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■ Abstract 
The diverse actions of the incretin hormone glucagon-like 
peptide (GLP)-1 include insulinotropic, beta-cell preserva-
tive, cardioprotective and vasodilatory effects. This spectrum 
makes GLP-1 an appealing therapeutic option for patients 
with type 2 diabetes. However, its rapid metabolism by the 
enzyme dipeptidyl peptidase (DPP)-4 renders it impractical. 
Incretin-based analogues have been developed to extend 
endogenous GLP-1 action (GLP-1 receptor agonists) and to 
hamper its degradation (DPP-4 inhibitors). Evidence sug-
gests that GLP-1 receptor agonists and DPP-4 inhibitors 
have different pharmacodynamic and pharmacokinetic ef-
fects. For example, GLP-1 receptor agonists deliver supra-
physiologic levels of GLP-1 analogues designed to resist in-
activation by DPP-4, whereas DPP-4 inhibition conserves 
native GLP-1 resulting in concentrations within the physiol-
ogic range. Furthermore, GLP-1 receptor agonists induce 

glucose-dependent insulin secretion, beta-cell protection, 
and other extraglycemic benefits such as weight loss and 
improvement in markers of cardiovascular risk. In contrast, 
DPP-4 inhibitors are weight neutral and have modest effects 
on glucose control. DPP-4 inhibition is dependent on the 
availability of endogenous GLP-1, which appears to be ad-
versely affected by type 2 diabetes and its progression. 
Therefore, DPP-4 inhibitors may be better suited for patients 
with mild hyperglycemia without comorbidities. This review 
examines the present understanding of the pancreatic ef-
fects of endogenous GLP-1, and the extrapancreatic actions 
it exerts on human bodily systems. Also, it analyzes available 
preclinical and clinical data on incretin therapies with re-
spect to glycemia, lipids, blood pressure, and weight. 
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Introduction  
 

 lucagon-like peptide 1 (GLP-1) was first 
 characterized as an incretin hormone. In 
 the years after its discovery, diverse actions 

of GLP-1 were described. These include: 1. insuli-
notropic effects [1, 2], 2. neogenesis, differentia-
tion, and preservation of pancreatic β-cells [3-7], 
and 3. cardioprotective and vasodilatory proper-
ties. The discrete mechanisms governing the latter 
two effects have not yet been fully clarified [8]. 
Despite early encouraging results with intrave-
nous infusion [9-11], native GLP-1 was deter-

mined to be an impractical therapeutic tool, due to 
its rapid extensive metabolism by dipeptidyl pep-
tidase 4 (DPP-4) [12, 13]. Consequently, attempts 
to adapt GLP-1 to therapeutic advantages in the 
treatment of type 2 diabetes resulted in the devel-
opment of GLP-1 analogues that protract endoge-
nous GLP-1 action. Also, DPP-4 inhibitors have 
been developed to impede the enzymatic inactiva-
tion of the incretin hormone. 

Current evidence suggests that GLP-1 receptor 
agonists and DPP-4 inhibitors have differential 
pharmacodynamic and pharmacokinetic effects. 
GLP-1 receptor agonists deliver supraphysiologic 
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levels of GLP-1 analogues designed to resist DPP-
4 degradation. Whereas, DPP-4 inhibition con-
serves native GLP-1, resulting in concentrations 
within the physiologic range [12]. DPP-4 inhibitors 
are associated with weight neutrality and modest 
effects on glucose control (HbA1c reductions of 
0.6% to 0.8%) [14]. DPP-4 inhibition is dependent 
on islet function, which is adversely affected by 
type 2 diabetes and its progression [15]. Therefore, 
DPP-4 inhibitors may be better suited for patients 
with early type 2 diabetes without comorbidities 
[16]. DPP-4 inhibition is nonspecific; thus, it may 
compromise the function of additional peptide sub-
strates such as GLP-2, glucose-dependent insuli-
notropic polypeptide, 
peptide YY, neuropep-
tide Y, growth hormone-
releasing hormone, as 
well as various 
paracrine chemokines 
and immune system sub-
strates [17, 18]. 

GLP-1 receptor ago-
nist therapy supple-
ments native GLP-1 
with pharmacologic 
doses of GLP-1 ana-
logues. The analogues 
are fully capable of bind-
ing to the GLP-1 recep-
tor and inducing glu-
cose-dependent insulin 
secretion. They also pro-
vide β-cell protection and 
other extraglycemic 
benefits, such as weight 
loss and improvements 
in markers of cardiovas-
cular (CV) risk [1, 4, 7, 
12, 19-21]. GLP-1 recep-
tor agonists are designed 
to retain the β-cell-
potentiating and -
preserving properties of 
the incretin hormones, 
while incorporating re-
sistance to inactivation 
by DPP-4 [22]. 

