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1. Introduction
ccording to the World Health Organization [1] 
type I diabetes mellitus (T1DM) is a chronic 
disease that occurs either when the pancreas does 

not produce enough insulin or when the body cannot 
effectively use the insulin it produces. According to the 
International Diabetes Federation (IDF) [2], there are 
about 463 million people worldwide with diabetes and it 
is estimated that by 2045 there will be 700 million people 
with this disease. The IDF also estimates that between 
2019 and 2045, diabetes will increase by 55% in Central 
and South America, becoming the fourth highest rate 
in the world. The national prevalence of diabetes in 
Latin America varies markedly across countries, with 
Peru registering the lowest (6.6%) and Puerto Rico the 
highest (13.7%). In addition, if diabetes’ treatment is 
inadequate, patients can experience undesired events 
such as hyperglycemia or hypoglycemia due to high or 
low blood glucose concentrations. Furthermore, poorly 
controlled diabetes can lead to complications, not only 
in the pancreas, but also other organs of body such 
as the kidney (kidney failure), leg (leg amputation), 
eyes (vision loss, glaucoma, diabetic retinopathy) 
and vascular problems. Some approaches have been 
proposed that aim for controlling a high blood glucose 
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concentration through intensive insulin therapy (IIT) 
[3]. IIT is a set of strategies intended to imitate the 
same behavior patterns as insulin secretion in healthy 
subjects. In IIT, 2 common techniques are employed 
– multiple daily injections (MDIs) and continuous 
subcutaneous insulin infusion (CSII). However, 
these techniques require human intervention and 
are not always able [4] to reduce hypoglycemic 
episodes. Consequently, technology is moving towards 
development of an automatic delivery glucose system – 
the artificial pancreas (AP).

The AP, first proposed by A.H. Kadish [5], is today 
the best possible solution for insulin treatment, 
especially for type I diabetes patients [6]. It consists 
of a continuous glucose monitoring system (CGM), 
which consists of a glucose measurement device, 
a digital controller (computes insulin dose to be 
released), and finally, an insulin pump. Moreover, 
although the AP is designed to work without human 
intervention and ensure a good performance by 
reducing hyperglycemic episodes, it still faces a 
challenging task when meal intake is undetected, 
finding it workable only with (detected) small meal 
intake sizes [7].

The estimation of carbohydrate intake plays an 
essential role in the development of control systems 

■ Abstract
OBJECTIVE: The development of an artificial pancreas is an open 
research problem that faces the challenge of creating a control 
algorithm capable of dosing insulin automatically and driving blood 
glucose to healthy levels. Many of these approaches, including 
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CONCLUSION: A combination of methods seems to reach 
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Abbreviations:

