxidative me-
tabolism related to mitochondrial dysfunction is 
not fully known and needs further clarification. 

Table 1. Common polymorphisms (>10%) in a Chinese po-
pulation compared with the revised Cambridge reference 
sequence (rCRS) 
 

 

SNP 

 

Incidence 

 

nt16129 
 

24.97% 
 

nt16172 
 

13.23% 
 

nt16183 
 

29.02% 
 

nt16189 
 

34.95% 
 

nt16217 
 

13.63% 
 

nt16223 
 

54.73% 
 

nt16298 
 

10.03% 
 

nt16304 
 

16.99% 
 

nt16319 
 

12.83% 
 

nt16362 
 

33.47% 
 

nt16519 
 

54.68% 
 

nt150 
 

24.74% 
 

nt152 
 

20.24% 
 

nt199 
 

12.88% 
 

nt249 
 

20.81% 
 

nt489 
 

47.38% 
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