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 ■ Abstract 
BACKGROUND: Abdominal obesity is characterized by 
low-grade inflammation and plays a central role in the devel-
opment of type 2 diabetes and cardiovascular diseases. Die-
tary factors can influence low-grade inflammation and affect 
adipose tissue function. AIM: To investigate the separate 
and combined effects of whey protein and cereal fiber on 
inflammatory markers and adipose tissue gene expression in 
abdominal obesity. METHODS: We performed a 12-week, 
double-blind, randomized controlled dietary intervention in 
65 adults with abdominal obesity. The participants were ran-
domized to 4 groups using a 2 × 2 factorial design; they re-
ceived either 60 g/day of whey protein or maltodextrin in 
combination with high-fiber wheat bran products (30 g fi-
ber/day) or low-fiber refined wheat products (10 g fi-
ber/day). Plasma concentrations of tumor necrosis factor α 
(TNF-α), high-sensitivity C-reactive protein (hs-CRP), mono-
cyte chemoattractant protein-1 (MCP-1), interleukin 1 recep-

tor antagonist (IL-1Ra), and adiponectin were measured be-
fore and after intervention. Changes in gene expression re-
lated to inflammation, insulin signaling, and lipid metabolism 
were measured in abdominal subcutaneous adipose tissue. 
RESULTS: After intervention, TNF-α was reduced for both 
high-fiber groups compared with baseline, but did not sig-
nificantly differ from the low-fiber groups. There were no 
differences in fasting or postprandial inflammatory markers 
between the groups. The relative gene expression of ribo-
somal protein S6 kinase B1 (S6K1) was increased after whey 
protein compared with maltodextrin consumption. CON-
CLUSION: Intake of whey protein in combination with high 
cereal fiber content did not differentially affect low-grade in-
flammation or adipose tissue gene expression compared 
with maltodextrin and low fiber content in individuals with 
abdominal obesity. 
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1. Introduction 
 

 ow-grade inflammation is closely related to 
 obesity and plays a central role in the devel- 
 opment of type 2 diabetes (T2D) and cardio-

vascular diseases (CVD) [1-4]. A number of circu-
lating pro-inflammatory markers are found to be 
elevated in abdominal obesity, e.g. C-reactive pro-
tein (CRP), monocyte chemoattractant protein-1 

(MCP-1), and tumor necrosis factor-alpha (TNF-α) 
[5-7]. Furthermore, postprandial inflammation is 
exaggerated in individuals with obesity, and may 
be involved in the development of insulin resis-
tance, which plays a major role in the development 
of both T2D and CVD [8-10]. 

A dietary pattern characterized by low-fat dairy 
and whole-grain products is positively associated 
with the anti-inflammatory marker adiponectin 
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[11], and high intake of dairy products is associ-
ated with lower levels of CRP and TNF-α [12]. Ob-
servational studies indicate that foods rich in ce-
real fiber, such as whole grains and bran, are asso-
ciated with lower levels of pro-inflammatory mark-
ers [13, 14]. However, results from intervention 
studies are inconsistent [15]. Randomized, con-
trolled trials have indicated a reduction in CRP 
concentration following consumption of whey pro-
tein (WP) supplements (≥20 g/day) [16]. Concor-
dantly, both milk peptides and dietary fiber may 
have beneficial effects on low-grade inflammation 
[17]. However, little is known about the impact of 
the combination of milk proteins and dietary fiber. 

Adipose tissue is an active endocrine organ that 
releases pro-inflammatory adipokines, including 
TNF-α, MCP-1, and interleukin-1 receptor antago-
nist (IL-1Ra), as well as the anti-inflammatory 
protein adiponectin. Adipose tissue dysfunction 
leading to disturbances in the production or secre-
tion of adipokines may increase insulin resistance 
in abdominal obesity [18]. Dietary constituents 
have also been found to affect gene expression in 
adipose tissue; high-protein diets have been shown 
to downregulate subcutaneous adipose tissue 
(SAT) expression of genes involved in lipid metabo-
lism [19], while a high-fiber/low-insulin-response 
diet has been shown to downregulate genes in-
volved in insulin signaling [20]. 

In this article, we aimed to investigate the ef-
fects of WP supplements and high-fiber diets on 
circulating inflammatory markers (both fasting 
and postprandial) and to analyze SAT expression 
of genes involved in inflammation, lipid metabo-
lism, and insulin signaling. We hypothesized that 
intake of WP and high-fiber cereal products (either 
in combination or separately) would have benefi-
cial effects on inflammation compared with isoen-
ergetic intake of maltodextrin (MD) and low-fiber 
cereal products. This was tested in a 12-week, 
randomized controlled, double-blind dietary inter-
vention study in adults with abdominal obesity. 