DM    Diabetes mellitus

T1DM    Type 1 Diabetes Mellitus

IDF    International Diabetes Federation

IIT    Intensive Insulin Therapy

MDIs    Multiple Daily Injections

CSII    Continuous Subcutaneous Insulin Infusion

AP    Artificial Pancreas

CGM    Continuous Glucose Monitoring

MHE    Moving Horizon Estimation 

AUC    Are Under Curve

ROC    Rate of Change

RNNs    Recurrent Neural Networks

LSTM    Long Short Term Memory

SEQ2SEQ  Sequence to Sequence

RL    Reinforcement Learning

DOBC    Disturbance Observer Based Control

SMC    Sliding Mode Control

SMO    Sliding Mode Observer

RA    Rate of Aparison

FOSMO    First Order Sliding Mode Observer

MPC    Model Predictive Control

BG     Blood Glucose

ISF    Insulin Sensitivity Factor

BIR    Basal Insulin Rate

IOB    Insulin on Board

UKF    Unscented Kalman Filter

BGLP    Blood Glucose Level Prediction

focused on the regulation of glucose levels in diabetic 
patients. Different proposed control techniques 
[8–10] suggest the need for a carbohydrate intake 
estima- tor with targets that stand out – generating 
variable reference glucose profiles to avoid aggressive 
control efforts, calculating insulin boluses [11], and 
developing algorithms that allow this calculation 
to be carried out automatically for safety reasons 
in patients [12]. Regardless of the purpose, they 
converge on the same idea, i.e., a correct estimate 
of carbohydrate intake that leads to avoiding 
undesirable situations such as hypoglycemia and 
hyperglycemia, guaranteeing a greater sense of 
well-being in diabetic patients. In fact, they have 
been proposed and are usually included for 2 main 
reasons: estimation of intake based and not based 
on the model. The first proposes the use of a model 
whose parameters must be tuned, for example, 
using an MHE algorithm and a second-order 
system for glucose-insulin dynamics [13], or by using 
a combined unscented Kalman filter. with Bergman’s 
minimal model. This leads to an identification 
of parameters for each patient, which does not 
guarantee generalized use of the model. The second, 
raises the possibility of making this estimate by 
means of techniques in which a representation is not 
required. Mathematics that models glucose-insulin 
dynamics in patient highlights fuzzy logic algorithms 
[14] or carbohydrate estimation through image pattern 
recognition [15]. The rest of the paper is organized 
as follows. Section 2 describes the most frequently 
used approaches for dealing with meal detection and 
estimation. Section 3 covers the most commonly used 
datasets where the algorithms in section 2 have been 
tested. Finally, a brief discussion and results is 
presented in section 4.

2. Meal detection and estimation tech-
niques

In this section, the most common techniques of meal 
detection and size estimation are addressed are the 
fundamentals and principal outcomes.

2.1 Heuristic Approaches

We label as heuristic those non-exact approaches 
that could work based on available information or 
prior knowledge and that are not intended to ensure 
an optimal solution.

2.1.1 Decision rules

Decision rules are often related to a 2-step 
procedure. First, a set of relevant signals in the 
context of the problem is chosen (pre-processed if 
required). Second, the selected features are brought 
into a decision logic rules system (comparisons or 
thresholds around feature’s values). Finally, an 
output is provided. Decision rule systems are based 
on thresholds of glucose derivatives (glucose rate of 
change), the area under the curve (AUC), to announce 
when a meal is detected. One of most cited related 

works is called the voting-based detection system 
[58].

The scheme depicted in Figure 1 consists of 
computation of rate of change (ROC) in different 
ways, using backward difference on raw data, 
backward difference estimation based on the glucose 
estimation from the Kalman filter, Kalman filter 
estimation of glucose

(G) and the ROC (G) (Kalman), and finally, 
the Kalman estimate of the ROC of the ROC (G). 
They are then compared with threshold values tuned 
according to individual patients. They are: glucose 
ROC threshold, maximum glucose ROC, glucose 
threshold, and an acceleration threshold. Similar 
approaches exist [59,60].

2.1.2 Fuzzy Logic

Fuzzy logic is a slighty more complex approach than 
simple previous threshold-based decision logic. Here, a 
set of inputs is transformed into fuzzy sets. Fuzzy sets 
assign a degree (membership degree functions) for each 
input within a category according to a user-specified 
threshold. Then, different rules (mathematically seen 
like operations such as sums or products between 
different fuzzy sets) can be designed and a weighted 
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output can be generated from the rules.
Analogously [14], glucose and its derivatives 

are used for a fuzzy inference system from which 
derivatives are computed by numerical differentiation. 
Then, to feed each first and second derivatives to 
the fuzzy system they are mapped by a membership 
function, each one with fuzzy sets: positive, negative, 
and zero. This is not more than weighing the positive/
negative/zero increasing of derivatives. Once the 
mapping is done, 7 in- ference rules (called episodes 
by the author) are established and weighted; finally, 
some auxiliary variables are computed and by using a 

decision rules systems, brings flags for meal detection 
and carbohydrate counting. Other steps and auxiliary 
variables are also required; hence, we strongly 
encourage the reader to follow the original paper for 
better understanding.

