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■ Abstract 
BACKGROUND: The gastrointestinal tract (GIT) harbors a 
complex and diverse microbial composition that outnumbers 
our own body cells and their gene contents. These microbes 
play a significant role in host metabolism and energy ho-
meostasis. Emerging evidence suggests that the GIT micro-
biome significantly contributes to host health and that im-
pairments in the microbiome may cause the development of 
metabolic diseases. The microbiome architecture is shaped 
by several genetic and environmental factors, including nu-
trition and physical activity. Physical exercise has preventive 
or therapeutic effects in respiratory, cardiovascular, neuro-
endocrine, and muscular diseases. Yet, we still have little 
information of the beneficial effects of physical exercise on 
GIT health and microbial composition. Furthermore, we are 
not aware whether exercise-derived benefits on microbiome 
diversity can beneficially influence other tissues and body 
organs. OBJECTIVES: The aim of this article is to review 
the available literature on exercise-induced microbiome 

changes and to explain how these changes may induce in-
flammatory, immune, and oxidative responses that may con-
tribute to the improvement of metabolic disorders. METH-
ODS: A systemic and comprehensive search of the relevant 
literature using MEDLINE and Google Scholar databases 
was conducted during fall 2018 and spring 2019. The search 
identified sixty-two research and review articles that dis-
cussed exercise-induced microbiome changes. RESULTS: 
The review of the relevant literature suggests that exercise-
induced microbial changes affect the host’s immune path-
ways and improve energy homeostasis. Microbes release 
certain neuroendocrine and immune-modulatory factors that 
may lower inflammatory and oxidative stress and relieve pa-
tients suffering from metabolic disorders. CONCLUSIONS: 
Exercise-induced changes in microbial diversity are able to 
improve tissue metabolism, cardiorespiratory fitness, and 
insulin resistance. 
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1. Introduction 
 

 uring the last century the mortality index 
 indicated a gradual shift from infectious 
 diseases towards non-communicable dis-

eases (NCDs) [1]. Simultaneously, the importance 
of healthy lifestyle has been emphasized. Besides 
genetics, diet and lifestyle are the two most impor-
tant factors associated with the risk of obesity-

related metabolic disorders (ORMDs). Consump-
tion of a calorie-rich diet and sedentary lifestyle 
have contributed to the rising incidence of ORMDs 
in industrialized countries. In particular, cardio-
vascular diseases, diabetes, and obesity have been 
associated with sedentary lifestyle. 

Research on the gastrointestinal tract (GIT) 
microbiome has increased our understanding of 
the bi-directional communication between host 
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and microbiome which is carried out through neu-
roendocrine signals and genetic transfer, and in-
creased knowledge on “microbiome perturbations” 
in the pathogenesis of ORMDs [2]. Cumulative 
evidence suggests that the GIT microbiome is an 
essential mediator between different factors such 
as genetics, diet, exercise, and environment and 
the pathophysiology of the ORMDs [3]. Genetics, 
dietary habits, and host environment may influ-
ence the microbiome and eventually affect host 
metabolism. While this interaction has been stud-
ied extensively in diet-induced microbiome pertur-
bations and host physiological and pathological 
processes [4], little attention has been given to 
other factors such as physical exercise. 

GIT microbiome research has emerged as a po-
tential exploratory field with special focus on 
ORMD pathogenesis. Microbiome dysbiosis (de-
rangements in microbial ecology) in ORMDs has 
been reported [5]. Because of the presence of 
highly diverse microbial populations, the GIT 
represents the primary site of immunological ac-
tivity. Lifestyle and physical activity may act as 
important factors to reshape gut microbiome and 
immunological responses [6], and provide the op-
portunity to influence disease development by 
therapeutic measures. 

Therefore, in this article, we collected informa-
tion on the impact of exercise on GIT microbiome 
and discussed how this information may relate to 
major NCDs, such as obesity and diabetes. We 
have previously reported changes in microbiome 
diversity in a type 1 diabetes rat model [7], and we 
have outlined the changes in microbiome architec-
ture in diabetes and obesity [8]. In this review, we 
also analyzed exercise-associated changes in the 
microbiome that are able to modify body physiol-
ogy and homeostasis. 

2. Methods 
The review of the literature was intended to 

identify taxonomic and community changes in the 
GIT microbiome in response to physical exercise. 
We explored exercise-mediated alterations in gut 
microbiome and metabolites that could be related 
to systemic inflammation, oxidative stress, and 
impaired immune responses. A systematic and 
comprehensive search of MEDLINE and Google 
Scholar was conducted between fall 2018 and 
spring 2019 to find relevant research articles pub-
lished from 2000 to 2019. The following keywords 
were used in different combinations to retrieve all 
relevant research articles published in the English 
language: 

 
- Exercise 
- Physical activity 
- Microbiome 
- Metabolic disorders 
- Inflammation 
- Immunity 
- Obesity 
- Diabetes 
 
References and bibliographic lists in published 

and review articles were also reviewed to identify 
relevant studies that may have been overlooked 
during database searches. All original research ar-
ticles that presented data on intestinal micro-
biome, exercise, and/or metabolic disorders in hu-
mans and animals were included in the study. The 
literature search was not restricted to: 

 
- Pattern, intensity, or duration of exercise 
- Participants’ gender or age 
- Sampling pattern or 
- Study design 
 
We retrieved 51 original articles and 10 review 

papers published during 2008-2019 (Figure 1). 
The research articles were divided into the follow-
ing two categories: 

 
1. Articles that studied exercise-induced mi-

crobiome diversity. 