2. Methods 

The present study is part of the MERITS study 
that investigates the effects of WP and cereal fiber 
on lipemia and metabolic changes. The study was 
conducted at the Department of Endocrinology and 
Internal Medicine, Aarhus University Hospital, 
Denmark, between May 2016 and June 2017. The 
study protocol was approved by the Central Den-
mark Region Committees on Health Research Eth-
ics (Journal no. 1-10-72-370-15). Details of study  

 
design, participants, and dietary interventions 
have been published elsewhere [21]. 

2.1 Study design, participants, and dietary in-
tervention 

We conducted a double-blind, randomized con-
trolled, parallel intervention with a 2 × 2 factorial 
design. Inclusion and exclusion criteria have been 
described in detail elsewhere [21]. In short, 73 men 
and women (age ≥40 years) with abdominal obe-
sity (waist circumference ≥80 cm for women and 
≥94 cm for men) were randomized to 1 of 4 inter-
vention diets for 12 weeks preceded by one week of 
run-in. 

The participants were provided with isocaloric 
powder supplements containing either 2 × 30 g/d 
WP (Lacprodan® HYDRO.REBUILD) or MD (Glu-
cidex® 19), in combination with either wheat bran 
products containing 30 g/d dietary fiber (HiFi) or 
refined wheat products containing 10 g/d dietary 
fiber (LoFi). The powder supplements were pro-
vided by Arla Foods Ingredients Group P/S (Viby, 
Denmark) and the wheat bran by Lantmännen Ce-
realia AB (Malmø, Sweden). The wheat bran was 
treated with cell wall-degrading enzymes (xy-
lanase, glucanase, cellulase) by DuPont Industrial 
Biosciences Aps (Brabrand, Denmark) in order to 
increase the content of arabinoxylan oligosaccha-
rides (AXOS) and improve the baking properties of 
the bran [22]. 

The participants were instructed to replace 
their habitual intake of bread and cereal products 
with the products provided, and to consume the 

Abbreviations: 
 

ACTB β-actin 
AXOS arabinoxylan oligosaccharides 
BCAA branched-chain amino acid 
CCL-5 CC chemokine ligand-5 
CVD cardiovascular diseases 
FDR  false discovery rate  
HiFi high-fiber intervention 
hs-CRP high-sensitivity C-reactive protein 
IL-1Ra interleukin-1 receptor antagonist 
IRS1 insulin receptor substrate 1  
LoFi low-fiber intervention 
LPS lipopolysaccharide 
MCP-1 monocyte chemoattractant protein-1 
MD maltodextrin 
MTOR mammalian target of rapamycin 
S6K1 ribosomal protein S6 kinase B1 
SAT subcutaneous adipose tissue  
T2D type 2 diabetes 
TNF-α tumor necrosis factor-alpha 
VAT visceral adipose tissue 
WP whey protein 
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powder supplements twice daily. They were en-
couraged not to change other dietary habits during 
the intervention period and to maintain their 
physical activity level to ensure weight stability. 
Both participants and study personnel remained 
blinded to the group allocations throughout the 
study. Compliance was assessed by measuring 
plasma alkylresorcinols (a marker of cereal bran 
intake) and urinary carbamide excretion (a protein 
intake marker). Also, the participants filled out a 
daily test product journal that was used to monitor 
compliance during the trial. 

Before and after the 12-week intervention, the 
participants underwent a standardized, high-fat 
meal test (4700 kJ, 70 g of fat) following an over-
night fast, as described previously [21]. A catheter 
was placed in an antecubital vein for blood sam-
pling. Fasting blood samples were collected for 
measurement of TNF-α, IL-1Ra, hs-CRP, MCP-1, 
and adiponectin. During the test meal, postpran-
dial blood samples were collected at t = 30, 60, 120, 
and 240 min for measurement of MCP-1, and at t = 
30, 60, 120, and 360 for measurement of adi-
ponectin. 

2.2 Measurement of inflammatory markers 

Blood samples for measuring TNF-α, IL-1Ra, 
and adiponectin were immediately centrifuged at 
2000 × g for 15 min at 4 °C. Serum samples for 
measuring MCP-1 and hs-CRP were left at room 
temperature for 30 min before being centrifuged 
for 10 min at 2000 × g. Plasma and serum samples 
were then frozen at -20 °C and moved to -80 °C 
within 8 h for storage. 