2.2 Machine Learning Approaches

Machine learning is a mixture of statistics, 
mathematics, programming, and optimiza- tion 
knowledge, often with purpose of getting better 
understanding of the relationtionships in a set of data. 
It is a branch of artifical intelligence and can be applied 
to fields like industry, medicine, research, stocks, 
sales, and computer vision [45], focused principally on 
prediction and classification tasks [Figure 2].

2.2.1 Recurrent Neural Networks

In neural networks exist some relevant architectures 
are particularly relevant: feed- forward, recurrent, 
convolutional, generative adversarial, and transformer 
neural networks. However, because recurrent neural 
networks have been used more for diabetes prediction 
and detection rather than the other architectures, this 
paper only covers that approach. Recurrent neural 
networks, also called RNNs, are a type of artificial 
neural network that adds additional weights to 
the network to create cycles in the network graph 
to maintain an internal state [28]. That network is 
supposed to establish long-short term patterns or 
dependencies between (usually time-dependent) data 
[Figure 3].

As RNNs weigh the order of the data (or sequence), 
they keep them useful for some interesting tasks like 
natural language processing, or forecasting [30–
36]. Long-Short Term Memory (LSTM) networks are 
a subtype of recurrent neural network; they are 
more strongly used than traditional RNNs because 
of their capability of dealing with the vanishing 
gradient problem [37]. Therefore, in this field, it is 

Figure 1. Meal detection algorithm voting scheme [58].

Figure 2. Key aspects in machine learning. Taken from [50].
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possible to find RNN approaches by using LSTMs and 
ensemble learning strategies the model receives as 
input sequences of continuous glucose monitoring 
measurements. They are then classified as 2 
categories, true or false [38]. One author [49] proposes 
an algorithm based on a deep learning for multitask 
quantile regression by using a sequence-sequence 
(seq2seq) encoder- decoder LSTM for predicting the last 
20 minutes of glucose using historical CGM measures, 
meals, and insulin [Figure 4].

The encoder LSTM input comprises the glucose 
concentration levels from the CGM, insulin 
delivered and meals, and returns the encoder state 
representations. The decoder generates the output 
sequence and estimated quantiles of the glucose 
trajectory are generated at the output. The decoder 
input comprises the insulin delivered and announced/
estimated Meals, and is initialized with the final encoder 
state. The output sequence generated from the decoder 
is then fed to the 3 final layers of the model that consist 
of 3 separate tasks. Each task represents a quantile 
distribution, and consequently, the model performs a 
quantile regression for the associated quantile. The 
meal estimation and counting results in a flag detection 
and an iterative meal search respectively. As the 
LSTM outputs multiple quantiles for a 95% prediction 
interval, any prediction outside this interval supposes 

an unannounced input like a meal. The meal counting 
determines then, in an iterative search for meal value, 
which is the better fit for glucose trajectory.

2.2.2 Binary Classification Algorithms

A common algorithm for classification is random 
forest, this is an ensemble learning method [40] for 
either classification or regression and it works by 
combining decision trees [41]. For classification tasks, 
the output of the random forest is the class selected 
by most trees. In diabetes, we can find a procedure 
where random forest and boosted tree models allow 
us to determine how some features like glucose, 
heart rate, physical activity, core temperature, skin 
temperature, and respiration rate may be utilized 
to develop an automated tool for meal detection in 
(metabolically) healthy participants [42]. A similar 
approach is found which uses an isolated trees 
algorithm instead [23]. Other binary classification 
techniques [24] include naive bayes and logistic 
regression being probably used for data mining [51–
53].

2.2.3 Reinforcement learning

This field is about the process of learning what to 
do-how to map situations to actions- so as to maximize 
a numerical reward signal [20] [Figure 5].

