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■ Abstract 
Diabetes mellitus is widely recognized as one of the leading 
causes of death and disability. While insulin insensitivity is 
an early phenomenon partly related to obesity, pancreatic β-
cell function declines gradually over time even before the 
onset of clinical hyperglycemia. Several mechanisms have 
been proposed to be responsible for insulin resistance, in-
cluding increased non-esterified fatty acids, inflammatory 
cytokines, adipokines, and mitochondrial dysfunction, as 
well as glucotoxicity, lipotoxicity, and amyloid formation for 
β-cell dysfunction. Moreover, the disease has a strong ge-
netic component, although only a handful of genes have 

been identified so far. Diabetic management includes diet, 
exercise and combinations of antihyperglycemic drug treat-
ment with lipid-lowering, antihypertensive, and antiplatelet 
therapy. Since many persons with type 2 diabetes are insulin 
resistant and overweight, nutrition therapy often begins with 
lifestyle strategies to reduce energy intake and increase en-
ergy expenditure through physical activity. These strategies 
should be implemented as soon as diabetes or impaired glu-
cose homoeostasis (pre-diabetes) is diagnosed. 
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Introduction 
 

            iabetes mellitus has been widely recognized to 
       be a fundamental and leading cause of major  
       health issues, in particular of all the cardiovas-

cular diseases. It affects more than 170 million indi-
viduals worldwide. There is ample evidence indicating 
that by 2010, a further growth will occur, mainly 
caused by dramatic increases in the developing coun-
tries of Africa, Asia, and South America [1]. 

In type 2 diabetes mellitus (T2DM), lifestyle fac-
tors, in particular those related to obesity [2], contrib-
ute to its development. In industrialized countries, a 
rapid increase in fat, saturated fatty acid and energy in-
take accompanies a decrease in physical activity, in the 
consumption of dietary fiber and of diets with low gly-
cemic index. To date, this development has resulted  in 
a 6% prevalence of T2DM in these populations [3], 

4% of whom are obese white adolescents. Further-
more, a prevalence of 25% abnormal glucose tolerance 
must be reported [4]. 

Diet and obesity are the main factors affecting the 
prevalence as well as the development and severity of 
T2DM. The present paper therefore focuses on dietary 
and genetic aspects in T2DM in relation to preventing 
the condition. 

Diagnosis of diabetes and obesity 
According to WHO recommendations (1999), the 

diagnosis of diabetes incorporates both fasting and 2-h 
post-glucose load (75 g) glucose concentrations [5]. 
Impaired glucose tolerance carries an increased risk of 
macrovascular disease [6]. Insulin resistance is strongly 
associated with obesity and physical inactivity. A num-
ber of circulating hormones, cytokines, and metabolic 
fuels, such as non-esterified (free) fatty acids (NEFA), 
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originate in the adipocyte and modulate insulin action. 
An increased mass of stored triglyceride, especially in 
visceral or deep subcutaneous adipose depots, leads to 
large adipocytes that are themselves resistant to the 
ability of insulin to suppress lipolysis. This results in 
increased release and circulating levels of NEFA and 
glycerol, both of which aggravate insulin resistance in 
skeletal muscle and the liver [7]. 

Heredity in T2DM 
A number of nationwide studies exist on the 

heritability of diabetes, which show that T2DM, where 
both genetic and environmental effects play a signifi-
cant role, tends to run in families. Thus, the risk for 
T2DM is increased when there is a positive family his-
tory of the disease. Approximately 15-25% of the first-
degree relatives of patients with T2DM develop either 
impaired glucose tolerance or diabetes [8]. When the 
prevalence of diabetes and glucose intolerance was 
studied, both cross-sectionally and longitudinally, in a 
cohort of 199 offspring of conjugal diabetic parents, 
the occurrence of T2DM was estimated to approach 
60% by the age of 60 years [9]. The concordance rate 
for diabetes has been shown to differ among twin 
pairs. Thus, it ranges between 35% and 58% among 
monozygotic twins, rising to 88% when impaired glu-
cose tolerance is included [10], and is 17% to 20% 
among dizygotic twins [11, 12]. 