TNF-α, MCP-1, IL-1Ra, and adiponectin were 
all measured using ELISA technique. TNF-α was 
determined using a human Quantikine® High Sen-
sitivity kit (cat. HSTA00E, R&D Systems, Min-
neapolis, USA), with assay range of 0.2-10 pg/ml, 
intra-assay precision of 1.9-2.2%, and inter-assay 
precision of 6.2-6.7%. MCP-1 was measured using 
LEGEND MAX™ Human MCP-1/CCL2 ELISA kit 
with pre-coated plates (cat. 438808, BioLegend, 
San Diego, USA), with assay range of 7.8-500 
pg/ml, intra-assay precision of 6.0-6.4%, and inter-
assay precision of 1.8-6.0%. Adiponectin was de-
termined using a human adiponectin ELISA kit 
(cat. K1001-1, B-Bridge International, Inc., Santa 
Clara, USA), with assay range 0.375-12.0 ng/ml, 
intra-assay precision 4.6-5.8%, and inter-assay 
precision 3.2-7.3%. IL-1Ra was determined using a 
human Quantikine® kit (cat. DRA00B, R&D Sys-
tems, Minneapolis, USA), with assay range of 31.2-
2000 pg/ml, intra-assay precision of 3.7-7.3%, and 

inter-assay precision of 6.7-11.0%. Hs-CRP was 
measured on a Cobas c 111 system using a com-
mercial kit (ref. 05401607, Roche Diagnostics 
GmbH, Mannheim), with assay range of 0.15-20.0 
mg/l, intra-assay precision of 0.3-1.5%, and inter-
assay precision of 0.7-2.0%. 

2.3 Adipose tissue biopsies 

Biopsies were collected from abdominal SAT be-
fore and after dietary intervention. The procedure 
was performed under local analgesia using a Berg-
ström needle. The tissue biopsies were cleaned 
with saline and snap-frozen in liquid nitrogen be-
fore storage at -80 °C. 

2.4 Gene expression analyses 

RNA purification and gene expression analyses 
were performed by BioXpedia A/S (Aarhus, Den-
mark), using real-time qPCR with pre-designed 
primers and TaqMan gene expression assays (Ap-
plied Biosystems, Life Technologies, California, 
USA). An overview of the assay identification 
numbers is given in supplementary Table A1. We 
measured the cycle threshold (CT) values for each 
sample in triplicate. The mean fold change in the 
target genes, normalized to the reference gene β-
actin (ACTB) and relative to the expression at 
week 0, was calculated by the 2•∆∆CT method [23]. 
The expression of the reference gene ACTB was 
not different between groups at baseline, and was 
not affected by the different dietary interventions 
(assessed by one-way ANOVA). 

2.5 Calculations and statistical analyses 

The postprandial responses in MCP-1 and adi-
ponectin before and after intervention were calcu-
lated as total areas under the curve (AUC) for 240 
min (MCP-1) and 360 min (adiponectin) using the 
trapezoidal rule. 

Statistical analyses were performed in Stata 
IC/15.1 (StataCorp LP College Station, TX, USA), 
and graphical elements were constructed in 
GraphPad Prism 7.04 (Graphpad Software, CA, 
USA). P-values < 0.05 were considered statistically 
significant. Variables were assessed for normal 
distribution by quantile-quantile plots and histo-
grams, and homogeneity of variance was assessed 
by Bartlett’s test. The distribution of paired data 
was further assessed by Bland-Altman plots. If the 
data were found not to be normally distributed, 
log-transformation was applied and the data were 
reassessed. 
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Table 1. Fasting inflammatory markers before and after the 12-week intervention 
 

 Whey protein + low fiber Whey protein + high fiber Maltodextrin + low fiber Maltodextrin + high fiber pa 
 (n = 15) (n = 17) (n = 16) (n = 17) ∆ 

 Baseline Week 12 Baseline Week 12 Baseline Week 12 Baseline Week 12  

Fasting hs-CRP 
(mg/l)  

1.53 (0.84-5.55) 1.30 (0.83-4.08) 1.39 (0.94-2.04) 1.07 (0.95-1.64) 1.51 (0.67-3.26) 1.52 (0.50-2.2) 1.51 (0.63-2.23) 1.49 (0.82, 3.0) 0.30 

Fasting TNF-α 
(pg/ml) 

1.35 (1.27-1.57)  1.21 (1.12-1.54)  1.32 (1.18-1.85)  1.14 (1.08-1.51)* 1.37 (1.28-1.60) 1.26 (1.12-1.55)  1.48 (1.19-1.67)  1.33 (1.09-1.47)* 0.87 