Figure 3. Intuitive recurrent neural network ilustration [29].

Figure 4. Multitask deep neural network architecture for predicting glucose [49].
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A reinforcement learning (RL) approach can 
be found for treatment of diabetes [21]. The author 
proposes a bioinspired RL designed for automated 
insulin infusion. The method includes reward 
functions that imply the temporal homeostatic 
objective and discount factors that reflect individual 
specific pharmacological characteristics. As in 
the previous example, it is possible to find similar 
methods or trials for controlling glucose; however, 
most of them are unable to estimate or to detect meal 
intake directly [22].

2.3 Control systems theory

Control systems theory is about measuring and 
controlling signals or variables com- mon to a physical 
process. The variable is modeled by time domain 
equations (differential equations) or frequency domain 
(transfer functions).

2.3.1 Disturbance observer based control

As the process variable is supposed to be controlled, 
there also exist others undesirable signals that should 
be avoided because they can adversely affect the 
controller; they are also known as disturbances. 
Fortunately, there also exist some control techniques 
that aim to overcome disturbance effects – perhaps the 
most important of which is the disturbance observer 
based control (DOBC) [Figure 6].

In the context of diabetes, meal intake can be seen as 
a main disturbance because this drives glucose levels 
into hyperglycemia events and prevents reaching 
normal glycemic levels; in that sense, DOBC looks for 
estimates and to reject meal intake. In one study [16], a 
DOB-based control is proposed to deal with undetected 

meals. The observer estimates unexpected variations 
in the glucose level by using the information of the 
selected features: glucose (from a continuous glucose 
monitor), insulin infusion rate, and a subject-dependent 
model. Another inner approach inside DOBC theory is 
about using sliding mode control (SMC). SMC has fine 
abilities in suppressing effects of parameter deviations 
as well as exter- nal disturbances [17]. In a related 
approach [18], the author exploits the advantages of 
sliding mode observers (SMO) due to their inherent 
robust properties. Furthermore, SMO can reconstruct 
disturbances. The author proposes an estimate of the 
rate aparison of glucose (RA) which is obtained via 
a first-order sliding mode observer (FOSMO). On 
the other hand, a metal detector algorithm is proposed 
based on a super- twisting observer (ST) to detect the 
faults (meals). More information about the super-
twisting observer is available [19] [Figure 7].

Figure 5. A basic scheme of reinforcement learning applied to the 
artificial pancreas problem [22].

Figure 6. A basic scheme of disturbance observer based control [17].

Figure 7. Proposed scheme [18].

2.3.2 Model predictive control

As DOBC, the model predictive control (MPC) is 
nothing other than an alternative to the conventional 
techniques for controlling variables in a process. MPC 
was originally intended to ensure optimal performance 
to compute appropiate control signals as dealing with 
constraint as well. More details are available in the 
literature [26]. Examples of MPC for diabetes also are 
reported in the literature [25]. For this approach the 
author presents a control system that automatically 
delivers priming boluses and/or anticipates eating 
behaviors to improve post-prandial full closed-loop 
control. The anticipating is achieved by detecting 
large glycemic disturbances. Additionally, to deliver 
an appropiate insulin dosage a group of glycemic 
disturbance profiles was generated from historical 
data; then, the disturbances were clustered to fit the 
profile to which this belongs.

2.3.3 Classical control

Classical control is a frequency domain based 
control approach where the process (also called 
system) is modeled by frequency domain equations 
(transfer functions) and describes how the process 
variable (to be controlled) changes due to known 
exogenous variables (inputs) or unknown ones 
(disturbances) [43]. The process variable is fed 
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back and compared with a desired signal (reference) 
giving an error signal. Finally, the error is given to 
another transfer function that works like a controller 
that tries to minimize the error by generating an 
appropiated signal to the system [Figure 8].

is generated from read and predicted BG, which is fed 
to a meal estimator (transfer function). Third, the 
estimated meal is conditioned to be visualized in a 
suitable manner.