Abbreviations: 
 

AMPK 5′ AMP-activated protein kinase 
BRFSS Behavioral Risk Factor Surveillance System 
BWG body weight gain 
CFU coliform unit 
GABA γ-aminobutyric acid 
GIT gastrointestinal tract 
GLP-1 glucagon-like peptide-1 
GPR G protein receptor 
GPR G-protein-coupled receptor 
HFD high-fat diet 
HPA hypothalamus-pituitary-adrenal 
IL interleukin 
LDL low-density lipoprotein 
LPS lipopolysaccharides 
NCD non-communicable disease 
NF-κB nuclear factor kappa light-chain enhancer of 

activated B cells 
ORMD obesity-related metabolic disorder 
PYY peptide YY 
SCFA short-chain fatty acid 
SGLT1 sodium-glucose cotransporter 1 
Th cell T helper cell 
TLR toll-like receptor 
Treg cell T regulatory cell 
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2. Generic articles that 
linked exercise-induced 
microbiome changes with 
ORMDs. 

 
For each study, we retrieved 

data on exercise pattern, mi-
crobiome diversity, metabolic 
responses, and immune-
inflammatory markers. The 
primary outcome of this effort 
was in the form of a data base 
on the following aspects: 

 
- GIT microbiome taxon-

omy and metabolic pro-
file 

- Immune-inflammatory 
responses 

- Oxidative stress 
 
A few studies discussed the 

molecular mechanisms in-
volved in exercise-mediated al-
terations of the microbiome 
and systemic inflammation and 
immunity [9, 10], while the 
majority of studies simply de-
scribed phylogenetic changes 
observed in response to exer-
cise. To pursue the objective of this review, namely 
to find out more about the relation between micro-
biome changes and exercise with respect to meta-
bolic diseases, we further explored review articles 
and mechanistic studies that related systemic in-
flammation and immunity to microbiome and ex-
ercise. 

3. The microbiome as a virtual body 
organ 

Most body surfaces of mammalians harbor a 
robust microbial colonization that is established to 
protect the body against potential pathogens; it is 
collectively called the microbiome. The microbiome 
is composed of archaea, bacteria, eukaryotes, vi-
ruses, and their genetic material. Both cell number 
and genetic material of the microbiome outnumber 
our own body cells and their genetic materials [11]. 
The host’s genetics and several habitual and envi-
ronmental factors act together in shaping host mi-
crobiome (Figure 2). Beyond genetics, a number of 
habitual and environmental factors contribute to 
shaping the host microbiome, including mode of 
delivery at birth, breastfeeding as opposed to for-

mula feeding, adult dietary habits, hygiene, physi-
cal activity, antibiotics or xenobiotics exposure, 
and geographical location [12-14]. 

The microbiome has essential structural, pro-
tective, metabolic, and endocrine functions that in-
clude food digestion, pathogen displacement, and 
nutrient synthesis [15, 16]. The GIT is the primary 
site of interaction between our body’s largest com-
ponent of the immune system and microbial colo-
nization. The commensal microbes not only tune 
and train this local immunity, they also impact 
systemic immunity. Microbes interact with the 
nervous and endocrine system through glucagon-
like peptide 1 (GLP-1) and peptide YY (PYY) that 
are produced in enteroendocrine L-cells, even 
though the exact mechanisms involved in this 
communication are not fully understood [17]. 

The endocrine activities of the microbiome are 
very heterogeneous. Frequently, the metabolic 
products of the microbiome, such as short-chain 
fatty acids (SCFAs), histamine, monoamines, and 
γ-aminobutyric acid (GABA), act as second mes-
senger molecules or neurotransmitters [18-20]. 
These molecules mediate gut-brain and endocrine 
communications and contribute to the micro-

Search databases:
MEDLINE and Google Scholar

Search keywords
“exercise”, “physical activity”, “microbiome”, “metabolic disorders”, 

“inflammation”, “immunity”, “obesity”, “diabetes”

Publications identified
(n = 61)

Original articles 
(n = 51)

Rodents exercise model (n = 32)
Human studies (n = 16)

Equine exercise studies (n = 3)

Review articles 
(n = 10)

 
 

Figure 1. The figure illustrates the search method used to collect research arti-
cles from Medline and Google Scholar databases. 
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biome’s systemic functions. Gnotobiotic rodent 
models and probiotic supplementation studies 
have highlighted the significance of the micro-
biome. The poor microbial composition in gnotobi-
otic rats is explicated by averted hypothalamic-
pituitary-adrenal (HPA) responses to psychological 
or environmental stressors [21, 22]. This neuroen-
docrine containment within the microbiome influ-
ences behavior and learning aptitude through bio-
synthesis of microbial neurochemicals either di-
rectly or by bi-directional transfer of genetic in-
formation between host and microbiome [23]. 

SCFAs are the main metabolic products of mi-
crobiome fermentation. These molecules act as 
signaling ligands for G-protein-coupled receptors 
(GPRs) on enterocytes for chemosensation, appe-
tite regulation, and peripheral nutrient disposal 

[24]. Acetate, butyrate, and propionate are the 
main SCFAs that are produced by bacterial fer-
mentation. Acetate and propionate enhance the 
expression of GPR-43 in immune cells to regulate 
immune-inflammatory responses [25]. Further-
more, these metabolites improve intestinal barrier 
function and display potent immunoregulatory 
properties through T cell proliferation and cyto-
kine production [26]. 