Fasting MCP-1 
(pg/ml)  

 110 (81-156)  102 (70-149)  107 (91-146) 107 (82-146) 149 (107-169)  161 (102-178) 120 (98-154) 110 (85-137) 0.54 

Fasting IL-1Ra 
(pg/ml)  

294 (214-401) 224 (207-377) 328 (258-392) 276 (224-354) 381 (274, 526) 335 (254-389)* 327 (221-391) 302 (246, 365) 0.50 

Fasting adi-
ponectin (mg/l) 

7.5 (4.9-10.1) 7.4 (4.6-9.2) 9.6 (7.6-13.5) 9.6 (6.7-13.2) 8.8 (6.2-12.3) 8.5 (6.8-11.2) 8.6 (6.7-13.9) 8.7 (7.1-13.5) 0.87 

 

Legend: Values are median and centiles (25th-75th). a P-values for differences in ∆ (week 12 - baseline) between diet groups, assessed by non-
parametric Kruskal-Wallis test. * Significantly different from baseline (p < 0.05) assessed by Wilcoxon signed-rank test. Abbreviations: hs-CRP 
- high-sensitivity C-reactive protein, IL-1Ra - interleukin 1 receptor antagonist, MCP-1 - monocyte chemoattractant protein-1, TNF-α - tumor 
necrosis factor α. 

We tested between-group differences in in-
flammatory markers using a nonparametric Krus-
kal-Wallis test, and within-group changes in in-
flammatory markers from baseline using Wilcoxon 
signed-rank test because data did not fulfill crite-
ria for normal distribution and/or homogeneity of 
variance after log-transformation. Differences in 
relative gene expression between diets were as-
sessed by a two-factor ANOVA adjusted for age 
and sex. Pairwise comparisons of groups were cor-
rected for multiple comparisons by the Tukey-
Kramer method. Data were checked by diagnostic 
plots of residuals (quantile-quantile plots, histo-
grams, and residuals versus fitted plots). We as-
sessed within-group changes in relative gene ex-
pression from baseline by paired t-tests. We ap-
plied the Benjamini-Hochberg procedure with a 
false discovery rate (FDR) of 0.25 to account for 
multiple statistical testing of the gene expression 
data [24]. 

3. Results 
In total, 65 participants completed the study. 

Samples for fasting circulating inflammatory 
markers were obtained from all participants (34 
women and 31 men). Data on postprandial MCP-1 
at baseline are missing for two participants be-
cause of blood sampling issues. Adipose tissue bi-
opsies were collected from 61 participants (32 
women and 29 men); one participant refused bi-
opsy and three were excluded from biopsies be-
cause of anticoagulant medication use. We have 
described the baseline participant characteristics 
previously [21]. Briefly, the study population had a 
median age of 64 years (range 40-75), a mean BMI 

of 29.4 ± 3.7 kg/m2, and 52% fulfilled the Interna-
tional Diabetes Federation criteria for the meta-
bolic syndrome. The participants remained weight 
stable throughout the intervention [21]. 

3.1 Inflammation 

Fasting inflammatory markers at baseline and 
week 12 are presented in Table 1. After interven-
tion, we observed a decrease in fasting TNF-α for 
the two HiFi groups, but this change did not sig-
nificantly differ from the LoFi groups. Compared 
with baseline, TNF-α was decreased by 12% for 
WP-HiFi (95% CI: 4-19%, p < 0.05), and by 9% for 
MD-HiFi (95% CI: 2-16%, p < 0.05). Furthermore, 
we found a 13% decrease in fasting IL-1Ra for MD-
LoFi after intervention (95% CI: 2-25%, p < 0.05); 
however, this was not significantly different from 
the other groups. 

We found no changes in fasting hs-CRP, MCP-
1, or adiponectin for either of the intervention 
groups. Furthermore, we observed no changes in 
postprandial responses of MCP-1 or adiponectin 
following the interventions (Table 2). MCP-1 in-
creased after high-fat meals both at baseline and 
week 12, and peaked 120 min postprandially for 
all groups. For adiponectin, there was a small ini-
tial increase 30-60 min postprandially for all 
groups (data not shown). 