DPP-4 inhibitors 
have less robust antigly-
cemic and extraglycemic 
effects than GLP-1 re-
ceptor agonists. This 
may be explained by dif-

ferent GLP-1 plasma concentrations. Further-
more, DPP-4 inhibitors may convey humoral and 
neuroendocrine effects of GLP-1 by inhibiting 
GLP-1 degradation in various tissues. Another ex-
planation may involve the potential bioactivity of 
GLP-1 (9-36), a rapidly produced metabolite of 
GLP-1. In animal models, GLP-1 (9-36) appears to 
have cardioprotective benefits independent of the 
GLP-1 receptor [23]. It may be that agents of the 
incretin class are associated with substantial dif-
ferences in circulating levels of GLP-1 (9-36) [23]. 
Whether inhibition of DPP-4 has beneficial conse-
quences independent of its antidiabetic effects re-
mains to be demonstrated [24]. 
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Figure 1. Glucagon-like peptide-1: pancreatic and extrapancreatic actions. The 
various organs or organ systems affected by GLP-1 actions are depicted in the figure. 
In the pancreas, GLP-1 action causes short term effects that result in increased glu-
cose-dependent insulin- and somatostatin secretion, increased insulin synthesis, and 
inhibition of glucagon secretion. Long-term effects of GLP-1 action on the pancreas 
include increased expression of genes that modify beta-cell function and survival in 
a beneficial way by inhibiting beta-cell apoptosis and stimulating beta-cell replica-
tion. In the stomach and intestine, GLP-1 slows motility resulting in delayed gastric 
emptying and a retardation of intestinal motility. In the CNS, GLP-1 is an important 
neurotransmitter for regulating appetite and eating behavior. GLP-1 promotes satiety 
and leads to reduced food intake. Additional long-term effects of GLP-1 on the CNS 
comprise an improvement of learning and memory, as well as a stimulation of neu-
ronal cell survival and replication. In liver, adipose tissue and muscle, GLP-1 action 
causes increased glycogen synthesis and liogenesis. These effects are mainly medi-
ated by the increase in insulin secretion and suppression of glucagon secretion me-
diated by GLP-1. In the heart GLP-1 improves left ventricular function and has pre-
ventive effects on ischemic damage of the heart muscle. Reproduced from Best Pract 
Res Clin Endocrinol Metab, Vol 18, Baggio LL, Drucker DJ, Clinical endocrinology. 
Glucagon-like peptide-1 and glucagon-like peptide-2, 531-554, 2004, with permis-
sion from Elsevier [63]. 
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GLP-1 receptor agonists improve glycemic con-
trol by increasing glucose-stimulated insulin se-
cretion and suppressing glucagon secretion [7]. 
GLP-1 receptor agonists are associated with ro-
bust effects on glucose control (HbA1c reductions 
of 0.4% to 1.5%) as well as weight loss (~-3 kg) and 
other beneficial extraglycemic effects [25-33]. The 
insulinotropic effects of these agents have been 
amply demonstrated in large, placebo-controlled, 
clinical trials. GLP-1 receptor agonists promote 
weight loss by inhibiting gastric secretion and mo-
tility [34-36], which delays carbohydrate absorp-
tion and contributes to satiety by delaying gastric 
emptying [37, 38]. GLP-1 receptor agonists in-
crease β-cell mass in rodents [39-43] and inhibit β-
cell apoptosis in vitro and in vivo [44, 45]. While 
direct effects on β-cell mass cannot be quantified 
in humans, the results of these preclinical studies 
suggest potential protective effects on β-cell vol-
ume and morphology. Clinical evidence of effects 
on contractility, blood pressure, cardiac output, 
and cardioprotection in animals and humans, has 
also been reported [23, 46-50]. 