4. Microbial dysbiosis and aberrant 
energy homeostasis: the prodrome of 
metabolic syndromes 

Obesity is the consequence of genetic predispo-
sition, chronic energy imbalance, and lack of 
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Figure 2. Factors that influence the human microbiome architecture and different functions performed by our microbiome. 
Genetics and mode of delivery at birth are the first predisposing factors impacting the gastrointestinal (GIT) microbiome. They 
work together with breast-feeding, hygiene, exposure to medication (antibiotics), dietary habits, and physical exercise to 
shape GIT microbiome. The diagram also sketches the different functions of the GIT microbiome. The microbiome helps to 
digest food and control host body energy homeostasis. Microbes secrete several useful peptides and are part of our body’s 
largest immune system. 
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proper physical activity. Extensive diet restriction 
as well as lifestyle, surgical, and pharmacological 
interventions have been implemented to treat obe-
sity. These efforts are targeted at losing weight, 
but they have demonstrated  insufficient, unsafe, 
and inconsistent results in most of the cases [27-
29]. In recent years, significant progress has been 
made in the understanding of the GIT microbiome, 
suggesting a crucial intermediate role in energy 
homeostasis. 

The basic functions of the gut microbiome are to 
digest dietary fibers and provide energy to the 
host. Changes in GIT microbiome composition al-
ter digestive efficiency and consequently host me-
tabolism [30]. Several studies have demonstrated 
substantial changes in microbiome composition in 
obese subjects compared with healthy controls, 
and these changes were associated with ORMDs. 
Palleja et al. observed that weight loss interven-
tions are associated with beneficial changes in bac-
terial diversity and improvements in metabolic 
functions [31]. Furthermore, fecal microbiome 
transplant from lean donors recapitulates the 
functional metabolic phenotype and improves insu-
lin sensitivity in the obese recipients [32]. 

onsumption of energy-rich food or antibiotics 
can induce microbiome perturbations and promote 
the incidence of metabolic syndromes. For exam-
ple, prolonged antibiotic treatment, or antibiotic 
consumption during early life may induce micro-
bial dysbiosis and promote obesity and diabetes 
[33, 34]. Hicks et al. observed a positive correlation 
between microbial dysbiosis, antibiotic consump-
tion, and metabolic syndrome [35]. The authors 
performed a retrospective analysis using major 
data pools, including USA population data, Ameri-
can Community Survey, Area Resource File data, 
and the Behavioral Risk Factor Surveillance Sys-
tem (BRFSS) data obtained from Centers for Dis-
ease Control and Prevention. They found that the 
obese portion of the American population has the 
highest antibiotic prescription rate. 

While these studies suggest an association be-
tween microbiome and host energy homeostasis, 
most of them lack a mechanistic explanation of the 
impact of microbiome changes on host energy cy-
cle. It is still unknown whether these microbiome 
changes are cause or effect of obesity. We present 
the most discussed microbiome-energy homeosta-
sis pathways below. 

Recent evidence suggests bi-directional com-
munication, through neuroendocrine signals, be-
tween gut microbiota and host cell energy homeo-
stasis [36]. Several high-impact studies link SCFA 
production in gut fermentation to host energy ho-

meostasis [37, 38]. Furthermore, microbiome com-
position is a key regulator of non-digestible carbo-
hydrate and fiber digestion capacity. Cani et al. 
have discussed the microbiome’s capacity to digest 
fibers, the production of SCFAs, and host energy 
homeostasis in symbiotic relationship [39]. In 
brief, SCFAs promote mitochondrial function, 
lipolysis, neoglucogenesis, beige adipogenesis, and 
release of GLP-1 and PYY. Conversely, these in-
testinal hormones influence food intake by modu-
lating the activity of brain feeding centers. Fur-
thermore, as revealed by germ-free mice experi-
ments, microbial fermentation products stimulate 
the production of leptin in adipocytes that promote 
hepatic lipogenesis and surplus energy storage 
[40]. 

5. Exercise as a modulator of gut mi-
crobiome 

There is compelling evidence to suggest that 
long-term exercise has a positive effect on energy 
homeostasis and plays a preventive role against 
various ORMDs. The most important physiological 
adaptations that occur in response to exercise are 
mitochondrial biogenesis, muscular hypertrophy 
and angiogenesis, cardiovascular fitness, better 
organized energy supply chain, and activation of 
the HPA axis. Exercise-induced activation of the 
HPA axis improves energy balance and better 
regulates immune-inflammatory responses [20]. 
Exercise promotes the cholinergic anti-
inflammatory pathway and reduces tumor necrosis 
factor α (TNF-α) release. Lowder et al. reported 
that continuous moderate exercise is able to pre-
vent influenza infection in rats by enhancing the 
production of anti-inflammatory cytokines (IL-10 
and IL-4) and by lowering the secretion of pro-
inflammatory cytokines (TNF-α, IL-1, interferon-γ) 
[41]. 