3.2 Gene expression 

Relative changes in SAT gene expression after 
the 12-week intervention period are shown in 
Figures 1-3. There was a main effect of protein 
level on ribosomal protein S6 kinase B1 (S6K1) 
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Table 2. Postprandial response for inflammatory markers (AUC) during a high-fat meal test at baseline (week 0) and week 12 
 

 Whey protein + low fiber Whey protein + high Fiber Maltodextrin + low fiber Maltodextrin + high fiber pc 
 (n = 15) (n = 17) (n = 16) (n = 17) ∆ 

 Baseline Week 12 Baseline Week 12 Baseline Week 12 Baseline Week 12  

MCP-1  
(pg/ml × 240 
min) 

27300 (22300-
39200)a 

28700 (20400-
35400) 

28900 (25700-
35400)b 

26200 (19700-
35100) 

35600 (26800-
45100) 

35900(2620
0-44800) 

29000(2430
0-41400) 

26800(23400-
34100) 

0.34 

Adiponectin  
(mg/l × 360 
min) 

2690 (1750-
3680) 

2680 (1640-
3490) 

3500 (2730-
4650) 

3450 (2430-
4560) 

3060(2280-
4270) 

3030(2370-
4120) 

2880(2370-
4950) 

2870 (2300-
5080) 

0.95 

 

Legend: Values are medians and centiles (25th-75th). a n = 14. b n = 16. c P-value for differences in ∆ (week 12 - baseline) between diet groups, 
assessed by nonparametric Kruskal-Wallis test. Abbreviations: AUC - area under the curve, hs-CRP - high-sensitivity C-reactive protein, IL-1Ra - 
interleukin-1 receptor antagonist, MCP-1 - monocyte chemoattractant protein-1. 

gene expression (p = 0.02), showing an increase af-
ter WP consumption compared with MD consump-
tion. After intervention, the relative gene expres-
sion of S6K1 was significantly increased for WP-
HiFi compared with MD-HiFi (p = 0.02 after cor-
rection for multiple comparisons) (Figure 3). MD-
HiFi had a greater increase in resistin (RETN) 
gene expression compared with MD-LoFi (p = 0.01 
after correction for multiple comparisons) (Figure 
1). Any within-group changes in gene expression 
from baseline were not statistically significant af-
ter FDR correction. 

4. Discussion 

In the present study, we investigated the effects 
of WP supplements or a carbohydrate control in 
combination with high-fiber or low-fiber cereal 
products on circulating inflammatory markers and 
SAT gene expression. We found a reduction in the 
pro-inflammatory cytokine TNF-α compared with 
baseline after consumption of the wheat bran-rich 
diet for 12 weeks. However, this change was not 
significantly different from that observed in the 
refined wheat groups. 

The MERITS study was originally powered to 
detect differences in postprandial triglycerides, 
which was the primary outcome [21]. We cannot 
exclude that the sample size may have been too 
small to detect differential effects on plasma cyto-
kines. However, previous studies of similar or 
smaller sample sizes and shorter durations have 
detected differences in circulating TNF-α between 
a wholegrain wheat diet and a refined wheat diet 
in subjects with overweight and obesity [25, 26]. 
This discrepancy in results could be due to differ-
ences in study populations; the previous studies 
included only individuals with low intakes of 
wholegrain and dietary fiber at baseline, while our 

study population was adapted to a relatively high 
dietary fiber intake, corresponding to the Danish 
national average of 22 g/day [27]. It is possible 
that we would have observed a significant impact 
of our interventions in individuals with a less 
healthy background diet. 

We found no effects of the interventions on 
postprandial responses of MCP-1 or adiponectin. A 
previous study in adults with overweight and obe-
sity found that consumption of wholegrain wheat 
for 12 weeks reduced the postprandial response of 
several inflammatory markers compared with con-
sumption of refined wheat [28]; however, they in-
vestigated different inflammatory markers than 
we did in the present study. 

While consumption of wholegrain and cereal 
bran products has been associated with lower lev-
els of inflammation [13, 14, 29], the mechanisms 
behind this association remain largely unknown, 
and may be attributed to a range of constituents 
present in the grain [30, 31]. Wheat grain contains 
a number of phytochemicals and dietary fiber 
types, which are mainly located in the bran frac-
tion [32]. In the present study, we treated the 
wheat bran with cell wall-degrading enzymes prior 
to incorporating it into the test products. This bio-
processing may potentially have enhanced the 
availability of bioactive compounds [32]. Interest-
ingly, a previous study showed that bioprocessing 
of wheat bran with cell wall-degrading enzymes 
and yeast fermentation greatly increased the bioa-
vailability of phenolic acids, which are considered 
to possess anti-inflammatory properties [33]. In 
the same study, bioprocessed wheat bran exerted 
anti-inflammatory effects in lipopolysaccharide 
(LPS) stimulated blood ex vivo compared with na-
tive wheat bran. In the present study, the enzy-
matic treatment of the wheat bran changed the 
composition of the soluble and insoluble dietary 
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Figure 1. Relative changes from baseline to week 12 in the expression of selected genes involved in inflammation (mean and 
SD). Gene expression was measured in subcutaneous adipose tissue of 61 participants (WP-LoFi: n = 15, WP-HiFi: n = 16, 
MD-LoFi: n = 14, MD-HiFi: n = 16), except for RETN, where N = 59 due to measurement error (WP-LoFi: n = 14, WP-HiFi: n 
= 16, MD-LoFi: n = 14, MD-HiFi: n = 15). # Significant difference between groups assessed by two-factor ANOVA (p < 0.05 
after correction for multiple comparisons by the Tukey-Kramer method). * Within-group change from baseline assessed by 
paired t-test (p < 0.05 before FDR correction, p > 0.05 after FDR correction). Abbreviations: FDR – false discovery rate, MD-
HiFi – maltodextrin + high fiber, MD-LoFi – maltodextrin + low fiber, WP-HiFi – whey protein + high fiber, WP-LoFi – whey 
protein + low fiber. 
 