Ample preclinical and clinical evidence sub-
stantiates the need for a multifactorial risk-
reduction strategy to address hyperglycemia and 
comorbidities in type 2 diabetes. Type 2 diabetes is 
highly correlated with dyslipidemia, hypertension, 
and a spectrum of cardiovascular and metabolic 
derangements. Adiposity increases the risk of type 
2 diabetes [51, 52], and is often accompanied by a 
distinct pattern of plasma lipid abnormalities. 
Elevated triglyceride-rich lipoprotein levels, low 
high-density lipoprotein cholesterol (HDL-C) lev-
els, and structural alterations of low-density lipo-
protein cholesterol (LDL-C) cause a predominance 
of dense, highly proatherogenic particles [53]. The 
dramatic increase in mortality in type 2 diabetes 
associated with cardiovascular disease (CVD) and 
comorbid adiposity underscores an urgent need to 
address these risk factors in type 2 diabetes [54-
56]. The benefits of weight reduction in type 2 dia-
betes are evident. They include improved insulin 
sensitivity, restored β-cell sensitivity, enhanced β-
cell capacity [57-59], a less atherogenic lipid pro-
file [60], and reduced systolic blood pressure (SBP, 
-5 mmHg to -20 mmHg) [61]. Weight reduction of 
as little as 5% to 7% from baseline has been shown 
to reduce the risk of developing diabetes mellitus 
by >50% in patients with impaired glucose toler-
ance [62]. 

The present review examines what is known 
about the pancreatic effects of endogenous GLP-1 
and the extrapancreatic actions it exerts on the 
central nervous, gastrointestinal, and CV system 

(Figure 1) [63]. It concludes with an analysis of the 
available preclinical and clinical data on incretin 
therapeutics with respect to glycemia, lipids, blood 
pressure, and weight. 

GLP-1 synthesis, secretion, and deg-
radation 

GLP-1 is a potent gut hormone that stimulates 
insulin secretion and inhibits glucagon release in 
a glucose-dependent manner. Therefore, it reduces 
postprandial glycemia without causing hypogly-
cemia. GLP-1 is present in two circulating molecu-
lar forms, glycine-extended GLP-1 (7-37) and GLP-
1 (7-36) amide [17]. Following secretion by entero-
endocrine L-cells located primarily in the distal 
ileum and colon, GLP-1 (7-36) amide is rapidly de-
graded and inactivated by DPP-4 to its metabolite 
GLP-1 (9-36) [64, 65]. The half-life of intact circu-
lating GLP-1 is less than 2 minutes in vivo [65]. 

Unlike other insulin secretagogues, GLP-1 
promotes insulin gene transcription and messen-
ger-RNA (mRNA) biosynthesis. Therefore, it has 
the capacity to restore depleted β-cell insulin [66]. 
Studies in rodents and isolated human islets have 
shown that GLP-1 has insulinotropic effects on 
pancreatic islet β-cells by enhancing differentia-
tion and proliferation and reducing apoptosis [3-7, 
67]. The peptide sequences of GLP-1 in rodents 
and humans, have been found to be identical, sug-
gesting that those effects may occur in vivo in both 
species [68]. In clinical studies, exogenous admini-
stration of GLP-1 has normalized β-cell respon-
siveness to glucose and restored both first- and 
second-phase insulin responses in patients with 
type 2 diabetes, regardless of disease severity [11, 
69]. 

The inhibitory effects of GLP-1 on the pancre-
atic islet α-cell may occur indirectly through GLP-
1-mediated stimulation of insulin secretion [70] or 
via direct interaction with GLP-1 receptors on α-
cells [71]. GLP-1 reduces α-cell insulin resistance 
in type 2 diabetes [72-74], thereby it helps inhibit-
ing postprandial glucagon secretion [26, 75-77]. 
Additionally, GLP-1 is able to inhibit glucagon se-
cretion from α-cells indirectly by stimulating 
somatostatin secretion from δ-cells. Somatostatin 
then binds to somatostatin receptor 2 on α-cells, 
leading to a decrease in glucagon secretion [78]. 
Thus, GLP-1 elicits multiple actions resulting in 
glucose homeostasis and appropriate islet cell ac-
tivity. However, the precise mechanisms of GLP-1 
action (e.g. insulinotropic effects on pancreatic is-
lets) independent of the insulin to glucagon ratio 
is not yet fully known. 
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Extrapancreatic effects of GLP-1: 
central nervous, gastrointestinal, and 
skeletal systems 

GLP-1 exerts its actions through the engage-
ment of structurally distinct G-protein-coupled re-
ceptors. These receptors are present in islet α-cells 
and β-cells and in regions of the central nervous 
system (CNS) that regulate diverse homeostatic 
functions, including gastric motility and gluco-
regulation [79-81]. Consistent with the distribu-
tion of GLP-1-receptor expression, GLP-1 inhibits 
glucagon secretion and gastric empting, and may 
reduce caloric intake [82, 83]. In the presence of 
food, GLP-1 may mediate gut-brain signaling from 
the gastrointestinal tract to GLP-1 receptors in 
the hypothalamus and brainstem. This constitutes 
a feeding control via neural and endocrine mecha-
nisms [84]. 