Since 2008, more than 50 research articles have 
been published on the impact of exercise on gut 
microbiome diversity. Effects of exercise on GIT 
health, though not fully explained, have emerged 
as a key interest in cancer and metabolic disease 
research. Endurance exercise may modulate GIT 
immune-inflammatory and redox responses, GIT 
permeability, motility, and stool transit time and 
consistency [42-44]. Hoffmann et al. reported that 
acute and continuing exercise regimes of varying 
intensities could increase antioxidant capacity, 
lymphocyte turnover, and expression of anti-
inflammatory cytokine in the intestinal wall [43]. 
In the initial stages of intense exercise, GIT hy-
poxia and hypoperfusion may increase gut perme-
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ability, endotoxemia and oxidative stress [45, 46]. 
However, these changes in inflammation and im-
mune response are transient and subside quickly. 
In particular, these changes are associated with 
the GIT microbiome in one way or another. It is 
also observed that specifically designed exercise 
therapies mitigate GIT inflammatory diseases by 
preferentially modulating microbiome diversity 
and metabolic profile [47, 48]. It is suggested that 
exercise increases gut motility, which may in-
crease the shedding of loosely bound microbes in 
the GIT epithelium. This effect promotes the 
growth of other commensals that participate in the 
development of healthy mucosal immunity and 
provide benefits in gut tissue and beyond [49]. 

hysical exercise has positive effects on GIT mi-
crobiome biodiversity, as observed in several ani-
mal and human studies [10, 50, 51]. Several au-
thors suggest that these changes in microbiome 
diversity are associated with cardiorespiratory fit-
ness and GIT microbial metabolic profile [49, 52, 
53]. People with better cardiorespiratory fitness 
have better microbial diversity and chemotaxis ac-
tivity with decreased lipopolysaccharide (LPS) bio-
synthesis [52]. This improvement in microbial di-
versity and cardiorespiratory fitness in exercising 
subjects may be attributed to higher abundance of 
butyrate-producing bacteria by the Clostridiales, 
Erysipelotrichaceae, Lachnospiraceae, and Rose-
buria families. 

icrobiome involvement in metabolic diseases is 
perhaps most vividly portrayed in gnotobiotic ro-
dents and probiotic/prebiotic supplementation 
studies. Allen et al. reported that microbiome 
transplanted from exercising mice to gnotobiotic 
mice improved bacterial diversity and metabolite 
profile and decreased colon inflammation [54]. 
These changes in microbiome, metabolites, and in-
flammation markers are linked to gut permeability 
during scenarios of physiological stress. Therefore, 
targeting the intestinal microbiota may provide a 
novel strategy to prevent increases in intestinal 
permeability and thus to cope with physiological 
stress [55]. Exercise started in early life is more 
effective in correcting microbiome (increasing 
Bacteroidetes to Firmicutes ratio) and in devel-
oping stable lean body mass [56]. An increase in 
Firmicutes to Bacteroidetes ratio, characterized by 
microbiome enrichment with Firmicutes or deple-
tion of Bacteroidetes, is recognized as an obesog-
enic trait and is often found in obese children [57]. 
Furthermore, an increase in butyrate-producing 
bacteria influences the metabolic pathways in-
volved in fat accumulation and prevents obesity. 
Estaki et al. reported an increased production of 

SCFAs and reduced biosynthesis of LPS by gram-
negative bacteria in exercising subjects, suggesting 
a protective role of exercise in immune-
inflammatory inhibition of ORMDs [52]. Similarly, 
Hsu et al. observed that probiotic Bacteroides 
fragilis supplementation improved exercise toler-
ance and swimming performance in gnotobiotic 
mice [58]. The improvement in exercise tolerance 
was also associated with improvements in liver, 
muscle, brown fat weight, and the antioxidant en-
zyme production system [58]. Although the initial 
response to intense exercise regimes constitutes an 
increase in gut barrier permeability, continuing 
exercise for longer duration may improve GIT mi-
crobial diversity which attenuates production of 
the cytokines involved in tissue regeneration [54]. 

larke et al. reported conformational changes in 
microbiome diversity in high-performance rugby 
player’s stool, particularly, a decrease in Fir-
micutes to Bacteroidetes ratio [59], which has im-
plications for the pathogenesis of obesity and dia-
betes [8]. Data from the American Gut Project re-
vealed that adopting moderate exercise (from 
never to daily) increases species diversity among 
Firmicutes phylum and promotes healthier gut 
environment [60]. Habitual moderate to intense 
physical activity improves microbial diversity and 
immune functions and reduces inflammatory dis-
eases [61]. Petersen et al. performed shotgun me-
tagenomics and metatranscriptomic analysis of 
competitive cyclists, and reported changes in mi-
crobial diversity and an upregulation in carbohy-
drate metabolism and energy production [62]. 
Similarly, Welly et al. reported that exercise-
induced microbiome changes in rats were associ-
ated with low insulin resistance, adipose tissue in-
flammation, and better exercise tolerance [63]. 

In most of the published studies, exercise-
induced microbiome changes are investigated at 
the holistic level, while very few studies describe 
specific taxonomic associations between exercise 
and GIT microbiome. However, a few rodent exer-
cise studies have associated weight loss with an 
increase in the Bacteroidetes/Firmicutes ratio [64, 
65]. Furthermore, investigators observed a positive 
correlation between Lactobacillus and Bifidobacte-
rium spp. and serum leptin levels in exercising 
rats. Although we assume that an increase in the 
Bacteroidetes/Firmicutes ratio is beneficial for 
metabolic health, as has been observed in several 
studies [57, 59, 64-66], there are also contradictory 
findings, suggesting exercise-induced health bene-
fits in association with increased Firmicutes diver-
sity and depletion in Bacteroidetes populations 
[60, 67]. These differences in observations may be 
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attributed to different exercise interventions, die-
tary patterns, or different genetic background of 
the host. The members of the Firmicutes phylum 
are most responsive to exercise-associated micro-
biome changes. However, it is hard to identify spe-
cific bacteria genera that create beneficial health 
responses or that lead to systemic inflammation. 