 

fiber fractions, particularly increasing the AXOS 
content. Enzyme-treated wheat bran with an in-
creased AXOS content has been shown to induce 
anti-inflammatory effects in LPS-stimulated mice 
[34], but this effect is yet to be demonstrated in 
low-grade inflammation. 

Except for the within-group reduction in TNF-α 
in the group receiving WP-HiFi, we found no ef-
fects of the WP intervention on low-grade inflam-
mation. A study conducted in patients with acute 
ischemic stroke showed beneficial effects on in-
flammation after short-term enteral feeding with 
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WP [35]. However, results from trials in healthier 
study populations, using a similar duration and 
WP dose to those in the present study, corroborate 
our results [36-38]. 

Furthermore, we found no long-term differences 
in postprandial responses of MCP-1 or adiponectin 
between the interventions. To our knowledge, few 
previous studies have investigated the long-term 
effects of dietary interventions on fat-induced 
postprandial inflammation. A study from our 
group previously reported no effects on postpran-
dial MCP-1 after intake of WP or casein for 12 
weeks [37]. However, an acute study detected a 
higher postprandial MCP-1 response following a 
high-fat meal with WP compared with other pro-
teins, while the acute response in CC chemokine 
ligand-5 (CCL5/RANTES) was lower after the WP 
meal [39]. Another acute study found a reduction 
in postprandial IL-6 after intake of a fiber-rich 
wheat-bran meal compared with a potato meal [8]. 
However, we did not measure circulating 
CCL5/RANTES or IL-6 in the present study. 

We observed a within-group reduction in IL-
1Ra in the MD-LoFi group. Circulating IL-1Ra is 
elevated in obesity [40], and increased levels pre-
cede the onset of T2D [41]. A reduction in IL-1Ra 
after the intervention with MD and low-fiber 
products could therefore indicate an unexpected 
beneficial change in this group. In contrast, a con-
trol diet with low-fiber cereal products has previ-
ously been shown to increase IL-1Ra compared 
with a healthy, high-fiber Nordic diet [42]. In this 
regard, it is relevant to point out that the observed 
reduction from baseline for MD-LoFi was not sig-
nificantly different compared with the other inter-
vention groups in the present study. 

Interestingly, we found an increase in SAT gene 
expression of S6K1 after WP compared with MD 
consumption. S6K1 encodes a kinase involved in 
the mammalian target of rapamycin (MTOR) sig-
naling pathway, a key regulator of protein synthe-
sis [43]. Intake of leucine―a branched-chain amino 
acid (BCAA) which is abundant in WP―induces ac-
tivation of S6K1 through phosphorylation [44]. 
However, it is important to note that we did not 
measure phosphorylation of S6K1 in the present 
study. Activation of the MTOR pathway by BCAAs 
is thought to block insulin signaling via inactiva-
tion of insulin receptor substrate 1 (IRS1) [45, 46]. 
Furthermore, elevated plasma levels of BCAAs are 
strongly associated with insulin resistance and 
predict the onset of T2D [47, 48]. Consequently, it 
has been hypothesized that high-protein diets play 
a role in the development of insulin resistance [49, 
50]. Interestingly, one study found a tendency for 

higher S6K1 protein expression following 6 weeks 
of high-protein diet, which was associated with re-
duced insulin sensitivity [51]. However, these ef-
fects were attenuated after 18 weeks. We found no 
changes in MTOR or IRS1 expression, in accor-
dance with a previous study comparing two differ-
ent high-protein diets [19]. It would have been in-
teresting to determine the activation of the MTOR 
pathway in skeletal muscle tissue, since it has 
been demonstrated in humans that phosphoryla-
tion of both MTOR and S6K1 is increased in skele-
tal muscle following intake of a dairy protein-rich 
meal [52]. 