Nutritional management in T2DM 
Nutrition management is a key component in the 

long-term health and quality of life of people with 
T2DM.The general nutrition principles and recom-
mendations are the same for people with diabetes as 
for those without the condition. However, it is impor-
tant to set realistic goals that are in tune with the indi-
vidual’s micro- and macronutrient, physical activity, 
lifestyle and medical needs. The overall goal of diabe-
tes management is to help individuals and their fami-
lies gain the necessary knowledge, life skills, resources 
and support needed to achieve optimum health. Nutri-
tional management seeks 
to improve or maintain 
the quality of life, physio-
logical health and nutri-
tional status of people 
with diabetes, by recogniz-
ing that their micro- and 
macronutrient require-
ments are similar to those 
of the general population. 

The goal of diabetes management is to keep blood 
glucose levels as close to a normal range as safely pos-
sible, while avoiding blood glucose levels that are too 
high (hyperglycemia) or too low (hypoglycemia) [13]. 
Attention to food portions and weight management, 
combined with physical activity, helps improve glyce-
mic control. General guidelines include 50-60% of 
daily energy requirements derived from carbohydrates, 
low glycemic index foods, foods containing cereal fiber 
and a protein intake of least 0.86 g/kg/day. The con-
sumption of added sugars can be up to 10% of daily 
energy requirements. Also, guidelines recommend the 
limited intake of total fat, especially saturated fats, with 
monounsaturated fatty acid (MUFA) used where pos-
sible, appropriate use of nutritive and non-nutritive 
sweeteners, the daily vitamin and mineral requirements 
of a well balanced diet and individualized physical ac-
tivity for people with T2DM. 

The ongoing efforts to understand the relationships 
between the genome and diet, termed nutrigenetics 
and nutrigenomics, have currently modified the defini-
tion of T2DM management. Both disciplines aim to 
unravel diet/genome interactions and identify the op-
timal diet for individuals, either by clarifying how the 
genetic makeup of an individual coordinates response 
to diet [14], or by relating different phenotypes to dif-
ferences in cellular and/or genetic response (Figure 1). 

Candidate and susceptibility genes 
The candidate gene approach results in the identifi-

cation of the gene variants that influence disease. If 
studies clearly show that a variant has a significant ef-
fect on disease-related phenotypes, then this is de-
scribed as a susceptibility gene. Meta-analyses  provide 
convincing support for the involvement of a gene vari-
ant in disease risk. The most compelling evidence gen-
erated from a meta-analysis of multiple published stud-
ies, results in the determination of the susceptibility 
genes from among the candidate genes. However, re-
searchers should always consider that if a disease is 
heterogeneous and polygenic, such as T2DM, studies 

 

“Good” genes
Healthy diet
Physical activity

Diabetes genes
Unhealthy diet
Physical inactivityNo 

T2DM T2DM“Good” genes
Healthy diet
Physical activity

Diabetes genes
Unhealthy diet
Physical inactivityNo 

T2DM
No 

T2DM T2DMT2DM

 
 
Figure 1. Simplified model of factors affecting the development of type 2 diabtes. 
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of single gene variants may not be conclusive and con-
sistent with one another. The contribution of a gene 
variant to disease and related phenotype is more cer-
tain when it is the result of gene-gene interaction stud-
ies. 

Variants in many candidate genes for T2DM have 
been extensively studied over the past two decades. 
Such genes are the KCNJ11, which encodes Kir6.2, the 
TCF7L2, the Gly972Arg polymorphism in IRS1, the 
Gly1057Asp polymorphism in IRS2, the Trp64Arg 
polymorphism in the gene encoding the β3 adrenergic 
receptor and the -308 G/A promoter variant in TNF 
(Figure 2). In most instances the initial association was 
not replicated in subsequent analyses. Even if the adi-
ponectin gene variants do not definitely confer suscep-
tibility for T2DM, they are nevertheless candidate 
genes. 