Most of the studies reviewed here reported that 
the changes in microbiome diversity are associated 
with improvements in health status. Perhaps, 
most of these studies describe dissimilar taxo-
nomical changes in microbiome in response to ex-
ercise, and generally present more global changes 
at phylum level (e.g. changes in Bacteroide-
tes/Firmicutes ratio) or in terms of alpha and beta 
diversity (species richness and diversity). These 
inconsistent taxonomical observations may be due 
to different experimental settings, such as differ-
ences in subjects’ age, sex, disease state, supple-
mentation regime, and exercise pattern. Although, 
similar exercising patterns may have different re-
sults in different ages [56] or diet groups [64], Al-
len et al. reported that different exercising pat-
terns (voluntary wheel running vs. forced tread-
mill running) may also affect microbiome differ-
ently [68]. Therefore, the only conclusive observa-
tions in almost all of these studies are that exer-
cise increases microbial species’ richness and 
evenness (alpha diversity), and results in distinct 
clustering patterns (beta diversity), and that there 
is no single microbial taxon or group of bacteria 
that can be associated with such variation, as re-
ported elsewhere [9, 10, 58]. 

Furthermore, most of the reviewed studies re-
capitulate enhanced production of SCFA, particu-
larly butyrate [53, 64, 69], which are produced by 
microbial fermentation of fibers and non-digestible 
starch. This discussion endorses a significant role 
of physical exercise in microbial metabolism and 
energy cycles. Perhaps, further mechanistic ex-
perimentation is required to elucidate host energy 
homeostasis in the framework of mode and dura-
tion of training that imprints positive effects on 
microbial community and its functional contain-
ment. The future goals of research on exercise-
induced microbiome changes should include mo-
lecular evaluation of immune-inflammatory path-
ways or neuroendocrine mediators in gut and 
metabolic tissues. 

6. Metabolic disorders in the view of 
exercise-induced microbial diversity 

Patients with metabolic disorders are charac-
terized by excessive release of pro-inflammatory 

cytokines from bone marrow-derived monocytes, 
NF-κB, and chemoattractant protein 1 that disturb 
the blood-brain barrier and induce neuroinflam-
matory responses [70, 71]. Inactive lifestyle en-
hances fatigability and acts as mediator of the de-
velopment of obesity, hypertension, dyslipidemia, 
and insulin resistance [72]. In a sedentary rat 
model of metabolic syndrome, Feng et al. observed 
that exercise rectified immune-inflammatory 
markers of obesity and immune-inflammatory re-
sponses [73]. These changes in ORMD markers 
were coequally associated with an exercise-induced 
improvement in microbiome diversity. 

Recently, Dalton et al. reviewed the effects of 
exercise on the gut-brain axis and microbiome di-
versity [74]. The authors proposed that exercise-
induced improvements in mood and psychological 
disorders are linked with changes in microbial di-
versity [75]. Increase in microbiome diversity in 
response to continuous aerobic exercise has been 
shown to stabilize GIT barrier function and lower 
symptoms of irritable bowel syndrome [76]. Probi-
otic supplementation and aerobic exercise may im-
prove the diversity and abundance of genera from 
the Firmcutes phylum [76]. This may be explained 
as a neuroendocrine link between the positive ef-
fects of exercise on GIT and brain to prevent or 
treat psychological distress through the micro-
biome-gut-brain axis [74]. This neuroendocrine 
containment within the microbiome influences be-
havior or learning aptitude through biosynthesis of 
microbial neurochemicals either directly or 
through bi-directional transfer of genetic informa-
tion between host and the microbiome [23]. 

Allen et al. observed that at baseline, the fecal 
microbiome, microbiome metabolic profile, and car-
diorespiratory fitness level of obese subjects were 
different from those of lean subjects, and exercise 
training was positively correlated with these pa-
rameters [77]. However, when the rats were re-
turned to a sedentary lifestyle, these changes also 
reverted to baseline values. Furthermore, exercise-
induced microbiome changes reduced fatigue and 
depression, and improved exercise tolerance, moti-
vation, and cardiorespiratory fitness. Similarly, 
Feng et al. showed that pre-operative exercise 
minimizes postoperative weight-gain, neuroin-
flammation, and cognitive decline and corrects the 
microbiome in rats [78]. Carbajo-Pescador et al. 
studied the effects of exercise training on the func-
tionality of gut microbiota, intestinal barrier in-
tegrity, and hepatic steatosis in high-fat diet rats 
]9]. Exercise lowered body weight, mitigated meta-
bolic syndrome and hepatic steatosis, and im-
proved intestinal barrier function. 