Furthermore, we found an increase in RETN 
gene expression in SAT after 12 weeks of MD-HiFi 
compared with MD-LoFi. RETN encodes resistin, a 
protein with pro-inflammatory properties which 
has been linked to abdominal obesity and insulin 
resistance. The role of resistin is, however, still in-
conclusive [53]. The increased RETN gene expres-
sion in MD-HiFi could indicate an unfavorable 
change in inflammation in this group. However, 
this finding should be interpreted with caution, 
since we found no other indications of increased 
inflammation in this group. We observed no differ-
ences between interventions in the expression of 
genes related to lipid metabolism, despite our pre-
viously reported findings regarding beneficial 
changes in the plasma lipid profile after the WP-
LoFi diet [21]. 

A limitation of our study is that for most of the 
markers of inflammation, insulin signaling, and 
lipid metabolism we measured mRNA levels only; 
changes in gene expression do not necessarily cor-
respond to changes in plasma protein levels [54]. 
Furthermore, we observed a large variation in 
mRNA levels of several of the genes related to in-
flammation. It is possible that some of this vari-
ability is due to viral infections during the trial, 
although the few cases of self-reported illnesses 
among our participants do not explain the outliers 
(data not shown). It would have been interesting to 
measure gene expression in visceral adipose tissue 
(VAT) also, since studies comparing SAT and VAT 
have detected depot-specific differences in gene 
expression, with VAT showing higher expression of 
certain genes involved in inflammation and lipid 
metabolism [55]. 

An important strength of our study is that the 
participants were weight stable during the inter-
vention. Weight loss has great influence on low-
grade inflammation [17], and differences in weight 
change between groups would have made it diffi-
cult to evaluate the effect of the test products 
themselves. Other strengths of our study include  

 
Figure 2. Relative changes from baseline to week 12 in the expression of selected genes involved in lipid metabolism and 
cell differentiation (mean and SD). Gene expression was measured in subcutaneous adipose tissue of 61 participants (WP-
LoFi: n = 15, WP-HiFi: n = 16, MD-LoFi: n = 14, MD-HiFi: n = 16). * Within-group change from baseline assessed by paired 
t-test (p < 0.05 before FDR correction, p > 0.05 after FDR correction). Abbreviations: FDR – false discovery rate, MD-HiFi – 
maltodextrin + high fiber, MD-LoFi – maltodextrin + low fiber, WP-HiFi – whey protein + high fiber, WP-LoFi – whey protein 
+ low fiber. 
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Figure 3. Relative changes from baseline to week 12 in the expression of se-
lected genes involved in insulin signaling (mean and SD). Gene expression was 
measured in subcutaneous adipose tissue of 61 participants (WP-LoFi: n = 15, 
WP-HiFi: n = 16, MD-LoFi: n = 14, MD-HiFi: n = 16). # Significant difference be-
tween groups assessed by two-factor ANOVA (p < 0.05 after correction for multi-
ple comparisons by the Tukey-Kramer method). * Within-group change from 
baseline assessed by paired t-test (p < 0.05 before FDR correction, p > 0.05 after 
FDR correction). Abbreviations: FDR – false discovery rate, MD-HiFi – maltodex-
trin + high fiber, MD-LoFi – maltodextrin + low fiber, WP-HiFi – whey protein + 
high fiber, WP-LoFi – whey protein + low fiber. 
 

WP [35]. However, results from trials in healthier 
study populations, using a similar duration and 
WP dose to those in the present study, corroborate 
our results [36-38]. 

Furthermore, we found no long-term differences 
in postprandial responses of MCP-1 or adiponectin 
between the interventions. To our knowledge, few 
previous studies have investigated the long-term 
effects of dietary interventions on fat-induced 
postprandial inflammation. A study from our 
group previously reported no effects on postpran-
dial MCP-1 after intake of WP or casein for 12 
weeks [37]. However, an acute study detected a 
higher postprandial MCP-1 response following a 
high-fat meal with WP compared with other pro-
teins, while the acute response in CC chemokine 

ligand-5 (CCL5/RANTES) 
was lower after the WP meal 
[39]. Another acute study 
found a reduction in 
postprandial IL-6 after intake 
of a fiber-rich wheat-bran 
meal compared with a potato 
meal [8]. However, we did not 
measure circulating CCL5/ 
RANTES or IL-6 in the 
present study. 