Calpain-10 

The first “common diabetes gene” cloned in this 
way was CAPN10 in the NIDDM1 region of chromo-
some 2 [15, 16]. It encodes for calpain-10, a cysteine 
protease which is ubiquitously expressed [17, 18]. 
Originally, the G allele of a non-coding single nucleo-
tide polymorphism (UCSNP-43) was associated with 
T2DM. The risk of developing T2DM, however, is not 
fully attributable to a single polymorphism of the gene 
encoding calpain 10, but, as was described in a Mexi-
can-American population, results from the combina-
tion of haplotypes created by alleles of three single nu-
cleotide polymorphisms (SNPs): SNP-43, SNP-19, and 
SNP-63 [16]. All these three SNPs are located within 
introns and are highly likely to influence gene expres-
sion. In later studies, this finding could not be repli-
cated [19, 20], but another SNP (UCSNP-44) was 
found to be associated with T2DM [21, 22]. Genetic 
variants in the gene encoding calpain-10 might affect 
insulin sensitivity, [23] or insulin secretion, [24] or the 
relation between the two [25]. 

Kir6.2 

Pancreatic β-cell ATP-sensitive K+ channels 
(KATP channels) are crucial for the regulation of insu-
lin secretion by coupling cell metabolism to membrane 
electrical activity. The pancreatic β-cell KATP channel 
comprises two subunits, the inwardly rectifying potas-
sium channel, Kir6.2 (encoded by KCNJ11), and the 
sulfonylurea receptor, SUR1 (encoded by ABCC8) 
[26]. The ABCC8 and KCNJ11 genes are located on 
chromosome 11p15.1 and several gene variants of 
both genes have been associated with disorders of in-
sulin secretion and T2DM [27, 28]. The strongest sta-
tistical association with T2DM in KCNJ11 is with 
SNPs 74 (3p+215), 76 (A190) and 77 (E23K). How-
ever, the evidence suggests a predominant role for the 
amino acid variant E23K in T2DM susceptibility [28]. 

TCF7L2 
Grant et al. [29] have identified TCF7L2 as a novel 

susceptibility gene for T2DM and reported an associa-
tion with the microsatellite marker DG10S478 within 
intron 3. The associated tetranucleotid repeat was 
shown to have six alleles, namely alleles 0, 4, 8, 12, 16 
and 20. The combined non-zero alleles of DG10S478 
(referred to as X) were associated with an increased 
risk in three independent populations (Danish, Ice-
landic and US). The composite at-risk allele X was al-
most perfectly correlated with the T allele of the SNP 
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Figure 2. Interrelation between genes and environmen-
tal factors in type 2 diabetes. Genes in combination with 
environmental factors may lead to obesity, insulin resistan-
ce and finally diabetes. Environmental factors may also act 
in concert together with diabetes candidate and susceptibi-
lity genes to trigger the pathogenesis of type 2 diabetes di-
rectly. 
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rs12255372, while the G allele was linked to allele 0. 
Consequently, the rs12255372 T allele showed an asso-
ciation with T2DM as well [29]. This association was 
detected in the course of positional cloning efforts in a 
region of chromosome 10q previously linked to diabe-
tes in Icelandic pedigrees [30] and confirmed in case-
control analyses of Danish and U.S. cohorts. Quite re-
cently, the hypothesis that TCF7L2 is a genuine 
T2DM susceptibility gene was confirmed [31]. Unrav-
eling the mechanisms whereby changes in the function 
or regulation of this transcription factor lead to loss of 
β-cell performance and/or insulin sensitivity is likely to 
provide crucial new insights into disease pathogenesis. 

Other genes 
Adipose tissue-derived cytokines, TNF-α and IL-6, 

could be involved in the development of diabetes 
through several mechanisms. Elevated levels of these 
cytokines have been linked to the risk for diabetes [32-
34]. Genes encoding proteins critical in pancreatic β-
cell function are particularly good candidate genes for 
T2DM. Studies of maturity-onset diabetes in the young 
in humans [35] and knockout mice [36] have shown 
that mutations in the transcription factors required for 
the development, differentiation, and maintenance of 
the pancreatic β-cells can cause diabetes. EIF4A2, the 
gene encoding eukaryotic translation initiation factor 
4α2, is an ubiquitous RNA helicase involved in protein 
translation initiation. It is down-regulated in rat β-
INS832/13 cells exposed to high-glucose concentra-
tions. Thus, EIF4A2 may contribute to the regulation 
of insulin production in response to glucose. Cheyssac 
et al. [37] recently reported that a SNP in this gene was 
significantly associated with T2DM diagnosed 45 years 
ago and with the age of onset in French families. 