2.3.4 Modern control

Modern control is a time domain based control 
approach where process is modeled by time domain 
equations (differential equations). This approach 
allows one to describe not only the behavior of the 
output of the system, but also all the internal variables 
(states) opening it to new, interesting, and complex 
control techniques.

Most of the proposals in this field are related 
to meal detection and counting turns around 
states observers. This basically allows masking of 
disturbances into dynamics that can be modeled for 
differential equations. Most common states observed 
[46] include Luenberger, proportional integral, 
Kalman, and so on [Figure 10].

Following this approach, we can find the next 
related papers. Unscented Kalman filter (UKF) is used 
for prediction based on the Bergman minimum model 
[48] and estimate personalized parameters. Meal 
detection is determined by the predicted value of meal 
interference and the difference between the predicted 
blood glucose concentration of UKF and the actual 
blood glucose concentration [47].

3. Commonly used datasets
In this section, we present a summary of the most 

commonly used datasets.

Figure 8. Typical feedback control scheme [43].

Figure 9. Block diagram of algorithm proposed [44].

Inspired by this approach, the carbohydrate 
amount (unknown input) is estimated based on a 
feedback scheme where measured blood glucose (BG) 
and a predicted BG are compared. Glycemic behavior 
is predicted using a personalized model considering 
some parameters like insulin sensitivity factor (ISF), 
basal insulin rate (BIR), and insulin on board (IOB) 
[44] [Figure 9].

The model consists of 3 transfer functions: 
insulin, meal, and a ficticious balance subsystem. 
The method has 3 stages. First, the BG prediction is 
based on exogenous insulin and an estimated meal. 
Second, is the estimation system, where an error signal 
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Figure 10. Timeline of observers [46].

3.1 UVA/Padova T1DM

The UVA/PADOVA model consists of a set of 
differential equations, both linear and nonlinear, 
where each of these describes the dynamic behavior 
of the principal variables involved in the glucose-
insulin profile in patients with type I diabetes [54]. 
Similarly, the simulator associated with this model, 
the Type I Diabetes Metabolic Simulator (T1DMS) 
from UVA/PADOVA, delivers the simulation of 
a population of 10 adults, 10 adolescents and 
10 children. These T1DM populations have been 
generated by random extraction from distributions of 
joint parameters, of different realizations of the vector 
of parameters, that is, the vector that includes the 
entire set of model parameters.

3.2 WP7

The study will be conducted in crossover trial, 
with 2, 12-week periods separated by a wash-
out period of at least one month. According to 
randomization, patients will be provided with either 
the Diabeloop system or the usual system. Patients 
will be trained for the use of a blood glucose meter, 
an external insulin pump and Diabeloop system. In 
both treatment periods, the same blood glucose meter 
will be used throughout the duration of the study. In 
2 centers (Centre Hospitalier Sud-Francilien and 
Grenoble), a pilot study will be performed during 4 
weeks to improve the efficacy of Diabeloop system 
with data collection, to test the manual settings by 
healthcare providers and patients and to check the 
proper functioning of the follow-up platform [55].

3.3 OhioT1DM

The OhioT1DM Dataset was first released in 2018 
for the first Blood Glucose Level Prediction (BGLP) 
Challenge. At that time, the dataset was half its 
current size, containing data for only 6 people with type 
1 diabetes. Data for an additional 6 people are being 
released in 2020 for the second BGLP Challenge [56].