The coordinated actions of GLP-1 in feeding 
and glucose homeostasis are evident at multiple 
sites. GLP-1 is a key regulator of appetite, food in-
take, body weight, and gut motility. It has been 
shown to inhibit food intake and promote satiety 
in normal, obese, or diabetic individuals [36-38, 
85, 86]. In vivo studies suggest that GLP-1 exerts 
effects on fuel sensing; it was able to reduce food 
intake in Göttingen minipigs [87], and craving in 
rats [88], for simple carbohydrates and/or fat. 
Manganese-enhanced magnetic resonance imaging 
in fasted mice following exogenous-administered 
GLP-1 supports the observation that the anorexi-
genic effects of GLP-1 may be mediated via “nau-
sea” circuits within the hypothalamus and brain-
stem [89]. Collectively, the evidence indicates that 
the inhibitory effects of GLP-1 on gastric emptying 
and acid secretion involve vagus nerve stimulation 
and activation of GLP-1 receptors located in the 
CNS, and/or on the vagal afferent fibers that relay 
sensory information to the brainstem [7]. 

GLP-1 may also regulate bone metabolism, 
possibly through a calcitonin-dependent pathway 
[90]. A study evaluated bone resorption in GLP-1 
receptor knockout mice compared with wild-type 
mice. The investigators found higher urine levels 
of the bone resorption marker deoxypyridinoline 
and reduced thyroid levels of calcitonin mRNA 
transcripts in the knockout mice, but no evidence 
of a direct effect of GLP-1 on osteoclasts or os-
teoblasts [90]. However, treatment with calcitonin 
effectively suppressed urinary concentrations of 
deoxypyridinoline in the knockout mice. The GLP-
1 receptor agonist exendin-4 increased calcitonin 
gene expression in the thyroid of wild-type mice. 

These findings are preliminary and need confir-
mation and replication through in vivo studies. 

Extrapancreatic effects of GLP-1: 
cardiovascular tissue, adipose tissue, 
liver, and kidney 

GLP-1 receptors are widely expressed in CV, 
adipose, hepatic, and renal tissue [80, 81]. High-
affinity GLP-1 receptors are present in autonomic 
nuclei that control CV functions [91, 92], and have 
been isolated in rodent and human cardiomyo-
cytes, endothelial cells, and vascular smooth mus-
cle cells [23, 93]. Although the specific localization 
and functional relevance of those receptors has not 
been completely defined, it is noteworthy that 
mice lacking functional GLP-1 receptors have 
structural and functional cardiac abnormalities. 
These include diastolic dysfunction, alterations in 
resting heart rate, heart wall thickness, and ab-
normalities in the ratio of heart weight to body 
weight [94]. Stimulation of central GLP-1 systems 
has been associated with activation of autonomic 
regulatory neurons and increased heart rate and 
blood pressure [91, 92, 95]. In a recent study, 
GLP-1-receptor activation improved survival after 
myocardial infarction (MI) in the normal and dia-
betic mouse heart. This finding suggests that 
GLP-1-receptor activation is accompanied by ef-
fects on the modulation of mediators important for 
cardiomyocyte survival, including peroxisome pro-
liferator-activated receptors (PPAR)-β/δ, heme 
oxygenase (HO)-1, Akt, and glycogen synthase 
kinase (GSK)-3β [96]. 

GLP-1 receptor agonists appear to have CV ef-
fects independent of the autonomic nervous sys-
tem, and even independent of known GLP-1 recep-
tor-linked pathways [97]. Preclinical evidence 
suggests a novel two-pathway schema for the CV 
actions of GLP-1. One pathway depends on the 
GLP-1 receptor for glucose uptake, ischemic pre-
conditioning, and mild vasodilatory actions. An-
other appears to involve GLP-1 receptor-
independent effects on postischemic recovery of 
cardiac function and vasodilation [23, 48]. 