Hepatocyte nuclear factor (HNF)-4α is a transcrip-
tion factor known as a key molecule in β-cell develop-
ment and function. In a previously performed ge-
nome-wide scan of Japanese type 2 diabetic sibpairs, 
researchers observed linkage of T2DM to chromo-
some 20q12-q13, a region in which the HNF4A gene 
is located [38]. Recent studies report associations be-
tween T2DM and polymorphisms in the P2 promoter 
region specific to β-cells [39-41]. 

The ubiquitously expressed protein tyrosine phos-
phatase-1B (PTP1B), encoded by the PTPN1 gene, 
catalyzes the dephosphorylation of tyrosine residues 
from the insulin receptor kinase activation segment 
[42] and IRS1 [43] resulting in the down-regulation of 
insulin signaling. PTP1B also inhibits leptin signaling 
through the dephosphorylation of JAK2 and STAT3 
[44, 45]. The disruption of the PTPN1 gene in mice 

results in increased insulin sensitivity, and in resistance 
to diet-induced obesity [46], as well as enabling nor-
malization of blood glucose levels [47]. Several studies 
have investigated the association of T2DM with ge-
netic variants of PTPN1. When analyzing the PTPN1 
gene locus, Bento et al. [48] found convincing associa-
tions between multiple SNPs and T2DM in two inde-
pendent Caucasian American case-control samples. 
Recently published data indicate that PTPN1 variants 
might modify the lipid profile, thereby influencing sus-
ceptibility to the metabolic syndrome [49]. 

PPARG as a T2DM susceptibility gene 

PPARγ is encoded by PPARG, and is a transcrip-
tion factor that is activated by certain fatty acids, 
prostanoids, and thiazolidinediones [50, 51]. PPARγ1 
is expressed in most tissues, while PPARγ2 is specific 
to adipose tissue, where it regulates adipogenic differ-
entiation [52]. The high risk proline allele of the 
Pro12Ala PPARγ polymorphism has a prevalence of 
75% in white people. Two meta-analyses and a large 
prospective analysis have shown a risk reduction of 21-
27% for the alanine allele [53-55]. The alanine geno-
type presumably results in greater insulin sensitivity 
[56-58]. The proline variant has lower transcriptional 
activity and heterozygous PPARγ knockout mice are 
more insulin resistant. Since PPARγ2 is exclusively ex-
pressed in adipose tissue, a primary mechanism in this 
tissue with a secondary effect on hepatic insulin sensi-
tivity and insulin clearance can be invoked [59]. 
C1431T silent substitution in the 6th exon of PPARG 
is the polymorphism that modulates the effect of 
Pro12Ala on susceptibility to T2DM [60]. The PPARG 
Pro12Ala polymorphism has been shown to be protec-
tive against mild fasting hyperglycemia and T2DM dur-
ing a 6-year follow-up in subjects who were normogly-
cemic at baseline [61]. The PPARG exon 6 C1431T 
SNP was also associated with a lower risk. 

A significant interaction has also been described for 
the PPARα Leu162Val polymorphism and n-6 polyun-
saturated fatty acid (PUFA) intake. In persons with the 
less common V162 allele, increased n-6 PUFA intake 
is associated with a marked reduction in triacylglycerol 
concentration, whereas this association is not observed 
in L162 carriers [62]. 

Adiponectin 

Adiponectin levels correlate negatively with glu-
cose, insulin and triglyceride levels as well as the body 
mass index (BMI), while there is a positive correlation 
with high-density lipoproteins (HDL), cholesterol lev-
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els and insulin-stimulated glucose disposal [63, 64]. 
Furthermore, high plasma adiponectin concentration 
protects against T2DM [65]. The adiponectin/ACDC 
gene is located on chromosome 3q27 at a locus linked 
to T2DM and also to several phenotypes related to 
features of the metabolic syndrome [66, 67]. SNPs of 
APM1, the gene encoding adiponectin, were associated 
with the development of hyperglycemia [68]. Both 
case-control and prospective studies in general popula-
tions have shown that inherited variations at the 
ACDC locus modulate adiponectin levels and insulin 
sensitivity and are part of the genetic background of 
T2DM [69-72]. Together with animal studies, genetic 
epidemiology approaches suggest a causative contribu-
tion on the part of adiponectin signaling for obesity-
associated insulin resistance and T2DM. 