 

42  The Review of DIABETIC STUDIES Sohail et al. 
   Vol. 15 ⋅ 2019 
 

Rev Diabet Stud (2019) 15:35-48  Copyright © by Lab & Life Press/SBDR 

These exercise-induced metabolic changes were 
associated with an increased population density of 
Bacteroides, Flavobacterium, and Parabacteroides 
genera. These microbial genera have been recog-
nized previously for their protective role against 
obesity, liver steatosis, and anti-inflammatory ca-
pacities [79, 80]. Denou et al. reported that exer-
cise could improve the Bacteroidetes/Firmicutes 
ratio, metabolic rate, and tricarboxylic acid path-
way genes in high-fat diet fed obese mice [66]. In 
general, overabundance of phylum Firmicutes is 
associated with obesity, whereas increase in Phy-
lum Bacteriodetes is associated with weight loss in 
obese individuals. Similarly, higher species rich-
ness and diversity of the GIT microbiome corre-
sponds to improved metabolic markers and energy 
balance, whereas low bacterial diversity is corre-

lated with insulin resistance, obesity, and dyslipi-
demia (Figure 3) [81]. Since continuous physical 
exercise is known to prevent or treat these meta-
bolic diseases, these findings may suggest that ex-
ercise-associated changes in the GIT microbiome 
may support the host’s metabolic health. Further-
more, enhanced microbiome diversity in endurance 
performers can also improve antioxidant capacity, 
which is crucial in lowering insulin resistance and 
preventing ORMDs [58, 82]. 

Another plausible mechanism that may impart 
exercise-induced changes in the microbiome in 
ORMDs is the change in microbiome metabolic 
profile. The microbiota-produced SCFA activate 
the 5′ AMP-activated protein kinase (AMPK) 
pathway to control lipids and glucose metabolism 
and act as a sensor for cellular energy status [83]. 

 
 

Figure 3. How does physical exercise influence the microbiome and how does the microbiome then impact on metabolism? 
Physical exercise changes GIT barrier permeability, GIT motility, and microbial diversity, which subsequently change the 
metabolic profile of liver, adipose tissue, and muscles. An improvement in gut barrier permeability prevents systemic release 
of lipopolysaccharides (LPS) and inflammation. Furthermore, exercise-induced changes in the microbiome activate the hypo-
thalamus-pituitary-adrenal (HPA) axis and reduce different types of stress. Subsequent release of short-chain fatty acid (SCFAs) 
and activation of adipokines and chemokines prevent inflammation and autoimmune destruction of beta-cells, and improve 
energy balance and tissue metabolism. 
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GIT microbiome is critical for sodium-dependent 
glucose transporter 1 (SGLT1) and G-protein-
coupled receptor (GPR) expression on colon epithe-
lial cells. However, it has been observed that anti-
biotic-induced GIT microbiota depletion in rats re-
sults in impaired muscle function in endurance 
running performance. Furthermore, decrease in 
microbial diversity is also associated with loss in 
muscle glycogen levels and insufficient metabolic 
performance because of SGLT1 and GPR depletion 
[84]. However, SCFA-regulated GPR stimulation 
controls size and function (expression of Foxp3 and 
IL-10) of the colonic T regulatory (Treg) and T 
helper (Th) cells in intestinal inflammation [85, 
86]. Therefore, a decrease in the richness of bacte-
ria species, as observed during antibiotic therapy, 
may suppress SCFA production, which eventually 
results in decreased Treg cell production and acti-
vation of pro-inflammatory and autoimmune path-
ways. 

Furthermore, exercise increased fecal abun-
dance of arabinose and carnosine metabolites, 
which are promising candidate for therapies to 
combat diabetes and obesity [87]. These microbes 
and metabolites prevent LPS influx, TLR-4-
mediated NF-κB activation, and inflammatory cy-
tokine production. Eventually, downregulation of 
TLR-2, TLR-4, and the NF-κB pathway resulting 
from exercise may improve insulin sensitivity [88]. 
In brief, exercise-induced changes in GIT micro-
biome and metabolome help to maintain intestine 
wall integrity and downregulate both local and 
systemic immune-inflammatory pathways that 
may contribute to the prevention of ORMDs [51]. 

As discussed in the above sections and shown in 
Table 1, most of the literature available provides 
only common diversity or phylum level taxonomic 
changes in microbiome in response to exercise, 
both in health and metabolic diseases. It is there-
fore reasonable to assume that exercise-induced 
changes in microbiome diversity could improve 
host metabolic profile by: 

 
- Decreasing lipid production and storage in 

visceral organs 

- Correcting chronic low-grade inflammation 
- Decreasing insulin resistance 
 
We have attempted to establish a link between 

exercise-induced phylogenetic changes in micro-
biome and metabolic disorders that associate mi-
crobiome changes with predictive immune-
inflammatory pathways. Eventually, this may pro-
vide a mechanistic understanding of the beneficial 
effects of physical exercise in metabolic disorders 
through microbiome changes. 

7. Conclusions 
The observations reviewed here suggest a plau-

sible microbiome basis for exercise-induced pre-
vention of metabolic diseases, and provide an op-
portunity to explore novel avenues to prevent 
metabolic diseases in critically lethargic subjects 
who are incapable of voluntarily exercise to man-
age their weight. Although, most of the favorable 
health outcomes are independent of microbiome-
host interactions, there is also evidence to indicate 
that some of the benefits may be mediated by exer-
cise-induced adaptations in gut microorganisms. 