Recent studies suggest a role for GLP-1 as a 
cardioactive peptide, with demonstrable effects on 
contractility, cardiac output, arterial blood flow, 
and cardioprotection [23, 46, 48-50, 98]. At supra-
physiologic concentrations, GLP-1 behaves as a 
molecular signal, linking CV and metabolic func-
tions in vivo. Treatment with GLP-1 at supra-
physiologic concentrations resulted in increased 
femoral arterial blood flow correlated with whole-
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body insulin-stimulated glucose utilization. In a 
murine model, a strong correlation was observed 
between glucose utilization and blood flow rates. 
This correlation was not observed in experimental 
conditions where brain GLP-1 signaling was abol-
ished in GLP-1-receptor knockout mice, and even 
more selectively, in mice whose brains were di-
rectly infused with a GLP-1 receptor antagonist 
[99]. GLP-1 has demonstrated an inotropic effect 
in dogs with heart failure [49, 100], and exerts 
salutary cardioprotective effects in patients with 
acute MI when administered as a 72-hour infusion 
following angioplasty [50]. Clinical studies, involv-
ing patients with type 2 diabetes and comorbid 
coronary artery disease, have shown that GLP-1 
infusion improved endothelial function [93], and 
blood pressure and cardiac function in the imme-
diate postoperative state after bypass surgery [98]. 
Recent in vitro studies indicate that GLP-1 at-
tenuates tumor necrosis factor alpha (TNF-α)-
induced expression of plasminogen activator in-
hibitor 1 (PAI-1) in vascular endothelial cells, sug-
gesting a possible mechanism for observed amelio-
rative effects on endothelial dysfunction [101]. Of 
salient interest, studies have shown cardioprotec-
tive and vasodilatory actions of GLP-1 independ-
ent of the proposed GLP-1-receptor pathway [23]. 

The beneficial effects of GLP-1 on CV parame-
ters may also occur indirectly through GLP-1-
mediated improvements in fatty free acid levels 
and glucose disposal. GLP-1 has been shown to 
stimulate lypolysis in rat [102] and human [103] 
adipocytes. In a small study of 20 patients with 
type 2 diabetes, a continuous 6-week infusion of 
GLP-1 produced reductions in fasting and 8-hour 
mean concentrations of free fatty acids [104]. 
There is preliminary evidence that GLP-1 sup-
presses endogenous glucose production under fast-
ing conditions independently of its action on islet 
hormone secretion [105]. GLP-1 may also help to 
regulate glucose homeostasis via influencing islet 
cell hormone secretion and modulating gastric 
emptying. Also, it may have an impact on hepatic 
glucose production via stimulation of GLP-1 recep-
tor in the arcuate [106]. D’Alessio et al. have pos-
tulated that GLP-1 facilitates enhanced glucose 
disposal in peripheral tissues independently of its 
effects on islet hormone secretions (insulin and 
glucagon) [107]. However, other studies have 
failed to demonstrate a GLP-1-mediated, insulin-
independent effect on glucose disposal [107, 108]. 

Intravenous infusion of GLP-1 revealed renal-
protective properties, including enhanced sodium 
excretion and reduction in hyperfiltration associ-
ated with kidney damage [109]. The antihyperten-

sive effects of GLP-1 observed in salt-sensitive 
Dahl S rats, coupled with reductions in renal and 
cardiac end organ damage, has been attributed to 
the GLP-1-dependent increase in salt and water 
excretion [110]. 

Beyond glucose control: preclinical 
and clinical effects of GLP-1 receptor 
agonists on lipid and cardiovascular 
biomarkers 

Recognition of the sustained insulinotropic and 
glucagon-lowering activity of GLP-1 has fostered 
interest in the use of GLP-1 receptor agonists for 
the treatment of patients with type 2 diabetes. 
GLP-1-based therapy could be especially valuable 
in patients with comorbid overweight/obesity 
and/or CVD. Observations elucidating a role for 
GLP-1 in the potentiation of glucose-dependent 
insulin secretion have been followed by clinical 
trials. They confirm the efficacy of GLP-1 receptor 
agonists in controlling the glycemic disorders as-
sociated with type 2 diabetes. Similarly, in vivo 
and small proof-of-concept studies confirming the 
extrapancreatic actions of endogenous GLP-1 have 
provided the rationale for investigations of the ex-
trapancreatic effects of GLP-1-based therapeutics. 