The OhioT1DM Dataset contains 8 weeks’ worth of 

data for each of 12 people with type 1 diabetes. These 
de-identified people are referred to by randomly 
selected ID numbers. All data contributors were 
on insulin pump therapy with continuous glucose 
monitoring (CGM). They wore Medtronic 530G or 630G 
insulin pumps and used Medtronic Enlite CGM sensors 
throughout the 8-week data collection period. They 
reported life-event data via a custom smartphone 
app and provided physiological data from a fitness 
band. The first cohort of 6 individuals wore Basis 
Peak fitness bands. Data for this cohort were released 
in 2018. The second cohort of 6 individuals wore the 
Empatica Embrace

3.4 Pima Dataset

This dataset is originally from the National 
Institute of Diabetes and Digestive and Kidney 
Diseases. The objective of the dataset is to predict 
whether or not a patient has diabetes, based on certain 
diagnostic measures included in the dataset. Several 
constraints were placed on the selection of these 
instances from a larger database. In particular, all 
patients here are women at least 21 years old, and of 
Pima Indian heritage.

4. Results and discussion
Wide-ranging approaches and proposals have been 

described. Early detection and estimation techniques 
are common decision rule-based rather than based on 
more sophisti- cated procedures. Decision rules are 
also more feasible for easy implementation because 
this manages a simple logic and lower computational 
effort than modern approaches.

Meal detection also often faces a time-delay 
challenge because almost all approaches compare 
deviations between a prediction model and the real 
glucose measured, and require considerable time. In 
fact, it usually takes between 30 minutes and one hour 
later to detect the meal.

Another important problem to be resolved is the 
increasing number of false positive detections. In this 
case, there could be issues related to the quality of pre-
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processing of features. In fact, a good pre-processing 
could prevent noisy data like derivatives or even 
“noisy” glucose. Furthermore, It could be solved by 
transforming data with smoothing filters Likewise, 
sometimes it is possible to face an imbalanced data 
problem. A data imbalance refers to a classification 
learning problem where at least, one of the classes 
includes a larger number of observations than in other 
classes. An example of imbalanced data in diabetes 
could be the labels for a binary classification problem 
where one class represents the likelihood of a meal 
detected and the other the likelihood of not being 
detected. As is expected, the probability of having 
meal is lower than not having a meal because patient 
will not be eating all the day. Fortunately, this 
also could be fixed by the technique known as data 
augmentation. In brief, this consists of increasing 
the amount of data by adding modified versions of 
the data without affect the quality of original data.

sMoreover, newer approaches (e.g., IA-inspired) 
often get more accurate results, es- pecially ensemble 
methods. Their complexity and depth offers insights 
that not could be reached from others techniques. 
That is the case of recurrent neural networks like 
LSTM, GRU, and BILSTM which learn long-term 
dependencies between time steps of sequential 
data. The majority of proposals are performed on 
in silico patients rather than in vivo ones. One of 
most important and reported for trials in in silico 
databases is the T1DM UVA/PADOVA simulator. 
This is the first (and currently only) in silico diabetes 
model accepted by the Food and Drug Administration 
as a substitute for pre-clinical animal testing of new 

treatment strategies for type 1 diabetes mellitus. 
Additionally, this allows one to simulate not only 
glucose, but also meal profiles, insulin treatment, time 
of simulation, and control algorithms.

Despite its popularity, UVA/PADOVA, and in 
general, synthetic data could not be a good idea for 
trials. In fact, in silico records are often non-realistic 
data because they do not cover other important features 
like stress, illness, or sleep quality, for instance. Real 
data are noisy, sometimes, lacking information like 
meal announcements, or glucose recordings due to 
faults in the monitoring system. Real data also are 
nonlinear, the same meal eaten in different times of 
the day could not produce exactly the same effect on 
glucose.

Most procedures require as inputs glucose samples 
from continuous glucose monitoring devices such 
as basal insulin and bolus. Most CGM samples 
glucose require 5 minutes. Most approaches could 
be grouped by 2 categories: mathematical model 
based and not model based. Meal detection times are 
usually delayed yielding delayed meal estimation 
too. Glucose dynamics often changes not only due to 
insulin and meals, but also due to stress, physical 
exercise, or sleeping hours which are not usually 
taken into account by algorithms.
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