Reciprocal associations between immune-
inflammatory mediators and exercise-induced mi-
crobiome/metabolome corrections may engage sev-
eral cellular energy sensors and trigger adipokine 
and myokine activation that monitor energy bal-
ance and tissue metabolism. Although abundant 
evidence is available on the role of the microbiome 
in metabolic disorders, no significant clinical find-
ings are available to prevent or correct these dis-
orders. Extensive work is needed on metagenomics 
beyond taxonomic diversity profiling. More 
mechanistic research is required to connect exer-
cise with microbiome, body metabolism, and en-
ergy homeostasis. 
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Table 1. Summary of exercise-induced gut microbiome changes observed in different metabolic syndrome conditions 
 

Microbiome changes Study format Exercise format Clinical features and major 
findings Phylogenetic Microbiome diversity 

Refer-
ence

Physical exercise de-
creased weight gain in 
rats 

Volunteer wheel run-
ning, aerobic 

Exercise decreased food intake 
and weight gain, and increased 
cecal weight and size 

Increased butyrate-producing bacte-
rium SM7/11 and T2-87 

Exercising rats had a different micro-
biome clustering pattern from controls 

[67] 

Exercise corrected 
toxin-induced microbial 
dysbiosis in mice 

Volunteer wheel run-
ning, aerobic 

-- 93 exclusive taxa were present in 
both groups (67 in exercising and 26 
in sedentary mice) 

Exercise increased bacteria abundance 
and diversity 

[45] 

Diet restriction- or 
exercise-induced mi-
crobiome changes in 
rats 

Volunteer wheel run-
ning, aerobic 

Exercise and anorexia decreased 
body weight and leptin secretion 
and increased ghrelin secretion 

Exercise and anorexia increased 
Bacteroides, Prevotella, Lactobacillus, 
and Bifidobacterium population sizes 

Exercised rats had a different micro-
biome clustering pattern from control 
or diet restricted rats 

[63] 

Microbiome changes in 
rats subjected to diet 
vs. exercise 

Volunteer wheel run-
ning, aerobic 

Exercise more effectively reduced 
adiposity, adipose inflammation, 
insulin resistance, and LDL cho-
lesterol 

Exercise more effectively increased 
the Streptococcaceae family and re-
duced the Rikenellaceae family 

Exercise had no impact on specie 
richness or diversity, but had a rela-
tively different clustering pattern 

[61] 

Exercise altered micro-
bial composition and 
increased lean mass in 
juvenile rats 

Volunteer wheel run-
ning, aerobic 

Exercise lowered body weight in 
adult rats and increased body 
weight in juvenile rats compared 
with the sedentary counterpart 
groups 

Juvenile runners had higher Bacter-
oidetes to Firmicutes ratio 

Both adult and juvenile runners had 
less specie richness and evenness than 
sedentary rats 

[54] 

Microbiomes of profes-
sional or amateur cy-
clists 

Professional or ama-
teur cyclists, aerobic 
cycling  

-- Bacteroides, Prevotella, Eubacterium, 
Ruminococcus are the dominant 
bacteria in all cyclists 
 

Microbiome split into three clusters 
dominated by either Bacteroides, 
Prevotella, or a mix of many microbes 
in all cyclists 

[60] 

Specific microbiome 
structure improved 
exercise performance 

Exhaustive anaerobic 
swimming 

Specific pathogen-free rats had 
more liver, muscle, and brown 
adipose tissue mass and serum 
antioxidants level 

-- -- [56] 

Active participation in 
athletics lowered anxi-
ety and improved oral 
immunity  

Professional soccer 
and hokey players, 
both aerobic and an-
aerobic training 

Active athletes had higher cardio-
respiratory fitness and oral immu-
nity, and lower anxiety.  

Active athletes had lower oral bacte-
rial colony-forming units (CFU)/ml, 
particularly for Streptococci  

-- [87] 

Exercise altered micro-
biome and SCFA con-
centration 

Both volunteer wheel 
and forced treadmill 
running  

-- Volunteer exercise reduced Turici-
bacter spp. 

Exercise changed microbiome diver-
sity 

[88] 

Exercise altered the 
microbiome of obese 
and hypertensive rats 

Controlled treadmill 
training at12 to 20m.m-
1 speed, aerobic 

-- Increased population size of Allo-
baculum, Pseudomonas and Lactoba-
cillus 

Exercise increased alpha diversity and 
changed clustering pattern 

[89] 

Exercise improved 
postoperative rehabili-
tation 

Treadmill training at 
20m.m-1 speed, aero-
bic 

Preoperative exercise prevents 
postoperative neuroinflammation 
and improves cognation in meta-
bolic syndrome rats 

Exercise improved microbiome 
alpha diversity 

-- [76] 

Exercise prevented 
weight gain and altered 
the microbiome in rats 

Volunteer wheel run-
ning, aerobic 

Exercise lowered body weight and 
insulin resistance in high-fat diet 
rats  

Exercise decreased Bacteroidetes to 
Firmicutes ratio 

Exercise increased alpha diversity and 
changed clustering pattern 

[62] 

Exercise changed the 
microbiome of diabetic 
and control mice 

Treadmill running at 2 
to 4m.m-1 speed, aero-
bic 

-- Exercise decreased Bacteroidetes to 
Firmicutes ratio in both diabetic and 
control rats 

-- [65] 

Exercise changed mi-
crobiome composition 
and influenced cardiac 
function in mice 

Treadmill running at 
12-15 m.m-1, aerobic 

Exercise inhibited decline in car-
diac output and stroke volume in 
the mouse model for surgical myo-
cardial infarction 

Exercise increased Butyricimonas, 
Prevotella, and Akkermansia com-
pared with the control 

Exercise increase bacterial diversity. A 
positive association was observed 
between microbial diversity and car-
diac function 

[90] 