Exenatide 

Exenatide (synthetic exendin-4) was originally 
identified during research for biologically active 
peptides in Gila monster venom [111]. The drug 
has a 53% homology to human GLP-1 [111] and a 
half-life of 2.4 hours. It must be injected within 60 
minutes of morning and evening meals [112]. In 
addition to potentiating effects on glucose-
dependent insulin secretion, exenatide appears to 
have beneficial effects on indices of β-cell function 
[113, 114]. However, these benefits have not been 
sustained after discontinuation of the therapy 
[115]. In three double-blind, placebo-controlled 
trials, patients with type 2 diabetes receiving ex-
enatide added to conventional oral antidiabetics 
(metformin, sulfonylurea) experienced a mean 
weight loss ranging from 0.9 kg to 2.8 kg at 30 
weeks coupled with reductions from baseline 
HbA1c of 0.40% (5 µg bid) to 0.86% (10 µg bid) [31-
33]. In an open-label extension of a 30-week trial 
(n = 283), exenatide produced mean body weight 
reductions of 4.7 kg at week 104 (p < 0.001) [116]; 
HbA1c of ≤7% was achieved in approximately 50% 
of patients. In a subgroup of these patients, from 
whom homeostasis model assessment of β-cell 
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function data were collected (n = 112), significant 
improvement (p < 0.01) was observed from base-
line. Biomarkers of hepatic injury, alanine ami-
notransferase (ALT) and aspartate aminotrans-
ferase (AST), progressively and significantly de-
clined (p < 0.05 for both ALT and AST) from base-
line to week 104. β-cell function was also meas-
ured in a 1-year trial, in which exenatide was 
compared with insulin glargine, in type 2 diabetes 
patients inadequately controlled on metformin. 
Exenatide-treated patients demonstrated signifi-
cantly increased first- and second-phase insulin 
secretion (as measured by C-peptide secretion re-
sponse to arginine during hyperglycemic clamp) 
compared with insulin glargine (p < 0.0001) [115]. 
With respect to cardioprotective effects independ-
ent of weight loss, exenatide improved cardiac 
function and reduced infarct size in a porcine 
model of ischemia [117]. In vivo results showed in-
farct-limiting action against ischemia-reperfusion 
injury in rat heart [118]. 

In clinical studies, exenatide is associated with 
modest improvements in lipid parameters across a 
range of changes in HbA1c values, including in-
creased HDL-C concentrations (+4.6 mg/dl, +0.12 
mmol/l), and reductions in triglycerides (-38.6 
mg/dl, -0.44 mmol/l) and LDL-C (-1.6 mg/dl, -0.04 
mmol/l). Improvement in lipid profiles occurred 
even in the absence of clinically significant weight 
loss [119]. Blood pressure parameters were mod-
estly improved, as indicated by reductions in SBP 
(-1.3 mmHg) and diastolic blood pressure (DBP; -
2.7 mmHg). In the 82-week extension study, the 
largest reductions in weight relative to baseline 
were associated with the greatest baseline-to-end 
point improvements in SBP (-3.9 mmHg) and DBP 
(-4.4 mmHg) [119]. 

Reductions in CV risk factors were also ob-
served in a post hoc analysis of patients who un-
derwent exenatide therapy for at least 3 years in 
open-label extensions of 30-week, double-blind, 
randomized trials. These patients experienced a 
progressive weight loss from baseline (a mean of -
5.3 kg at 3 years, p < 0.0001). Reductions in 
HbA1c observed at 12 weeks were sustained for up 
to 3 years (mean reduction, 1.0%). A subgroup of 
patients treated with exenatide for 3.5 years ex-
perienced reductions in triglycerides (12%, p = 
0.0003), total cholesterol (5%, p = 0.0007), and 
LDL-C (6%, p < 0.0001), and an increase in HDL-C 
(24%, p < 0.0001) [120]. As reported at the 2009 
Annual Meeting of the European Association for 
the Study of Diabetes, a study of 56 type 2 diabe-
tes patients   randomized to 3-month treatment 

with exenatide or insulin glargine, showed ex-
enatide to be significantly better than insulin 
glargine regarding the improvement of central 
hemodynamic biomarkers of CV risk (e.g., central 
pulse pressure and augmentation pressure; p < 
0.05 for both measures) [121]. Analysis of blood 
pressure reductions in the same patient group 
found that exenatide was associated with a sig-
nificantly greater reduction in DBP, when tested 
versus insulin glargine (-4.85 ± 7.3 vs. -0.15 ± 9.7 
mmHg for exenatide vs. insulin glargine, p = 
0.038). A non-significant trend towards greater 
SBP reduction with exenatide versus insulin 
glargine was also reported [122]. A 1-year exten-
sion study of a 30-week trial of once-weekly ex-
enatide in type 2 diabetes patients with elevated 
baseline cardiometabolic values, reported signifi-
cant reductions from baseline in SBP and DBP as 
well as LDL-C and triglycerides (p < 0.05 for all 
cardiometabolic parameters) [123]. 

Liraglutide 

Liraglutide is a once-daily GLP-1 receptor ago-
nist with a 97% human homology to the native 
hormone [124]. The key modification (an acyl side-
chain addition and an amino acid substitution at 
position 34) facilitates albumin binding and self-
association. By these modifications, the half-life of 
liraglutide is prolonged to approximately 13 hours, 
enabling once-daily administration [125-127]. 