Two putative adiponectin receptors, adiponectin 
receptor 1 (AdipoR1) and adiponectin receptor 1 
(AdipoR2), have been cloned [73]. Both receptors are 
significantly expressed in liver, muscle, and adipose tis-
sue. Their expression levels in muscle correlate with 
distinct metabolic parameters, particularly with first-
phase insulin secretion for AdipoR1 [74], but their re-
lation with insulin sensitivity is not completely estab-
lished. Expression of both receptors is lower in normal 
glucose tolerant subjects with a family history of diabe-
tes [75]. Recently, the absence of contributions from 
ADIPOR1 SNPs in the genetic risk for T2DM was re-
ported [76]. 

Diet and gene-diet interactions 

Nutrition recommendations for the general popula-
tion are also appropriate for persons with T2DM. Be-
cause many persons with T2DM are overweight and 
insulin resistant, medical nutrition therapy should em-
phasize lifestyle changes that result in reduced energy 
intake and increased energy expenditure through 
physical activity. Many people with diabetes are also 
diagnosed with dyslipidemia and hypertension, making 
reductions in dietary intake of saturated fat, choles-
terol, and sodium desirable. 

Therefore, the emphasis of nutrition therapy for 
T2DM is given to lifestyle strategies to reduce glyce-
mia, dyslipidemia and blood pressure. These strategies 
should be implemented as soon as the diagnosis of 
diabetes is made. 

High-fat feeding has been presumed to be a cause 
of obesity and insulin resistance for at least twenty 
years [77]. However, the concept that “oils ain’t oils” 
[78] slowly started emerging in the latter half of the 
eighties and it is now well established that the fatty 

acid profile of a dietary fat has far-reaching differential 
regulatory consequences in the human body. High 
saturated fat content of the membrane makes for rigid, 
unresponsive membranes, whereas increased desatura-
tion makes for improved membrane fluidity and re-
sponsiveness [79]. Diets containing tallow (predomi-
nantly saturated fat), olive oil (mainly mono-
unsaturated), sunflower oil (largely omega-6) and fish 
oil (omega-3-rich) are commonly administered to ani-
mals when investigating the effect of dietary fat on in-
sulin resistance and obesity. In animal studies, an im-
pressive body of evidence has established the connec-
tion between dietary lipids, membrane lipid profiles 
and insulin resistance [80-82]. A pioneering study per-
formed by Storlien and coworkers in 1987 [78] showed 
that only by replacing sunflower oil (omega(n)-6) with 
fish oil (n-3) in rats fed on a high sucrose and high fat 
diet, was the development of insulin resistance attenu-
ated. In humans, the obesity and T2DM-prone Pima 
population proved to have 40% lower n-3 levels in 
their muscle membrane lipids than Australians [83, 84]. 
Kopecky and coworkers have shown that impairment 
of the mitochondrial uncoupling protein (UCP) system 
can lead to obesity and thus to insulin resistance. UCP 
synthesis is regulated by the PPARγ transcription fac-
tor family, which, in turn, can be regulated by fatty ac-
ids [85]. Recent studies have supported the concept 
that polyunsaturated fatty acids can act as ligands of 
PPARγ [86, 87] or can modulate its expression, thus 
increasing GLUT4 transcription [88, 89] and synthesis  
and improving insulin resistance. 

Certain polyunsaturated fatty acids, but not satu-
rated fatty acids, can be converted to eicosanoids by 
cyclooxygenase. For example, AA (omega-6) can be 
changed to the highly inflammatory prostaglandins of 
the -2 series, whereas EPA (omega-3) can be con-
verted to the anti-inflammatory prostaglandins of the -
3 series. DHA (omega-3) cannot be converted to a 
prostaglandin, but retroconversion to EPA, and hence 
formation of series -3 prostaglandins, is possible [90]. 
Although eicosanoids are implicated in the regulation 
of GLUT4 trafficking and insulin-stimulated glucose 
transport [91], Nugent et al. report a cyclooxygenase-
independent stimulatory effect of AA on glucose up-
take [92]. 