Exercise corrected 
HFD-induced bone loss 
and microbial dysbiosis 
in rats 

Volunteer wheel run-
ning, aerobic 

Exercise prevented BWG, bone 
loss, bone marrow adiposity  

Exercise decreased Firmicutes to 
Bacteriodetes ratio and increased 
Bifidobacteriaceae population 

-- [91] 

Exercise improved 
cardiorespiratory fit-
ness in elderly women  

Brisk walking, trunk 
muscles, aerobic 

Exercise increased cardiorespira-
tory and energy expenditure 

Exercise increased Bacteroides, de-
creased Clostridium populations 

-- [92] 

Exercise lowered BWG 
and insulin resistance 
in HFD rats 

Treadmill running, 
both aerobic and an-
aerobic 

Exercise lowered oxidative stress, 
inflammation, insulin resistance, 
and liver damage 

HFD rats had a higher Fir-
micutes/Bacteroidetes ratio that was 
partially reverted by exercise 

Exercise improved microbiome diver-
sity and richness and corrected dys-
biosis  

[7] 

Exercise had limited 
effect on HFD-induced 
dysbiosis in mice 

Treadmill running, 
20m.m-1, aerobic 

Exercise failed to improve HFD-
induced decrease in exercising 
capacity and aerobic power  

Exercise decreased abundances of 
Proteus and Vagococcus genera 

Exercise had no effect on microbiome 
alpha or beta diversity 

[93] 

Intense exercise im-
proved glycemic index 
and adipose tissue loss 
in Zucker rats  

Treadmill running, 10 
to 18 m.m-1, aerobic  

Exercise decreased inflammation 
and adiposity and improved gly-
cemic control in obese rats 

Exercise did not affect the abun-
dance of major bacteria taxa 

Exercise did not affect specie richness 
or microbiome clustering pattern 

[94] 

 

Legend: BWG - body weight gain, CFU - colony forming unit, HFD - high-fat diet, LDL - low-density lipoprotein, SCFA - short-chain fatty acid. 
References: [7, 45, 54, 56, 60-63, 65, 67, 76, 87-94]. 
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GIT microbiome is critical for sodium-dependent 
glucose transporter 1 (SGLT1) and G-protein-
coupled receptor (GPR) expression on colon epithe-
lial cells. However, it has been observed that anti-
biotic-induced GIT microbiota depletion in rats re-
sults in impaired muscle function in endurance 
running performance. Furthermore, decrease in 
microbial diversity is also associated with loss in 
muscle glycogen levels and insufficient metabolic 
performance because of SGLT1 and GPR depletion 
[84]. However, SCFA-regulated GPR stimulation 
controls size and function (expression of Foxp3 and 
IL-10) of the colonic T regulatory (Treg) and T 
helper (Th) cells in intestinal inflammation [85, 
86]. Therefore, a decrease in the richness of bacte-
ria species, as observed during antibiotic therapy, 
may suppress SCFA production, which eventually 
results in decreased Treg cell production and acti-
vation of pro-inflammatory and autoimmune path-
ways. 

Furthermore, exercise increased fecal abun-
dance of arabinose and carnosine metabolites, 
which are promising candidate for therapies to 
combat diabetes and obesity [87]. These microbes 
and metabolites prevent LPS influx, TLR-4-
mediated NF-κB activation, and inflammatory cy-
tokine production. Eventually, downregulation of 
TLR-2, TLR-4, and the NF-κB pathway resulting 
from exercise may improve insulin sensitivity [88]. 
In brief, exercise-induced changes in GIT micro-
biome and metabolome help to maintain intestine 
wall integrity and downregulate both local and 
systemic immune-inflammatory pathways that 
may contribute to the prevention of ORMDs [51]. 

As discussed in the above sections and shown in 
Table 1, most of the literature available provides 
only common diversity or phylum level taxonomic 
changes in microbiome in response to exercise, 
both in health and metabolic diseases. It is there-
fore reasonable to assume that exercise-induced 
changes in microbiome diversity could improve 
host metabolic profile by: 

 
- Decreasing lipid production and storage in 

visceral organs 

- Correcting chronic low-grade inflammation 
- Decreasing insulin resistance 
 
We have attempted to establish a link between 

exercise-induced phylogenetic changes in micro-
biome and metabolic disorders that associate mi-
crobiome changes with predictive immune-
inflammatory pathways. Eventually, this may pro-
vide a mechanistic understanding of the beneficial 
effects of physical exercise in metabolic disorders 
through microbiome changes. 

7. Conclusions 
The observations reviewed here suggest a plau-

sible microbiome basis for exercise-induced pre-
vention of metabolic diseases, and provide an op-
portunity to explore novel avenues to prevent 
metabolic diseases in critically lethargic subjects 
who are incapable of voluntarily exercise to man-
age their weight. Although, most of the favorable 
health outcomes are independent of microbiome-
host interactions, there is also evidence to indicate 
that some of the benefits may be mediated by exer-
cise-induced adaptations in gut microorganisms. 

Reciprocal associations between immune-
inflammatory mediators and exercise-induced mi-
crobiome/metabolome corrections may engage sev-
eral cellular energy sensors and trigger adipokine 
and myokine activation that monitor energy bal-
ance and tissue metabolism. Although abundant 
evidence is available on the role of the microbiome 
in metabolic disorders, no significant clinical find-
ings are available to prevent or correct these dis-
orders. Extensive work is needed on metagenomics 
beyond taxonomic diversity profiling. More 
mechanistic research is required to connect exer-
cise with microbiome, body metabolism, and en-
ergy homeostasis. 
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