In the Liraglutide Effect and Action in Diabe-
tes (LEAD) trials (6 randomized, controlled phase 
3 trials involving ~4500 subjects), liraglutide was 
associated with significant reductions in HbA1c, 
weight, SBP, and plasma lipids. In LEAD-3, a 52-
week, double-blind, active-control, parallel-group 
trial, liraglutide monotherapy reduced HbA1c by 
1.6% in patients previously treated with diet and 
exercise only, representing the drug-naive popula-
tion [26]. Significant weight reduction relative to 
insulin glargine (-3.43 kg; p < 0.0001) was seen in 
LEAD-5, accompanied by a significant reduction 
in waist circumference (-1.5 cm liraglutide vs. 
+0.89 cm glargine; p < 0.0001) [29]. Dose-
dependent weight reductions of up to 3.2 kg were 
observed in liraglutide patients in the 24-week, 
head-to-head trial of liraglutide or exenatide 
added-on to metformin or sulfonylurea or both 
(LEAD-6) [25]. Weight loss was statistically simi-
lar in both treatment groups but numerically 
greater in the liraglutide group (-3.2 kg, liraglu-
tide; -2.9 kg, exenatide; p = NS) [25]. Liraglutide 
also had significantly greater reductions in HbA1c 
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than exenatide (-1.1% vs. -0.8%, p < 0.0001) [25]. 
Results from a 14-week extension of this trial 
demonstrated additional benefits in glycemic con-
trol (HbA1c -0.3%; p < 0.001), as well as a further 
reduction in SBP (-3.8 mmHg; p < 0.001), and ad-
ditional weight loss (-0.9 kg; p < 0.001) in 186 pa-
tients who switched from exenatide to liraglutide 
[128]. 

Data from four clinical trials of liraglutide in 
combination with one or two oral therapies (met-
formin plus sulfonylurea or thiazolidinedione) 
achieved HbA1c reductions of 1.0% to 1.5% for 
liraglutide 1.2 mg (all reductions were significant 
vs. placebo), and 1.0% to 1.5% for 1.8 mg (all re-
ductions were significant vs. placebo). Liraglutide 
1.2 and 1.8 mg achieved HbA1c reductions of at 
least 1.0% regardless of whether it was used in 
conjunction with metformin, a sulfonylurea, or two 
oral therapies [27-30]. Additional results from the 
LEAD studies demonstrated that liraglutide com-
bination therapy (metformin plus sulfonylurea or 
thiazolidinedione) produced SBP reductions from 
4.5 mmHg (vs. insulin with metformin plus sul-
fonylurea) to 6.7 mmHg (vs. placebo with met-
formin plus rosiglitazone) [29, 30]. SBP reductions 
occurred within 2 weeks and after reductions in 
body weight, suggesting an ameliorative effect on 
blood pressure independent of weight loss [129]. A 
meta-analysis of results from all six LEAD trials 
found significant improvements for liraglutide ver-
sus baseline in plasma concentrations of total cho-
lesterol (-5.03 mg/dl, -0.13 mmol/l, p < 0.01), LDL-
C (-7.73 mg/dl, -0.20 mmol/l, p < 0.0001), free fatty 
acids (-0.09 mmol/l, p < 0.0001), and triglycerides 
(-17.72 mg/dl, -0.20 mmol/l, p < 0.01) [130]. 

Liraglutide is also associated with action on 
other markers of CV and metabolic risk. It con-
ferred cardioprotection and survival advantages 
over metformin after MI in diabetic mice, includ-
ing reduction of cardiac rupture and improvement 
of cardiac output. The results suggested that 
liraglutide treatment modulated cardioprotective 
genes in the mouse heart, including PPAR-β/δ, 
HO-1, NF-E2-related factor-2, Akt, and GSK-3β 
[96]. An in vitro investigation of liraglutide effects 
on markers of endothelial dysfunction found a sig-
nificant inhibition of TNF-α or hyperglycemia-
mediated induction of PAI-1, intercellular adhe-
sion molecule-1, and vascular cell adhesion mole-
cule-1 in human vascular endothelial cell lines 
[131]. An exploratory analysis of a 14-week study 
of 165 patients with type 2 diabetes treated with 
liraglutide reported PAI-1 reductions of 29%; lev-
els of B-type natriuretic peptide, a marker of left 
ventricular dysfunction, were reduced by 38% 

[132]. These results support an earlier 14-week 
study that found a significant decrease in triglyc-
erides (-22%) in patients with type 2 diabetes re-
ceiving liraglutide 1.9 mg; SBP was also reduced 
by 8 mmHg in these patients [125]. These reduc-
tions in CV risk markers were accompanied by re-
ductions in HbA1c from baseline of 1.45% (liraglu-
tide 1.9 mg daily) and 1.40% (liraglutide 1.25 mg 
daily) versus an increase of 0.29% for placebo (p < 
0.0001). The percentage of patients reaching tar-
get HbA1c goal of <7% was 46% with 1.90 mg 
liraglutide, and 48% with liraglutide 1.25 mg ver-
sus 5% for placebo. The 1.9-mg dose of liraglutide 
was associated with a mean weight loss of 3.0 kg 
at week 14. 