An interaction between the intake of MUFA, BMI 
and the Pro12Ala polymorphism of the PPARγ2 gene 
has recently been reported [93]. It is suggested that an 
interaction exists between Pro12Ala polymorphism of 
PPARγ2 and dietary MUFA, which means that obese 
people with the Ala-12 allele have higher homeostasis 
model assessment (HOMA) insulin resistance (IR) val-
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ues, especially if MUFA intake is low [94]. Another 
gene implicated in gene-diet interaction in diabetes is 
Rad. It is a prototypic member of the RGK family of 
Ras-related GTPases, which also includes Gem/Kir, 
Rem, and Rem2 [95, 96]. Rad was originally found to 
be overexpressed in the skeletal muscle of a patient 
with T2DM using subtraction cloning [95]. Ilany et al. 
have generated transgenic (tg) mice that overexpress 
Rad in muscle [97]. Rad-Tg mice exhibit normal 
growth and development, as well as normal glucose 
homeostasis and insulin sensitivity, as measured by 
fasting and fed glucose and insulin levels and glucose 
and insulin tolerance testing. However, when fed a 
high-fat diet, Rad-Tg mice became more insulin resis-
tant and glucose intolerant than normal mice on the 
same diet. The combination of high-fat diet and Rad 
overexpression caused more severely diminished insu-
lin-stimulated glucose uptake than high-fat diet alone, 
even though Rad overexpression alone did not change 
glucose transport. Thus, Rad overexpression interacts 
with a high-fat diet to worsen insulin resistance in 
muscle. This finding was consistent with clinical stud-
ies suggesting that Rad may interact with obesity in in-
creasing diabetes risk [98] and is an example of how a 
genetic factor (Rad overexpression) can act together 
with an environmental factor (high-fat diet and obe-
sity) to alter glucose homeostasis. 

Perilipin, which is encoded by PLIN, is the pre-
dominant protein associated with lipid storage droplets 
in adipocytes and one of the critical regulators impli-
cated in lipid mobilization [99, 100]. The connection 
between perilipin, body fat, and insulin resistance has 
been demonstrated in knockout mouse models, which 
displayed reduced body fat and, paradoxically, an in-
creased risk of glucose intolerance and peripheral insu-
lin resistance [100]. Dietary factors play a role in the 
relationship between perilipin and body weight. PLIN 
polymorphism modulates weight loss in response to a 
low-energy diet [101]. Genetic variation at the PLIN 
locus modulates the effects of habitual dietary fat and 
carbohydrate consumption on insulin resistance in a 
large sample of an Asian female general population. A 
statistically significant gene-diet interaction was found 
between intake of fat and carbohydrate and polymor-
phisms in PLIN (11482GA and 14995AT) [102]. 

SCARB1 genetic variability plays a significant role 
in lipoprotein metabolism in humans [103, 104]. Re-
cent findings show that the presence of the A allele at 
the SCARB1 exon 1 polymorphism is associated with 
a statistically significant increase in insulin sensitivity 
after the consumption of a MUFA-rich diet compared 
to the effect on G/G individuals [105]. The fatty acid 

(FA)-binding protein 2 (FABP2) gene codes for intes-
tinal FABP (IFABP), which is a member of a family of 
small (14-15-kDa) intracellular lipid-binding proteins. 
The gene located at 4q28-q31 has the conserved 4 ex-
ons and 3 introns that are characteristic of this family 
of genes [106, 107]. IFABP is crucial for fat absorption 
and transport: the uptake and trafficking of saturated 
and unsaturated long-chain fatty acids (LCFAs), the 
targeting of free fatty acids (FFAs) toward different 
metabolic pathways, protection of the cytosol from the 
cytotoxic effects of FFAs and the modulation of the 
enzyme additive involved in lipid metabolism [108, 
109]. Besides FFAs, IFABP may bind other ligands 
such as phenolic antioxidants. It is abundant in the en-
terocyte, representing 2-3% of the cytoplasmic mass of 
those cells [110]. It has been found that the expression 
of IFABP mRNA is under dietary control [111]. Sub-
jects with the Thr54 allele had higher FFA concentra-
tions than did those who were homozygous for the 
Ala54 allele when consuming a saturated fatty acid 
(SFA)-rich diet [112]. Considering the hypothesis pro-
posed by Baier et al. [113], this suggests a plausible 
mechanism for the FABP2 Ala54/Thr54 polymor-
phism-diet interaction for the determination of insulin 
sensitivity. Thus, the presence of the FABP2 gene 
Ala54/Thr54 polymorphism impairs peripheral insulin 
sensitivity when the carriers consume an SFA diet. 