We observed a within-
group reduction in IL-1Ra in 
the MD-LoFi group. Circulat-
ing IL-1Ra is elevated in obe-
sity [40], and increased levels 
precede the onset of T2D [41]. 
A reduction in IL-1Ra after 
the intervention with MD and 
low-fiber products could 
therefore indicate an unex-
pected beneficial change in 
this group. In contrast, a con-
trol diet with low-fiber cereal 
products has previously been 
shown to increase IL-1Ra 
compared with a healthy, 
high-fiber Nordic diet [42]. In 
this regard, it is relevant to 
point out that the observed 
reduction from baseline for 
MD-LoFi was not significant-
ly different compared with 
the other intervention groups 
in the present study. 

Interestingly, we found an 
increase in SAT gene expres-
sion of S6K1 after WP com-

pared with MD consumption. S6K1 encodes a ki-
nase involved in the mammalian target of rapamy-
cin (MTOR) signaling pathway, a key regulator of 
protein synthesis [43]. Intake of leucine―a 
branched-chain amino acid (BCAA) which is abun-
dant in WP―induces activation of S6K1 through 
phosphorylation [44]. However, it is important to 
note that we did not measure phosphorylation of 
S6K1 in the present study. Activation of the 
MTOR pathway by BCAAs is thought to block in-
sulin signaling via inactivation of insulin receptor 
substrate 1 (IRS1) [45, 46]. Furthermore, elevated 
plasma levels of BCAAs are strongly associated 
with insulin resistance and predict the onset of 
T2D [47, 48]. Consequently, it has been hypothe-
sized that high-protein diets play a role in the de-
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velopment of insulin resistance [49, 50]. Interest-
ingly, one study found a tendency for higher S6K1 
protein expression following 6 weeks of high-
protein diet, which was associated with reduced 
insulin sensitivity [51]. However, these effects 
were attenuated after 18 weeks. We found no 
changes in MTOR or IRS1 expression, in accor-
dance with a previous study comparing two differ-
ent high-protein diets [19]. It would have been in-
teresting to determine the activation of the MTOR 
pathway in skeletal muscle tissue, since it has 
been demonstrated in humans that phosphoryla-
tion of both MTOR and S6K1 is increased in skele-
tal muscle following intake of a dairy protein-rich 
meal [52]. 

Furthermore, we found an increase in RETN 
gene expression in SAT after 12 weeks of MD-HiFi 
compared with MD-LoFi. RETN encodes resistin, a 
protein with pro-inflammatory properties which 
has been linked to abdominal obesity and insulin 
resistance. The role of resistin is, however, still in-
conclusive [53]. The increased RETN gene expres-
sion in MD-HiFi could indicate an unfavorable 
change in inflammation in this group. However, 
this finding should be interpreted with caution, 
since we found no other indications of increased 
inflammation in this group. We observed no differ-
ences between interventions in the expression of 
genes related to lipid metabolism, despite our pre-
viously reported findings regarding beneficial 
changes in the plasma lipid profile after the WP-
LoFi diet [21]. 

A limitation of our study is that for most of the 
markers of inflammation, insulin signaling, and 
lipid metabolism we measured mRNA levels only; 
changes in gene expression do not necessarily cor-
respond to changes in plasma protein levels [54]. 
Furthermore, we observed a large variation in 
mRNA levels of several of the genes related to in-
flammation. It is possible that some of this vari-
ability is due to viral infections during the trial, 
although the few cases of self-reported illnesses 
among our participants do not explain the outliers 
(data not shown). It would have been interesting to 
measure gene expression in visceral adipose tissue 
(VAT) also, since studies comparing SAT and VAT 

have detected depot-specific differences in gene 
expression, with VAT showing higher expression of 
certain genes involved in inflammation and lipid 
metabolism [55]. 

An important strength of our study is that the 
participants were weight stable during the inter-
vention. Weight loss has great influence on low-
grade inflammation [17], and differences in weight 
change between groups would have made it diffi-
cult to evaluate the effect of the test products 
themselves. Other strengths of our study include 
the use of a double-blind, randomized controlled 
design, and the fact that we measured biochemical 
markers in addition to self-reported data to verify 
a high degree of compliance with our interven-
tions. However, the sample size may have been too 
small to detect differences in inflammatory mark-
ers. 

In conclusion, intake of WP supplements and 
high-fiber wheat bran products for 12 weeks did 
not significantly influence fasting or postprandial 
markers of low-grade inflammation, and did not 
have a significant impact on SAT gene expression 
compared with MD and refined wheat products in 
participants with abdominal obesity. 
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