Recent clinical trial data suggest that liraglu-
tide may significantly reduce deposits of metaboli-
cally active visceral fat when compared with 
glimepiride/metformin combination therapy. A 
trend towards visceral fat reduction was observed 
in patients who received combination therapy with 
liraglutide and metformin (a 13%-17% reduction 
from baseline) compared with the glime-
piride/metformin treatment group [133]. 

Safety of GLP-1 analogues 
Antiexenatide antibodies have been found in 

27% to 49% of patients treated with exenatide [31-
33, 134, 135]. Of the 6% who developed high-titer 
antiexenatide antibodies, approximately half 
showed an attenuated glycemic response [112]. 
Likely due to its closer homology to human GLP-1, 
liraglutide is associated with antiliraglutide anti-
bodies in up to 13% of patients treated [27-30]. 

Nausea may be frequently observed with ex-
enatide (incidence 3%-51%), although it typically 
subsides within 8 weeks of therapy initiation [31-
33, 136]. Incidence of nausea is less frequent with 
liraglutide (11%-40%) and tends to abate within 4 
weeks [25-30]. 

A number of cases of acute pancreatitis have 
been reported in patients with type 2 diabetes 
treated with exenatide. The exenatide product la-
bel cautions vigilance for signs and symptoms of 
acute pancreatitis [112]. A claims-based safety 
surveillance system report assessing the risk of 
acute pancreatitis with either exenatide or si-
tagliptin found no risk differential between the 
two therapies [137]. Currently available clinical 
trial data indicate that the incidence rate among 
subjects using liraglutide or a comparable product 
is in line with what one would expect in any type 2 
diabetes population [25-30]. It is important to note 
that patients with type 2 diabetes have a three-
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times higher risk of developing pancreatitis than 
the general population [138]. To date, the number 
of pancreatitis cases is not sufficiently high to de-
termine whether there is an association between 
the development of acute pancreatitis and liraglu-
tide treatment [139, 140]. 

In preclinical rodent studies, liraglutide in-
duced calcitonin-producing cell (c-cell) hyperpla-
sia, c-cell adenoma, and, at the highest doses, c-
cell carcinoma. Similar findings did not occur in 
nonhuman primates at an exposure of 60-fold that 
of the human dose of 1.8 mg. The cumulative data 
suggest that rodent c-cells are sensitive to activa-
tion by GLP-1 agonists, but human and nonhu-
man primate c-cells not [139, 140]. 

Conclusions 
In recent years, research into type 2 diabetes 

has generated a wealth of discoveries concerning 
the pleiotropic effects of GLP-1. The research ini-
tiatives revealed an activity profile beyond the 
stimulation of insulin secretion. The profile in-
cludes actions potentiating the secretory activity, 
proliferation and preservation of the β-cell, as well 
as cardioprotective actions. 

GLP-1 appears to have broader biological ac-
tion on the pancreas and on extrapancreatic tis-
sues than previously expected. Indeed, the results 
of recent preliminary investigations suggest that 
the cardioprotective effects of GLP-1 may manifest 
via two distinct pathways. One dependent on the 

GLP-1 receptor for glucose uptake, mild vasodila-
tory effects, and ischemic preconditioning. Another 
is accompanied by actions on postischemic recov-
ery of vasodilation and cardiac function independ-
ent of the GLP-1 receptor [23]. 

Limited data exist on the question whether 
GLP-1 receptor agonists affect strong end points 
such as CVD morbidity and mortality. However, it 
is evident that GLP-1 receptor agonists may have 
other CV, CNS, and gastointestinal consequences 
than DPP-4 inhibitors. The latter prolongs the ac-
tivity of native GLP-1, but secretion and bioactiv-
ity is progressively impaired in type 2 diabetes. 
The pleiotropic effects of GLP-1 receptor agonists 
may benefit patients with type 2 diabetes with hy-
pertension, dyslipidemia, and other risk factors for 
CV disease, such as overweight/obesity. Further 
studies in GLP-1 receptor agonists assessing sur-
rogate parameters, and strong end point studies, 
are warranted to support promising but prelimi-
nary emerging evidence to date. 
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