Conclusions 
The importance of preventing diabetes in high-risk 

individuals is highlighted by the substantial and world-
wide increase in the prevalence of diabetes in recent 
years. Genetic susceptibility appears to play a powerful 
role in the occurrence of T2DM in certain populations. 
However, given that population gene pools shift quite 
slowly, the current epidemic most likely reflects 
marked changes in lifestyle. Lifestyle changes that are 
characterized by decreased physical activity and in-
creased energy consumption have combined to pro-
mote obesity, a strong risk factor for diabetes that is 
influenced itself by both genes and behavior (Figure 2). 
Despite the difficulty in maintaining a reduced body 
weight long-term, several studies have demonstrated 
that there is potential for moderate sustained weight 
loss in order to substantially reduce the risk for T2DM. 
Reduced intake of total fat, particularly saturated fat, 
may reduce risk for diabetes. Increased diabetes inci-
dence is reported with increased intake of dietary fat, 
independent of total calories, although this effect is not 
demonstrated in all studies. The importance of a bal-
anced ratio of omega-6 to omega-3 intake, as in the 
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ancient Paleolithic diet, was recently tested in the Lyon 
Heart Study [114]. This study was a prospective, ran-
domized, single-blinded secondary prevention trial, 
which compared the effects of a modified Cretan diet, 
enriched with alpha-linolenic acid (ALA; ratio of 
omega-6/3, 4:1), low in saturated fat, very low in trans 
fat and high in vitamin C and E, to that of a Step I 
American Heart Association Diet in the secondary pre-
vention of coronary events and death. It would appear 
to be prudent to return to the hunter-gatherer diet of 
our ancestors or the suggested Mediterranean (Crete) 
type diet [114, 115] that contains less saturated and 
trans-fatty acids and more polyunsaturated fatty acids 
with an improved omega-6/omega-3 ratio [115]. Stud-
ies in healthy subjects suggest that diets based on olive 
oil, as opposed to diets rich in SFA or PUFA, have 
beneficial effects on atherogenic factors linked to in-
flammation of the vascular wall, such as monocyte 
chemotaxis and adhesion to endothelial cells and ex-

pression of adhesion 
molecules [116, 117]. In 
this regard, treatment of 
endothelial cells with 
oleic acid protected 
them against cytokine-
induced adhesion mole-
cule overexpression 
[118]. 

Moderate reductions 
in dietary sodium intake 
(2400 mg/day) de-
creased blood pressure 
by 5 mm Hg systolic 
and 2 mm Hg diastolic 
in hypertensive patients 
and by 3 mm Hg sys-
tolic and 1 mm Hg dia-
stolic in normotensive 
patients [119]. Although 
there is a wide variation 
in blood pressure re-
sponses, the lower the 
sodium intake, the 
greater the lowering of 
blood pressure [120]. 
Responses to sodium 
reduction may be 

greater in subjects who are “salt sensitive”, a character-
istic of many individuals with diabetes [121]. 

The so-called prudent dietary pattern, characterized 
by a high intake of vegetables, legumes, fruit, and 
whole grains and a low intake of red meat, processed 
meat, high-fat dairy products, and refined grains is in-
creasingly favored for a beneficial effect on a number 
of health outcomes, including diabetes treatment and 
prevention. The prudent diet does not necessarily have 
to be a low-fat one. A variety of vegetable foods rich 
in MUFA that are good sources of antioxidants, such 
as high-oleic acid oils and nuts, can be incorporated 
into this dietary pattern to increase palatability and 
compliance, with a high chance of health benefits. To-
gether with a healthy diet, unraveling the plethora of 
diabetes-predisposing genes and elucidation of their 
interactions with the dietary products (Table 1) will 
probably reduce the incidence of T2DM and improve 
the outcome of the disease. 
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